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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial and
Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant research
project, while simultaneously developing links with international students and academics in the
field. An allied purpose is to bring a variety of international researchers to South Africa to give
them a glimpse of the dynamic environment at UCT in the African Institute of Financial Markets
and Risk Management. The primary goal, however, remains for students to learn to work in di-
verse teams and to be exposed to a healthy dose of fair competition.

The Seventh Financial Mathematics Team Challenge was held from the 27 th of June to the 6 th of
July 2022. The challenge this year was unusual because of the lingering effects of the pandemic.
All twelve participants were drawn from the 2022 MPhil in Mathematical Finance class at UCT.
There were no PhD students involved, so one MPhil student in each team took over the demand-
ing role of the Team Leader. To compensate for the absence of PhD students, each team had two
mentors who guided the research on a distinct problem over the ten days. Professional and aca-
demic experts from Germany, Australia, South Africa, and the UK mentored the teams, fostering
teamwork and providing guidance. As they have in the past, the students applied themselves
with remarkable commitment and energy.

This years research included topical projects on (a) South African interest rate parity arbitrage,
(b) volatility surface updating, and (c) on using Gaussian mean mixtures for pricing American
options. These were chosen from areas of current relevance to the finance and insurance industry.
To prepare the teams, guidance and preliminary reading was given to them a month before the
meeting in Cape Town. During the final day of the challenge, the teams presented their conclu-
sions and solutions in extended seminar talks. The team whose research findings were adjudged
to be the best was awarded a floating trophy. Each team wrote a report containing a critical anal-
ysis of their research problem and the results that they obtained. This volume contains these
reports, and it will be available to future FMTC participants. It may also be of use and inspiration
to Masters and PhD students in Financial and Insurance Mathematics.

FMTC VII was a great success, so 2023 and FMTC VIII is already in the pipeline!

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

The concept of Covered Interest Parity (CIP) is built on the “no-arbitrage”

argument which is fundamental in financial markets. It shows that the implicit

interest rates in the foreign exchange swap market coincide with corresponding

interest rates in the domestic market. It should not be possible for one to earn

a risk-free profit from borrowing in South African Rand (ZAR), and lending

in another currency, e.g., United States Dollar (USD), while simultaneously

covering the foreign exchange risk, using a foreign exchange swap. In the case

where this relationship breaks an arbitrage opportunity arises. This opportunity

can be exploited by borrowing at the relatively lower interest rate between the

two markets and lending at the higher interest rate with the foreign exchange

risk fully hedged by the foreign exchange swap.

We would expect that when there is an arbitrage trade, professional arbi-

trageurs would trade that strategy and eventually the arbitrage opportunity

would evaporate. However, many experts state that there is persistent devia-

tions from CIP. In the G10 countries, the CIP has been consistently violated

ever since the 2008 Global Financial Crisis, and it has led to significant arbitrage

opportunities in currency markets Du et al. [2018]. Furthermore, it was shown

that the spread emerging from violating CIP remained large and persisted, even

against the most liquid currencies Du et al. [2018].

There are several explanations as to why this arbitrage is not exploited and

thus persists. A possible reason for the persistent CIP deviation can be ex-

plained by the regulation that market entities face. Du et al. [2018], found that

regulations lead to tightened balance sheets for banks which discourage trad-

ing the CIP basis. For example, it was seen that when companies are close

to filing their reports, a widening of the CIP deviation was observed. Fur-

thermore, regulators require these firms to maintain a certain amount capital

reserves that is commensurate with their balance sheets. Another possible ex-

planation as to why the CIP violation persists is market illiquidity. In illiquid

markets the bid/offer spreads tend to be large and financial entities cannot take

advantage of the violation as the spread erodes the arbitrage. During 1984 to

1987, De J. Correia and Knight [1987] attributed the CIP violation in South

Africa to transaction cost.

Andersen et al. [2019] state that the firm’s default risk could deter the firm

from exploiting the opportunity created by the CIP violation. If a risky firm

needs borrowing to set up a financial strategy that exploits the arbitrage, the

firm will have to pay a spread arising from credit risk. This report shall focus

3



on default risk of the firm as a potential explanation for why arbitrage persists

in a CIP strategy. Du et al. [2018] found that as USD appreciates against

other currencies, the CIP violation increases. This could be attributed to the

increased transaction costs involved in trading USD, as it appreciates, which

deters professional arbitrageurs from exploiting the strategy.

In looking at why the CIP violations persist, Andersen et al. [2019] was

consulted. In their work, the focus is on how funding value adjustments (FVA)

influence investment decisions. They found that debt overhang costs to share-

holders are one of the key reasons why the arbitrage opportunity persists. When

the default risk of the firm is accounted for, the arbitrage is eliminated in most

cases. The only time the arbitrage persists is when the firm has a very high

survival probability.

Andersen et al. [2019] look at the impact that the FVA has on investment

decisions. They develop a model that demonstrates the gain achieved by the

firm’s shareholders for a specific investment strategy. Their model shows there

is an associated cost with implementing an investment strategy and a value

adjustment needs to be made to the gains to account for the strategy funding.

Their proposed model is a single-period model, where the impact of regulatory

requirements, transaction costs and liquidity of the market are ignored when

calculating the marginal gain achieved by the strategy.

In this report, our goal is to derive the valuation adjustment arising from the

funding costs associated with a foreign exchange (FX) strategy. While Andersen

et al. [2019] adopt a general view that could apply to any instrument payoff in-

volved in the arbitrage strategy, our focus is on a specific CIP trading strategy.

Despite our setup being a special case, we nevertheless are able to derive, from

first principles, the equation to calculate the marginal value to shareholders of

debt financing. We consider borrowing directly from the South African mar-

ket, synthetically lending rand and simultaneously entering a foreign exchange

contract (FEC) to fix the exchange rate.

XVA is an umbrella term referring to a number of different “valuation ad-

justments” that banks make when assessing the value of derivative contracts.

Since the 2008 Financial Crisis, credit risk has become a fundamental part of

financial trading. The no-default value of a derivative transaction relies on both

parties living up to their obligations. When a derivative’s credit risk exposure

is not collateralised, a credit-valuation adjustment (CVA) is needed to allow

for the possibility that the counterparty defaults. Debit-valuation adjustment

(DVA), which is analogous to CVA, is the adjustment needed to account for the

effects of an arbitrageur defaulting.
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FVA is the adjustment to the no-arbitrage value of an uncollateralised deriva-

tive that is designed to ensure that a arbitrageur, trading and hedging deriva-

tives, recovers the average funding costs. According to Hull and White [2014], if

this adjustment is not made, a loss will be shown for trades that require funding.

Intuitively, for trades that create funding, for example the sale of a derivative,

an FVA is a benefit as such trades reduce the external funding requirements of

a bank.

Within the context of Andersen et al. [2019], the FVA is the cost that arises

from the default risk of the firm. There is no other source of risk. Under the

main result in Andersen et al. [2019], the FVA is defined as the present value to

shareholders of their share of the net financing cost uS, where u is the marginal

purchase price of an asset, and S is the firm’s credit spread. It is further stated

that shareholders pay these financing costs if and only if the firm survives. The

main result in Andersen et al. [2019] reflects that even an investment whose

up-front cost is strictly below the market value of an asset may be rejected by

a firm once the FVA is incorporated. This can be used to explain why the CIP

violation seems to persist.

The CIP bases calculated in Section 4.1 have an absolute value of 19 basis

points on average across the sample period. Section 4.2 considers longer ma-

turities and results in CIP bases with an absolute value of 85 basis points on

average across the period. The CIP bases are positive and negative over the

period under consideration, with longer maturities having a tendency to be pos-

itive. These averages are lower when considering bid/ask spreads. The net CIP

basis remaining after bid/ask spreads are accounted for is the realistic CIP basis

that could potentially be exploited as an arbitrage opportunity. The survival

probabilities calculated in Section 4 that result in a break-even net position

are consistent with realistic levels of bank default. This suggests that potential

profits from CIP violations are eroded by the FVA which is driven by these

probabilities.

2 Theory

2.1 Funding valuation adjustment

Andersen et al. [2019] consider the impact of a firm setting up a new financial

position from the perspective of the firm’s shareholders. They let Y denote

the position’s payoff at maturity and S represent the credit spread of the firm,

which would apply to the financing of the new position. Letting G denote the
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value to the firm’s shareholders of adding the new position, we state the main

result in Andersen et al. [2019], p.155:

Proposition (The Marginal Value to Shareholders of Debt Financing): The

marginal shareholder gain G in equity value is given by,

G = p∗π − δCov(ID, Y )− Φ, (1)

where

• p∗ is the risk-neutral survival probability of the firm,

• δ is the discount factor for the period corresponding to the maturity of

the new position,

• ID is an indicator for the firm’s default,

• π = δE(Y ) − u is the marginal profit on the trade for a hypothetical

risk-free arbitrageur and,

• Φ = p∗δuS is defined to be the FVA.

The FVA is the present value of the shareholders’ share of the net financing

cost uS, which is only paid if the firm does not default. The covariance term in

Eq. (1) is an additional adjustment, applicable if there is correlation between

the firm’s potential default and the new financial instrument with payoff Y .

2.2 CIP arbitrage strategy

In the CIP strategy the domestic entity is South Africa, with ZAR as the cur-

rency, and the foreign entity is the US, with USD as the foreign currency. If

the direct and synthetic ZAR positions have the same credit qualities, then the

return on the direct and synthetic positions should, in theory, be the same if

trade frictions are ignored Keynes [1923]. This equivalence is referred to as

CIP. If the equivalence underpinning CIP is broken, then the resulting spread

is referred to as CIP basis.

We assume that the initial time is t = 0 and maturity time is t = τ + 2β,

where settlement is at t = 0+ 2β, where β is a business day. Going long would

result in the following strategy:

Strategy 2.1.

1. Borrow ZAR at the interest rate rd, directly in South African market.
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2. Sell ZAR against USD FX Spot (which is denoted by X) to obtain u/St

USD.

3. Invest the USD at the currently available USD interest rate rf , in USD

money market and simultaneously enter an FEC contract, with a forward

spot exchange rate Xf , reversing the currency exchange at a predetermined

price in the future.

4. At maturity, collect the ZAR from the FEC contract and repay the ZAR

debt of (1 + rdτ).

Fig. (1) is a visual demonstration of the Strategy 2.1.

Figure 1: Simple FX swap strategy.

At maturity, the strategy will create a negative cashflow Z corresponding

to the debt repayment, denoted as Z = (1 + rdτ) = u(1 + (r + S)τ) and

a positive cashflow Y corresponding to the investment, denoted as return of

Y = (1+ rfτ)X
f/X = u(1+ (r+S+ b)τ). Here b is the basis, which represents

the size of the violation, r is risk-free rate at which the cashflows grow and S is

the credit spread, which accounts for the credit riskiness of the firm. Here we

assume that the firm and counterparty have the same credit spread.

However, these cashflows assume that it is impossible for the firm or its

counterparty to default. When the realistic possibility of default is incorporated,

the cashflows become random. Let X be a random variable representing the

gains the arbitrageur will receive from the strategy,

X =


Y − Z, if firm and counterparty survive,

ψY − Z, if counterparty defaults,

0, if firm defaults.
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Here ψ is the recovery rate in the case where the firm’s counterparty defaults.

It is important to note that,

E
[
δ
(
ψ(1 + τr + τS) + (1− ψ)(1 + τr + τS)Icps

)]
= 1. (2)

Now, the marginal gain G is defined as the expected discounted gains in the

case where the firm survives, that is

G = E[δIfs (Y − u(1 + τr + τS))]

where δ is the discount factor, Ifs is the firm’s survival indicator, and

Y = uψ(1 + τr + τS + τb) + u(1− ψ)(1 + τr + τS + τb)Icps , (3)

where Icps is the counterparty survival indicator.

2.3 Derivation of Proposition 1 under the Strategy 2.1

In the case where the firm does not default, the expected discounted gains are

given by

G = E[δIfs (Y − u(1 + τr + τS))],

where δ = 1/(1 + τr) is the discount factor and Y = uψ(1 + τr + τS + τb) +

u(1− ψ)(1 + τr + τS + τb)Icps . Thus,

G = E[δIfsY ]− E[δIfsu(1 + τr + τS)].

Because E[Ifs ] = p∗, the above equation simplifies to

G = E[δIfsY ]− p∗δu(1 + τr + τS).

Using the definition of the covariance function, Cov(X,Y ) = E[XY ]−E[X]E[Y ],

we obtain

G = δ(E[Ifs ]E[Y ] + Cov(Ifs , Y ))− p∗δu(1 + τr + τS).

Then, it follows that

G = δp∗E[Y ] + δCov(Ifs , Y )− p∗δu(1 + τr + τS).

This simplifies to

G = δp∗E[Y ]− δCov(IfD, Y )− p∗δu(1 + τr + τS).
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Since the strategy operates in the interest rate market, Eq. (2) applies. This

allows for the simplification of E[Y ] = u(1/δ+ψτb+(1−ψ)τbp̂), where p̂ is the

survival probability of the counterparty. Then,

G = p∗u
[
1 + δτbψ + δτb(1− ψ)p̂

]
− δCov(IfD, Y )− p∗δu(1 + τr + τS).

Note that 1 + τr + τS = δ−1 + τS. It then follows that

G = p∗uδ
[
τbψ + τb(1− ψ)p̂

]
− δCov(IfD, Y )− p∗δuτS. (4)

So,

G = p∗u
[
1 + δτbψ + δτb(1− ψ)p̂− 1

]
− δCov(IfD, Y )− p∗δuτS,

and we obtain

G = p∗
[
u(1 + δτbψ + δτb(1− ψ)p̂)− u

]
− δCov(IfD, Y )− p∗δuτS.

From the simplification of E[Y ], we get δE[Y ] = u(1 + δψτb+ δ(1− ψ)τbp̂).

So,

G = p∗
[
δE[Y ]− u

]
− δCov(IfD, Y )− p∗δuτS.

Define π = δE∗[Y ]−u as the value of the trade for a hypothetical risk-free agent.

Then,

G = p∗π − δCov(IfD, Y )− p∗δuτS. (5)

The term π can be thought of as the objective value of the strategy, without

accounting for how the strategy is funded. The term p∗δuτS is the FVA, which

adjusts the objective value given how the strategy is funded. It should be noted

that the risk of the counterparty defaulting has no impact on the FVA term.

This follows naturally as G is the marginal value from the perspective of the

shareholders, not the firm. Thus, from the perspective of the shareholders, the

firm surviving is all that is relevant within the FVA.

Furthermore, the counterparty defaulting, and thus the CVA, is not of rele-

vance within this strategy. This is not because the counterparty does not have

an impact on the valuation, but rather because it will not change the cost in-

volved in implementing the strategy. This becomes clear when looking at the

term p∗δuτS, which is the valuation adjustment made when implementing the

strategy. This derivation does not consider what happens in the case that the

firm defaults, as it is assumed that in the event of default, shareholders give up

all assets to creditors. This leads to no DVA term. Given that this valuation

adjustment term, p∗δuτS, is neither the DVA nor the CVA, it is plausible to
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conclude it that represents the FVA. The FVA is the cost to the shareholders

of setting up the strategy.

The firm will need to borrow in order to implement this strategy and since

the firm can default, there is a possibility that the firm will be unable to repay

the lender. This represents a cost to the firm because, if p∗ ̸= 1 then S ̸= 0.

This shows that if borrowing is required in order to implement the strategy,

the cost to the firm will increase as the firm’s default risk increases. This has

nothing to do with the firm or the counterparty defaulting, thus cementing the

fact that the CVA and the DVA are not relevant here. Thus, the cost arises

due to the firm needing funding to implement the strategy, so it is plausible to

deduce that this represents the FVA, to the strategy valuation.

This leads to the derivation of G = p∗π − δCov(IfD, Y ) − p∗δuτS, which is

exactly the equation derived by Andersen et al. [2019] for a general strategy

payoff and assuming τ = 1 . This is not a coincidence, the hypothesis is that

this is due to the simple payoff that is created by the Strategy 2.1, which allows

us to use the Eq. (2). The Strategy 2.1 involves a foreign exchange contract

and involves the interest rate market. This creates a linear cashflow even after

considering the default scenarios of both the parties involved, which allows for

the simplification of the expected value of the cashflow with relative ease. Eq.

(2) is vital for the derivation, given that Y = uψ(1 + τr + τS + τb) + u(1 −
ψ)(1 + τr+ τS + τb)Icps is the payoff, and since Eq. (2) is a typical relationship

encountered in the pricing of interest rate instruments. If, however, a product

other than a swap is being considered, it would be unlikely that the derivation

of G = p∗π−δCov(IfD, Y )−p∗δuτS could be relied upon. Andersen et al. [2019]

make no assumption about what the payoff function Y is, which is why they

rely on a much more involved proof. However, we deal with a simpler setup,

since the question of Covered Interest Parity violation is typical in other interest

rate markets. A similar payoff structure would be expected when considering

any interest rate swap contract.

Example 2.2. Next we consider a numerical example which can be found in An-

dersen et al. [2019]

It is assumed that the two parties are uncorrelated and have the same credit

quality. Assume that p∗ = 0.993, s = 0.0035, b = 0.0025, r = 0, u = 1,

τ = 1 and δ = R = 1. R100 is lent synthetically in the US market and R100 is

borrowed in the South African market to fund this loan. At maturity R100.60

is received and R100.35 is payed which creates an apparent profit of R0.25.

But, G = p∗π − δCov(IusD , Y )− FVA where δCov(IusD , Y ) = 0 (since there is no

correlation) and FVA = p∗δuS = 1 × 0.993 × 0.35 × 100 = 0.35. Therefore
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G = 0.25− 0.35 = −0.10. Even though there is a positive CIP basis, once FVA

is accounted for there is no profit to be made.

3 Methodology and data

3.1 Data

Data is obtained from Bloomberg for 3 January 2012 to 31 December 2021, for

the US dollar (USD) and rand (ZAR). In order to apply the strategy 2.1, quotes

pertaining to the following instruments are gathered:

• USDZAR spot exchange rate (e.g., 15 ZAR buys 1 USD)

• USDZAR forward exchange contracts (FECs) for maturities of 1, 3, 6, 12,

24, 36, 48 and 60 months

• JIBAR for 1, 3, 6 and 12 months

– The bid/ask spread for 1-year South African negotiable certificates

of deposit (NCDs)

• US LIBOR for 1, 3, 6 and 12 months

• SABOR (overnight rates in the South African market)

• Overnight LIBOR

• JIBAR-linked forward rate agreements (FRAs) for 3x6, 6x9, 9x12, 12x15,

15x18 and 18x21 maturity structures

• LIBOR-linked FRAs for 3x6, 6x9, 9x12, 12x15 and 15x18 maturity struc-

tures

• JIBAR-linked interest rate swaps (IRSs) for maturities of 2, 3, 4 and 5

years

• LIBOR-linked IRSs for maturities of 2, 3, 4 and 5 years

– Basis swaps that swap 3-month LIBOR for 6-month LIBOR for ma-

turities of 2, 3, 4 and 5 years

The JIBAR and LIBOR are the standard interbank interest rate benchmarks,

giving lending and borrowing rates for typical major banks. Day-count conven-

tions are ignored. A fifteen basis point bid/ask spread was applied to interest
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Figure 2: The NCD bid/ask spread.

rates across all tenors. This is inferred from the spread on the South African

1-year NCD which can be seen in Fig. 2 (JIBAR is not quoted with bid/ask

spreads but JIBAR is compiled from prevailing NCDs; this therefore gives us

a reasonable approximation of bid/ask spreads in interbank markets. Spreads

in the US interbank market may be smaller so this seems to be a conservative

assumption.)

3.1.1 Plotting the data

Fig. 3 shows the JIBAR and LIBOR for 1-, 3-, 6-, 9- and 12-months tenors.

Between 2016 and 2017, the JIBAR reached a peak. They were also at their

lowest between 2020 and 2021, with a sharp decline in the first half of the year.

The LIBOR are at their highest between 2018 and the end of 2019. However,

in the early half of the 2020 year they rapidly decline to the lowest rate for the

period under consideration. The rapid decline in 2020, in both sets of rates,

could be explained by the COVID pandemic. During this time reserve banks

injected large amounts of cash, and borrowing became less important, which

resulted in a decrease in interest rates. Ultimately, at shorter tenors both sets

of rates are lower than at longer tenors. For example, the overnight rate, over

the period under consideration, is lower than the 12-month rate. Both sets of
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Figure 3: JIBAR and LIBOR from 3 January 2012 to 31 December 2021.

rates look plausible.

Fig.4 shows the FEC rates and the spot exchange rates, in both the US and

South African market. Bloomberg quotes the forward points ,Xpt, rather than

directly quoting the rates. The forward points are converted to rates using the

formula Xf = Xpt/10000 +X.

From Fig.4 one sees that the FEC rates are similar to the USDZAR spot

rates, with the 1-month FEC rate being closest to the spot rate. Between

2020 and 2021, there is a large depreciation in the ZAR against the USD. The

USDZAR spot rate generally increases over time. This can be interpreted as a

depreciation of ZAR against USD.

3.2 Methodology

3.2.1 Bootstrapping

The SA nominal swap curve is bootstrapped out to five years using South

African interbank rates, FRAs and IRSs. Similarly, the US nominal swap curve

is bootstrapped out to five years using US interbank rates, FRAs and IRSs.

The US IRSs are linked to 6-month LIBOR whereas the South African IRSs

are linked to 3-month JIBAR. Therefore, the US IRS rates are adjusted using
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Figure 4: The spot rate and FEC rates over different tenors from 3 January

2012 to 31 December 2021.

market basis-swap spreads. Here the relevant basis swap swaps 3-month LI-

BOR payments for 6-month LIBOR payments and this therefore converts the

US IRSs to 3-month swaps which allows comparison to South African IRSs.

Thus, a US and SA bootstrapped curve is obtained for every cross-section of

the data, i.e., a curve for each day that there is relevant data for. The discount

factors corresponding to the overnight, 1-month and 3-month market rates are

derived using

Z(t0, ti) =
1

1 +R(ti − t0)
.

Then, the next set of discount factors are determined with the standard FRA

equation:

Z(t0, tm) =
Z(t0, tn)

1 + f(tm − tn)
,

where f is the tn-by-tm FRA rate. The discount factors that correspond to the

maturities of the IRSs are obtained from

Z(t0, tn) =
1−R

∑n−1
i=1 Z(t0, ti)

1 +R(ti − ti−1)
.
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Figure 5: The bootstrapped SA and US nominal swap curves for different tenors

from 3 January 2012 to 31 December 2021.

We define x as the quarterly forward discount factor within a particular year,

i.e.,

Z(t0, tn−3) = Z(t0, tn−4)x,

Z(t0, tn−2) = Z(t0, tn−4)x
2,

Z(t0, tn−1) = Z(t0, tn−4)x
3,

Z(t0, tn) = Z(t0, tn−4)x
4.

This amounts to assuming that the quarterly forward discount factors, within

a particular year, are equal. This allows us to solve for four unknown discount

factors given one swap rate, and this ensures a smooth bootstrapped curve.

3.3 Historical implementation of the Strategy 2.1

The CIP arbitrage strategy is tested using two different approaches. In the first

approach, JIBAR and LIBOR are used. These have a maximum maturity of one

year. In the second approach, bootstrapped rates are used. These extend up

to five years (the longest FEC available). While JIBAR and LIBOR are direct

measures of interbank lending and borrowing rates, the bootstrapped rates are
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estimates of longer term lending and borrowing rates available to major banks.

To implement Strategy 2.1, the interest rates need to be adjusted to account

for the two-day settlement delay of the foreign-exchange instruments (both spot

and FEC). The forward rates for the relevant period of Strategy 2.1 are obtained

using,

(1 + f(t0; t0 + 2β, t0 + tβ + τ)τ) =
Z(t0, t0 + 2β)

Z(t0, t0 + 2β + τ)
, (6)

where the discount factors on the right-hand side are obtained using a spline

interpolation scheme on the bootstrapped discount factors. Then, the rate

f(t0; t0 + 2β, t0 + tβ + τ) is a two-day forward JIBAR or LIBOR applicable

to the two-day-delayed foreign-exchange transactions.

JIBAR and LIBOR are used to implement the strategy for a tenor of 1,

3, 6, and 12 months (our first approach). Similarly, the bootstrapped rates

were used to implement the strategy for a tenor of 1, 3, 6 and 12 months

and 2, 3, 4 and 5 years (our second approach). The USDZAR spot rate and

a corresponding FEC rate is used to make a synthetic loan in USD which is

funded by borrowing in ZAR. This will be referred to as going the strategy long.

Alternatively, borrowing in USD and lending in ZAR will short the strategy. The

strategy was implemented daily, for each tenor across the period over which the

data extends. Market frictions are accounted for by considering bid and ask

rates on the spot and forward exchange rates. The profit from going long the

strategy is

u

 1

Xa
(1 + (LIBOR− 0.00075)τ)Xf

b︸ ︷︷ ︸
(1+τr+τS+τb)

− (1 + (JIBAR + 0.00075)τ)︸ ︷︷ ︸
(1+τr+τS)

 , (7)

where u is the nominal, which scales the strategy. The first part of the strategy

(convert to USD, lend USD at LIBOR and convert back to ZAR with an FEC)

can be thought of as a synthetic ZAR-denominated loan that may offer a CIP

basis relative to the JIBAR borrowing (which is the second part of the strategy

and includes a credit spread). The profit from shorting the strategy, where the

bid/ask spread applies in the opposite direction, is

u

(1 + (JIBAR− 0.00075)τ)︸ ︷︷ ︸
(1+τr+τS+τb)

− 1

Xb
(1 + (LIBOR + 0.00075)τ)︸ ︷︷ ︸

(1+τr+τS)

Xf
a

 . (8)

The accumulation factor of the borrowing leg in either Eq. (7) or Eq. (8) is

used to calculate r and S. The profit from the strategy can therefore be used

to derive the basis b.
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3.4 Calibrating the survival probability

Once the profit for the strategy has been determined using Eq. (7) or Eq. (8),

depending on which direction of the strategy is profitable, it is then possible to

calibrate the survival probability p∗ in Eq. (5) such that the profit is diminished

to zero. By assuming that the default risk of the firm and the default risk of the

counterparty are correlated, an analytical solution for p∗ can be derived using

Eq. (12). This represents the firm’s minimum survival probability necessary to

make a positive net profit from Strategy 2.1.

We now explain how we specifically solve for the value of p∗. Take Eq. (4),

and assume that p = p̂ = p∗. Then,

G = δpu(τbψ + τb(1− ψ)p)− δuτSp− δCov(IfD, Y ).

Using Eqs (2) and (11) we have

G = δpu(τbψ+τb(1−ψ)p)−δuτSp−δ(−u(1−ψ)(1+τr+τS+τb)Cov(IfD, I
cp
D )).

(9)

Simplifying the Cov(IfD, Y ) term and noting that E[IfD] = 1− p, leads to

σ2
f = V [IfD] = E[If 2

D ]− E[IfD]2

= (1− p)− (1− p)2

= p− p2.

However, it is assumed that p = p̂ = p∗ which sets the standard deviations

equal. The covariance can be expressed in terms of a correlation ρ as follows:

ρ =
Cov(IfD, I

cp
D )

σfσcp
. (10)

So, we have

Cov(IfD, I
cp
D ) = ρ(p− p2). (11)

Using Eqs (2) and (11) we get

G = δpu(τbψ+τb(1−ψ)p)−τδuSp−δ(−u(1−ψ)(1+τr+τS+τb)Cov(IfD, I
cp
D )).

To find the break-even survival probability, we set G = 0. Then, the above

equation simplifies to

0 = p(τbψ + τb(1− ψ)p)− τSp+ (1− ψ)(1 + τr + τS + τb)Cov(IfD, I
cp
D )

= p(τbψ + τb(1− ψ)p)− τSp+ (1− ψ)(1 + τr + τS + τb)ρ(p− p2)

= p(τbψ + τb(1− ψ)p)− τSp+ p(1− ψ)(1 + τr + τS + τb)ρ

− p2(1− ψ)(1 + τr + τS + τb)ρ,
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where Eq. (11) is used. After factorising, it follows that,

0 = p2
[
τb(1−ψ)−(1−ψ)(1+τr+τs+τb)ρ

]
+p

[
τbψ−τS+(1−ψ)(1+τr+τS+τb)ρ

]
.

Therefore,

p =
τS − τbψ − (1− ψ)(1 + τr + τS + τb)ρ

τb(1− ψ)− (1− ψ)(1 + τr + τS + τb)ρ
.

We have that S = (1− p)(1− ψ)/τ and, for simplicity, we set

y = −τbψ − (1− ψ)(1 + τr + τS + τb)ρ,

x = τb(1− ψ)− (1− ψ)(1 + τr + τS + τb)ρ

such that

p =
τS + y

x
.

It then follows that

p =
(1− ψ)− p(1− ψ)

x
+
y

x

and

p+
p(1− ψ)

x
=

1− ψ

x
+
y

x
.

So,

p
[x+ (1− ψ)

x

]
=

(1− ψ) + y

x
.

Therefore, the minimum survival probability p can be expressed by

p =
(1− ψ) + y

x+ (1− ψ)
, (12)

where the recovery rate ψ is set to 40%.

4 Results

In Section 4.1, we give our first approach based on interbank rates. Then, in

Section 4.2, we give our second approach based on the bootstrapped rates which

extend to longer maturities.

4.1 JIBAR and LIBOR

4.1.1 The CIP basis

Fig. (6) shows the size of the CIP basis at maturity as calculated on the ini-

tiation date of the strategy for the period 03 January 2012 to 31 December

2021 and assuming a nominal of R1, i.e., this figure plots τb in Eq. (9). The
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Figure 6: The CIP basis based on JIBAR and LIBOR from 3 January 2012 to

31 December 2021.

calculation of the CIP basis here does not account for the firm’s default risk,

nor does it incorporate any bid/ask spreads. Only the long position in Strategy

2.1 has been considered, which therefore leads to the CIP basis falling below

zero in some cases. Shorting the strategy in these cases would generate a profit.

Shorter tenors tend to generate a smaller CIP basis compared to longer tenors.

The CIP basis in Fig. 6 has not been annualised which could explain this obser-

vation. The strategy for the longer tenors imply a greater period over which the

synthetic loan can accumulate and generate a profit at maturity. In contrast, a

1-month tenor, for example, would generally not be long enough to accumulate

as large a profit. The CIP basis over the 1-month tenor remains positive over

almost the entire period under consideration. This may be due to more stable

interest rates and USDZAR FEC rates over a 1-month period. At this tenor, an

arbitrageur will almost always go long Strategy 2.1. A similar result is seen for

the 3-month tenor, however the CIP basis at this tenor is slightly more volatile.

In contrast to the 1- and 3-month tenor, the CIP basis for the 6- and 12-month

tenor fluctuates significantly over the period and is negative for a large period

extending from February 2017 until July 2020. This may be due to greater dis-

crepancies between the two economies’ interest rates offered over these tenors.

Less stable FEC rates for these tenors could also explain the volatility in the
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Figure 7: The CIP basis based on JIBAR and LIBOR from 3 January 2012 to

31 December 2021 using bid/ask spread.

CIP basis. Therefore, at longer tenors, it would be possible to long or short

Strategy 2.1, depending on whether a positive or negative basis was achieved.

The CIP bases become positive across all tenors for the period extending

from August 2020 until December 2021. During this period, the 1-, 3- and

6-month CIP bases are relatively larger than before, while the 12-month CIP

basis is relatively smaller. The impact of the COVID-19 pandemic on financial

markets is likely to have caused this pronounced change in the CIP basis across

these tenors over this period.

We now account for bid/ask spreads in the calculation of the CIP basis.

This results in a reduction in the absolute value of the CIP basis as shown in

Fig. 6. The bid/ask spread reduces the proceeds from the loan (a lower interest

rate is earned and conversion between ZAR and USD is done at less attractive

terms) and increases the liability due in the form of a higher interest rate in the

borrowing arm. The bid/ask spread has this effect for both directions of the

strategy. Fig. 7 shows the CIP basis when accounting for these spreads and is

expressed under the profitable direction of the strategy. The CIP basis appears

to increase on average over the period under consideration and the apparent

arbitrage persists. Therefore, the bid/ask spread is not sufficient to rule out the

possibility to profit under Strategy 2.1.
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Figure 8: The break-even survival probabilities based on JIBAR and LIBOR

from 3 January 2012 to 31 December 2021.

4.1.2 The survival probability

By considering Eq. (5) as derived under Strategy 2.1, it is possible to find a

survival probability for the firm that removes the positive CIP basis that remains

after accounting for bid/ask spreads. Recall that the derivation for this survival

probability is given in Section 3.4. These are the minimum survival probabilities

that a firm must have at each date in order for the apparent arbitrage in the

Strategy 2.1 to remain after the funding cost of the strategy is accounted for.

See Fig. 8 for survival probabilities we obtain over the sample for each maturity.

The left-hand panel assumes zero correlation between the arbitrageur’s and the

counterparty’s default indicators, which makes the covariance in Eq. (5) vanish.

The middle- and right-hand panel assume correlation values of 0.2 and 0.6,

respectively—recall Eq. (10). The left-hand panel of Fig. 8 shows reasonable

survival probabilities, in other words, non-excessive default probabilities. For

example, with the exception of 2020 and 2021, 1-year survival probabilities are

almost always above 99.5%. While there are many possible explanations for a

non-zero CIP basis (as discussed in Section 1), we tentatively conclude that the

FVA-based explanation of Andersen et al. [2019] is sufficient. In other words,

realistic levels of bank default do rule out profiting from a CIP basis. During
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2020 and 2021 a larger CIP basis was available. Fig. 8 shows that a lower

survival probability would still allow the firm to exploit the potential arbitrage

when implementing the Strategy 2.1. The survival probabilities are lower for

the longer maturities as the probabilities have not been annualised.

As the correlation between the default indicators of the firm and the coun-

terparty increases, Fig. 8 shows that the minimum survival probability that

renders Strategy 2.1 profitable decreases. This is the case since a higher cor-

relation is a benefit to the arbitrageur (in particular to the shareholders, the

covariance term in Eq. (5) makes a positive contribution to shareholder value

G, as detailed in Section 3.4). When counterparty default tends to coincide

with the firm’s default, the harm caused by counterparty default becomes less

relevant (as the shareholders receive nothing in the case of the firm’s own de-

fault).

4.2 Bootstrapped rates

4.2.1 The CIP basis

We consider longer tenors for Strategy 2.1 by using bootstrapped rates. Simi-

larly to Fig. 6, we can see in Fig. 9 that these longer tenors tend to generate

a larger CIP basis. This is consistent with the view that there is a longer pe-

riod over which the profit of the strategy can accumulate and is therefore to

be expected. The CIP bases for tenors up to 12 months, calculated here under

approach 2, are similar in magnitude to those derived using the first approach

in Section 4.1. However, these CIP bases are almost always positive over the

sample whereas it is negative for a large part of the sample under approach

1. Fig. 9 indicates that the volatility in the CIP basis increases as the tenor

increases. This is consistent with the relationship between the volatility and the

tenor under approach 1.

The CIP bases for tenors extending beyond 12 months become negative over

various periods in the sample, but is positive for the majority of the sample

period. There is a pronounced, negative spike in the 4- and 5-year tenor CIP

bases on 10 and 11 December 2015. During the period 9 to 11 December 2015,

the South African finance minister was replaced twice. This may explain the

observed spike. The CIP basis is more volatile for longer tenors which is similar

to what is observed in Fig. 6. The CIP bases across all tenors over the period

from August 2020 to December 2021 display a similar effect to that observed

in Fig. 6 for this period. In contrast to the shorter tenors, Fig. 9 indicates

that the magnitude of the CIP bases at longer tenors do not seem to increase
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on average over the sample period. Instead, Fig. 10 suggests that, on average,

CIP bases for longer tenors decrease slightly over the period of investigation.

As in Fig. 7, the CIP basis which accounts for bid/ask spreads is plotted in

Fig. 10. A reduction is observed in terms of the absolute value of the CIP bases.

This reduction is attributed to bid/ask spreads. A brief period extending from

October 2019 to February 2020 seems to achieve CIP. The parity over this period

is not observed under approach 1. This suggests that interbank rates prevailing

in the markets at this time differ from the rates obtained from bootstrapping

the nominal swap curve. However, the CIP bases outside of this period remain

positive and this suggests that bid/ask spreads are not sufficient to rule out the

profitability of Strategy 2.1. This is true for the tenors extending beyond 12

months as well.

Figure 9: The CIP basis based on bootstrapped rates from 3 January 2012 to

31 December 2021.
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Figure 10: The CIP basis based on bootstrapped rates using bid/ask spread

from 3 January 2012 to 31 December 2021.

4.2.2 The survival probability

Fig. 11 plots the minimum survival probability required for Strategy 2.1 to

break-even. The probabilities show a similar tendency to decrease as the corre-

lation increases, which is consistent with the view in Section 4.1.2. This holds

for all the tenors under consideration in approach 2. The survival probabilities

corresponding to the longer tenors tend to increase slightly over the period un-

der consideration. This agrees with the view that CIP bases over these tenors

decrease on average over the period. In other words, over time, a greater sur-

vival probability would be required to generate the available CIP basis which is

declining.
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Figure 11: The break-even survival probabilities based on bootstrapped rates

from 3 January 2012 to 31 December 2021.

Similarly to what is observed in Fig. 8, the survival probabilities decrease

as correlation increases. This can be seen in Fig. 11 for each tenor under

consideration. As in Fig. 8, the survival probabilities are generally lower for

longer tenors since they have not been annualised. Finally, the observed survival

probabilities in the left-hand panel of Fig. 11 are reasonable, as in Fig. 8. This

further suggests that realistic levels of bank default erode any potential profit

arising from the CIP basis.

5 Conclusions

The CIP basis is calculated for tenors up to 5 years using market data for the

10-year sample period. Adjusting the calculation to account for bid/ask spreads

does not reduce the CIP basis to zero. We present a simplified derivation for the

main proposition presented in Andersen et al. [2019] for the particular payoff

structure created by Strategy 2.1. This allows us to derive the equation needed

to calculate the gain achieved by the firm’s shareholders for the Strategy 2.1.

Thus, we derive the funding valuation adjustment, which adjusts the gain in

order to account for the cost of implementing Strategy 2.1. The FVA is seen to
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arise solely due to the risk of the arbitrageur defaulting. The FVA cost resulting

in a break-even strategy suggests survival probabilities that are consistent with

default levels among major banks. This is a sufficient reason for non-zero CIP

basis to persist.

Possible further research could consider using institution-specific data as

opposed to general interbank rates among major banks. Alternatively, this re-

search can be extended by considering how survival probabilities derived from

credit default swaps compare to survival probabilities calculated here. Other

currency pairs could also be considered to assess whether this FVA-based ex-

planation for non-zero CIP basis holds.
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1 Introduction

The Black Scholes-Merton model, although serving as a key foundation for fu-
ture research in asset pricing models, was a simplified version of observed market
prices. In particular, it is clear that share price volatility requires a term struc-
ture rather than being assumed to remain constant. This is shown by the fact that
Black-Scholes implied volatility (the volatility calculated by applying the inverse
Black-Scholes function under constant volatility to market European option prices)
varies with time. Similarly, when considering implied volatilities for options with
the same time to maturity, a so-called ’volatility smile’ is observed - options that are
nearer to the money trade at lower volatilities than those further out of the money.

Various methods to make the model more consistent with the market have been
considered - including non-traded stock jump risks, fees and stochastic volatility,
however, the local volatility model, where volatility is a function depending on
time to maturity and the current stock price, has become widespread. The local
volatility model has greater consistency with market data, as it can account for the
volatility smile without introducing any additional non-traded market risks. This
is key, as it retains the ability to replicate payoffs within the model, and hence the
assumption of arbitrage-free risk neutral pricing of options.

Market data for European options is not available for all combinations of strike
price and time to maturity. Additionally, there may be low levels of volume (traded
rarely or not at all) and hence low liquidity for certain stocks or indices. This re-
sults in greater uncertainty (and likely higher bid-offer spreads) about ’true’ prices
for options based on market expectations of future asset movements [1]. Discrete,
and often sparse market option price data, does not fully specify the local volatility
function.

The technique used in this paper is to extract the implied volatilities from the mar-
ket option price data. These volatilities are then used to calibrate a total variance
surface using a choice of parameterisation. Choosing to calibrate the volatility sur-
face has two main benefits. Firstly, a good choice of volatility surface parameterisa-
tion can prevent static arbitrage with relative ease compared to the parameterisa-
tions of other surfaces. Secondly, extracting implied volatilities and fitting the total
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variance surface in terms of moneyness allows for easier comparability between
different securities [1]. This occurs because while a call price surface is also a func-
tion of discount factors and stock price, the volatility surface is information purely
relating to European option price data.

Once a full, sufficiently smooth surface of European option prices is attained, the
stock price diffusion process becomes fully specified. The Breeden and Litzen-
berger [4] result can be used to obtain the risk neutral distributions of a stock price
by the second derivative of the call surface with respect to strike price for any time
to maturity, conditional on the current time. Normally, having specified condi-
tional distributions does not fully specify the underlying diffusion process - be-
cause more than one dynamic diffusion process might capture the specified condi-
tional distributions. But when we restrict ourselves to the risk neutral assumption,
the diffusion process is fully specified, and the Dupire Formula can be used to de-
rive the local volatility function from the smooth call price surface [2].

The local volatility model has a volatility that depends only on time to maturity
and the value of the underlying. This means that once the total variance surface
has been fitted to data on a given date, the local volatility for the stock is fully
specified up to the last maturity date for which sufficient-volume option prices are
available (assuming no extrapolation is performed). There will be some error in-
troduced based on interpolation method or in this specific case, an error based on
the parametric form chosen for the fitting of the total variance surface.

In practise the total implied variance surface’s parameters are typically re-optimised
daily (or on an even more frequent basis.) This would be based on the most rele-
vant option price data - meaning that the previous iteration of the model/ surface
is discarded. This presents a clear inconsistency with the model, which has an al-
ready fully specified volatility function - that should not change daily.

This paper attempts to utilise a modifying algorithm to update the local volatility
surface by fitting a new volatility surface over the strike-time space as new data
becomes available. In order to make sure that the surface is as unchanged and
smooth as possible whilst fitting new market data, we aim to minimise the Wasser-
stein distance between the implied risk neutral densities of both the old and new
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parameterisations. The goal of doing this is to reduce the above mentioned incon-
sistency whilst still having a model calibrated to the newly available information.

Theoretically, by minimising the Wasserstein distance between risk-neutral densi-
ties of stock prices (at pre-determined time points) - our model will be optimally
calibrated. These densities are implied by the previous-day volatility optimisation
and the optimisation that has been adjusted for new option price data.

This paper further aims to find a minimal number of option price data points,
which when fed into the modifying algorithm, results in a volatility surface and
resulting option prices that are a reasonably close fit to the new option price data
for that day that have not yet been added to the surface calibration. Further de-
scription of the modification process and how fit is measured will follow.

The benefit of being able to calibrate a new and accurate surface using only a few
extra data points would be two-fold. Firstly, a new ’daily’ surface would be able to
be proposed without knowledge of most of that day’s data points. Secondly, if one
could reasonably attribute all, or most, of the change in shape of a Local Volatility
Surface (and therefore the change in shape of an option price surface) to only a se-
lect few data points - then it is possible that to hedge this movement one need only
hold some combination of these few points.

As a check, the calibration of the total variance surface is tested by extracting the
local volatility using Dupires formula, and then using a Monte-Carlo scheme to
price European options. The resulting prices should match the prices used to cal-
ibrate the model. If there is sufficient time, the project will then be concluded by
performing a Longstaff-Schwartz Monte-Carlo pricing routine to price American
options to examine the existence of an early exercise premium in observed market
prices.
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2 Volatility Surface Construction

2.1 Data

The test data for this model was daily European puts and calls on the S&P500, and
daily American puts and Calls on Moderna and Tesla stock, all of which are at a
broad range of strike prices and time to maturities. For each strike and time to ma-
turity combination there is a bid and ask price and volume traded for both the puts
and calls. The daily data was collected in batches and is all available to the model
at once. This is at odds with how real-world data would arrive. In reality new data
points would arrive asynchronously as the options are traded.

If an option at some strike and time to maturity combination had no puts and no
calls traded, then it was discarded from the data set before the start of the project as
their prices cannot be considered market data. All options with maturities in less
than a week were also discarded. This was done in order to minimise the errors
that would accompany the inclusion of these near-maturity options. The reason
these errors arise is that market pricing becomes unreliable at this stage - as market
idiosyncrasies and liquidity issues become prevalent. Further, near-maturity op-
tions are more affected by intra-day volatility.

2.2 Discount Factors

In order to calculate the implied volatilities required to create the total variance sur-
face we require the term structures of interest and dividend rates for each stock/index
observed. It is sufficient to extract risk-free rate discount factors, B(t, T ) and divi-
dend discount factors Q(t, T ) from the market option prices using the put-call par-
ity, under the assumption of there being no arbitrage in this regard. The put-call
parity relation is as follows:

Ct − Pt = StQ(t, T )−KB(t, T ) (1)

where St is the the share price, Ct and Pt - the prices of the market call and put
options. These prices are measured as the mid point between the bid and the offer
price. The risk neutral discount factor is given by B(t, T ) and Q(t, T ) is the divi-
dend discount factor.
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These discount factors were calculated for each maturity in the data. This was done
using a Python minimisation function to minimise the objective function below
for each specific time to maturity and over all price data for that time to maturity
(options of varying strikes are included and the best fit is found.)

∑
(StQ(t, T )−KB(t, T )− Ct + Pt)

2 (2)

The output of this minimisation is an implied risk free discount factor (Bt) and
dividend discount factor (Qt) that make the put call parity hold most true for
each collection of options inside an individual time to maturity ’bin’. These time-
denominated interest and dividend discount factors imply a term structure of rates
which is used throughout this paper.

One issue we may run into when computing the discount factors by optimisation
is that some discount factors may be greater than one. This is not a severe issue
for the risk-free discount factors - as real-world interest rates need not necessarily
be positive, but we require the dividend discount factor factors to be less than or
equal to one, because negative dividends are not realistic, nor legally allowed. A
solution for this is to set all the divided discount factors that are greater than one,
to one, and recalculate the corresponding risk-free discount factor. Given that it is
easier to extract these discount factors from the S&P500 data, we may store these
and reuse them when working with the Moderna and Tesla data. The Moderna and
Tesla stocks do not pay any dividends, so we can set all the the dividend discount
factors to one for them. The time to maturities may not be the same, in that case
we can just interpolate for the corresponding risk-free discount factors using the
following equation (log linear interpolation.)

B(t, T ) = B(t, T1)

T2 − T

T2 − T1B(t, T2)

T − T1
T2 − T1 (3)

where T is the time to maturity with a missing risk-free discount factor, T1 and
T2 are time to maturities with corresponding discount factors B(t, T1) and B(t, T2)

respectively, and T1 ≤ T ≤ T2.
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2.3 Implied Volatility

Implied volatility is the volatility which, when inputted into the constant-volatility
Black-Scholes pricing formula, recovers market European option prices. These
volatilities are found numerically rather than analytically, using a Python root-
finding function to set the Black-Scholes equation equal to observed market prices
by varying the volatility parameter.

The test data contains prices Ct and Pt, strike prices (K) , time to maturities (τ ) and
the underlying prices (St). The risk-free discount factor (Bt) and dividend discount
factor (Qt) were implied from the data. There is therefore sufficient information to
calculate implied volatilities.

In the Black Scholes Merton model, the option price is given by

Option price = α(StQtΦ(αd1)−KBtΦ(αd2)), (4)

With

d1 =
ln
StQt

BtK
+

1

2
σ2τ

σ
√
τ

(5)

and

d2 = d1 − σ
√
τ (6)

where α = 1 for a call option Ct and α = −1 for a put option Pt[1]. Here is σ is the
implied volatility we a trying to compute.

Performing an optimisation routine on the Black-Scholes equation for the call op-
tion, we get a pair of implied volatilities - for the bid and ask prices. The same
is true for the put option. To set an interval of acceptance for calibrating the total
variance surface we set the lower acceptance bound to be the minimum of the bid
implied volatilities and the upper bound to be the maximum of the ask volatili-
ties over both the put and call implied volatilities. This slightly-relaxed acceptance
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region creates some leeway in the variance surface parametrisation to improve fit
and prevent over-fitting in the case where either put or call price data has low vol-
ume and accuracy.

We have cases where the optimisation routine fails to find an optimal implied
volatility, possibly as a result of bad data. These cases are very few, so we choose
to remove those points from the data and continue with rest of the data. To check if
these implied volatilities are correct, we can input them back into the Black-Scholes
option pricing formula and check the absolute difference between the Black-Scholes
price and the market price in the data. The absolute difference of our data was less
than 1× 10−9 for all data points, as expected.

2.4 Surface Parameterisation

Using the implied volatilities calculated from market data, as described above, we
now aim to parameterise a total implied volatility surface, as a smooth function
over the Strike (K) and Time to Maturity (τ ) space. This surface can then be trans-
formed into a call or put price surface over the Strike (K) and Time to Maturity
(τ ) space, hence it is a way of interpolating between the observed market prices.
The resulting call surface function can be used to obtain conditional risk neutral
probability densities for the stock price at future times, as described by Bhupinder
Bahra [1]. These risk neutral density functions will be discussed in more depth in
the following section on updating the Local Volatility Surface.

Practitioners require there to be no arbitrage in prices produced by their model. If
the calibrated surface contains points where a risk free expected profit can be made,
this could be used against the ’user’ of the model.

Calendar Spread arbitrage occurs when traders are able to use a combination of
a long and short call option on the same underlying asset, with the same strike
but different maturities to make a potential risk-free profit. Butterfly arbitrage is a
risk-free profit made by holding long calls with a high and low strike, and selling
two call options with strikes in the middle of the high and low strikes - all with the
same time to maturity. This strategy has a positive payoff for terminal stock prices
between the low and high strikes, and zero payoff otherwise. If the net premium
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from buying and selling the calls is equal or greater than zero, an arbitrage strategy
exists.

The following parametrisation of the total variance surface, suggested by Gatheral
and Jacquier [3], fits market volatilities well using a limited number of parame-
ters. This parametrisation has the desired qualities of being a smooth function, and
precluding both calendar and butterfly arbitrage. This is given by

w(t, k) =
θT
2

(
1 + ρψ(θT )k +

√
(ψ(θT )k + ρ)2 + 1− ρ2

)
,

Where θT , T > 0 ,

ψ(θ) =
η

θγ1(1 + β1θ)
γ2(1 + β2θ)

1−γ1γ2

k is referred to as log-moneyness, and satisfies the following equation in terms of
strike price: E(ST |F0)e

k = K ,
where γ1 = 0.238, γ2 = 0.253, β1 = e5.18, β2, η = 2.016048eϵ, and ϵ ∈ (−1, 1) and ρ
are parameters to be fitted [8].

θT = w(T,0) is the total implied variance for options with strike equal to the forward
price. θT is parameterised by finding the total implied variance (average of bid and
ask) for the at the money options for every time to maturity in the dataset. Linear
interpolation is used to find values in-between data points.
Using Dupire’s Formula, this parameterisation can be used to extract a paramet-
ric form for the local volatility surface of the stock/index price, which can later be
used to price various options using Monte Carlo simulation.

The parameters ρ and ϵ were calibrated by using a Python minimisation algorithm
where the objective function was set as the squared relative distance by which the
fitted total variance was outside of the bid-offer spread for implied total variance:

∑
Market Data

(
max(wfitted(t, k)− σ2implied, askt;σ

2
implied, bidt− wfitted(t, k); 0

)2
(7)

The following shows the fit achieved on the S&P500 European Call and Put option
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Figure 2.1: Implied Volatilities for S&P500 on the 8th of March 2022
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Figure 2.2: Parameterised Total Variance Surface for the S&P500 on the 8th of March
2022
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(c) 647 days

Figure 2.3: Time slices showing fit of total variance surface over a range of log-
moneyness values
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The graphs above show the total variance curve for fixed times and a varying
log-moneyness range. The parameterised surface passes in between the bid (blue
dots) and ask (orange dots) total implied variances for most data points, indi-
cating an acceptable fit has been achieved. ϵ = 0.4844985584878775 and ρ =

−0.7851212547854564 were found to be the optimal values for the surface.
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The above figures show the average and maximum relative error of fitted values
for total variance, compared to the market implied values for approximately a six
month period. The average error on a particular day is the total error of the cali-
brated total variance surface divided by the number of data points that day. The
average error is acceptably low.

The points that spike on the maximum error graph indicate data points that may
need to be removed. If there was more time available for this project, the data
would have been cleaned more rigorously to eliminate the outliers clearly visible
above in both the error plots (Figure 2.4) and the 2D surface fit plots (Figure 2.3).
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3 Updating the Volatility Surface

3.1 Wasserstein Distance

The one dimensional Wasserstein Distance metric is defined as follows[5]:

W1(µ1, µ2) =

∫
R
|F1(x)− F2(x)| dx

(where F1 and F2 are cumulative density functions)
The Wasserstein metric, commonly referred to as the earth mover’s distance, is ap-
plied in statistics to compare two different but related random variables and gives
the optimal/lowest cost of changing from one distribution (F1) to another (F2).

This paper utilises the Wasserstein Distance metric to compare Risk Neutral Den-
sity functions as part of the modifying algorithm. Intuitively, after modifying a
previous-day total variance surface to capture implied total variance for newly-
added current-day data, we will aim to minimise the Wasserstein Distance metric
between implied risk neutral distributions for the old and the new adjusted sur-
face, thereby changing the local volatility surface as ”little as possible”.

The reasoning is that by modifying the surface in this way, it minimises the incon-
sistency described in the introduction. Additionally, by retaining as much data as
possible from the previous day it should be possible to achieve a good fit using few
data points which, as mentioned, is desirable because of hedging implication.

3.2 Risk-Neutral Density Functions as Function of Surface Parameters

Using the Breeden-Litzenberger equation - sourced from [4], one can obtain con-
ditional risk-neutral stock distributions for a specific time-to-maturity slice. These
will be functions of the parametrisation variables ρ, ϵ and the function θT .
The Breeden-Litzenberger equation is given by:

qT (x) =
∂2C

∂K2
x
B−1

T

where qt(k) is the risk neutral price density function at time T, C is the call price
surface and Bt is the interest discount factor.
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The risk neutral distribution is utilised in the Wasserstein metric. The metric uses
the cumulative distribution function of the price. Integrating, on obtains the fol-
lowing result:

FT (x) =

∫ x

−∞
[qT (k)] dk

Note, integration is over the positive real line since the stock price cannot be nega-
tive.

=

∫ x

0

[
∂2C

∂K2 k
B−1

T

]
dk

=

[
∂C

∂K

]x
0

B−1
T

Now lim
x→∞

FT (x) =

(
lim
x→∞

∂C

∂K
(x)− ∂C

∂K
(0)

)
B−1

T

= (0− ∂C

∂K
(0))

= 1

So
∂C

∂K
(0) = −BT

Finally, FT (x) =

(
∂C

∂K
(x) +BT

)
B−1

T

We therefore need to solve for the analytical solution of ∂C
∂K

(x) , where Ct is the
Black-Scholes Call Price:

C = (StQtΦ(d1)−KBtΦ(d2))

d1 =
ln
StQt

BtK
+

1

2
σ2τ

σ
√
τ

and

d2 = d1 − σ
√
τ

18



σ =

√
w

τ

∂C

∂K
= StQtϕ(d1)×

∂d1
∂K

−KBtϕ(d2)×
∂d2
∂K

−BtΦ(d2)

∂d1
∂K

=
− 1

K
σ
√
τ − ln

StQt

KBt

√
τ
∂σ

∂K
σ2τ

− 1

2

∂σ

∂K

√
τ

∂d2
∂K

=
∂d1
∂K

− ∂σ

∂K

√
τ

∂σ

∂K
=

1

2

√
1

τw

∂w

∂K

and where w(T, k) is the parameterised total variance surface[8]

w(T, k) =
θT
2
(1 + ρψ(θT )k +

√
(ψ(θT )k + ρ)2 + 1− ρ2

dw

dK
=
θ

2

ψ(θT )k + ρ)ψ(θT√
ρψ(θT ) + (ψ(θT )k + ρ)2 + (1− ρ2))

∂k

∂K

Furthermore, we obtain F1 and F2, the input functions to the Wasserstein Metric, at
set time to maturities. F1 is derived from the previous-day data, hence is a function
of fixed parameters ρ and ϵ. F2 is extracted from the modified variance surface (and
the resulting call surface), and hence is a function of ρ and ϵ that will be varied in
order adjust to optimise the fit to new data points.

As expected, the numerical and analytical CDFs are a close fit.
A key point to note is that F2 is also of function of θT . θT = w(0,T)[8], the exact at the
future money total variance. Because it is not a function of ρ or ϵ, θT cannot be in-
terpolated from surrounding data points and must be specified before running the
optimisation routine. This is minor, as data points are unlikely to be from options
that are exactly at the forward price, but a bigger issue is how to obtain θT . One
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Figure 3.1: CDF of Risk-Neutral Density Function for SP500 share prices, calculated
analytically
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Figure 3.2: CDF of Risk-Neutral Density Function for SP500 share prices, calculated
numerically

way to address this is to ensure that all at-the-money data points from the new day
are included in the added data points so that θT can be defined before calibrating
the new ρ or ϵ, in the same way as the one-day parameterisation earlier.

Having all our required inputs, we now proceed to construct an objective function
which will be minimised in order to calibrate the adjusted values for ρ and ϵ.

3.3 Objective Function for Modifying Algorithm

The required objective function must consider two sources of error: firstly, if the ad-
justed total variance surface does not lie within the bid-ask spread for implied total
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variance from the new market data. Secondly, if the Wasserstein Distance metric
is large. Weighting can be used to shift the importance of these two sources of error.

An appropriate objective function is as follows:

w1

∑
New Market Data

(
max

(
wfitted(t, k)− σ2implied, askt;σ

2
implied, bidt− wfitted(t, k); 0

)2
)

+w2

∑
T1,T2,··· ,Tn

∞∫
−∞

|F1(x)− F2(x)|dx

The time-to-maturity slices (Ti) were chosen to be the times for which option price
data was available, so that θTi values are available.

The interest rate and dividend discount factors, BT and QT , which are used to find
implied volatilities from market data with Black-Scholes, were solved from the full
new day’s data as described in Section 2. It is assumed that these values can be
obtained from separate sources.

Using a minimisation algorithm, estimates for the adjusted ρ and ϵ values, and
hence the entire adjusted variance surface (and resulting call surface) is obtained,
for a given set of data additional data points.

The fit can be checked by considering the maximum and average errors of non-
added market call and put prices versus prices derived from the fitted surface. This
will indicate how well the adjustment method has performed based on the limited
new data added. It will also assist in determining the necessary or optimal number
of data points that need to be added in the modifying algorithm, which points to
add and how good a fit can be expected after modification. How to add points and
different uses of weights, w1 and w2 is discussed in the following section.

3.4 Performing the Update Step

The update step is tested in three test phases, gradually adding more data and al-
tering the weights of the objective function:
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Case 1:
The ϵ and ρ values from the previous day’s calibration are used in the total variance
function, along with the θT values calculated for the current day from at the money
forward option prices.

Case 2:
The same data as in case one are used, and ϵ and ρ are calibrated. w2 is set to 1. w1

is set to a large constant, to ensure that the optimised first fits the surface to new
data points then minimises the Wasserstein Distance.

Case 3:

This builds on Case 2 by using the same weights and adding additional sparse data
points. Data points are added selectively in an attempt to get the best fit with as
few additional points as possible.

The cases above will be performed in sequence, stopping when a good-enough fit
is found. If, for example, a close enough fit is found under Case 1 it is best not to
increase the complexity unnecessarily. If case 3 is required to obtain a close fit, then
an additional objective will be to add as few points as possible.
The fit after an update is performed will be examined by computing maximum and
average errors for predicted total variance versus implied total variance from data
that has not been added to the calibration. This should be checked over multiple
days as, for example, more data may be required on highly volatile trading days.

3.5 Results from the Modification Algorithm

For all of the one-day intervals tested, Case 1 as described above, was sufficient for
obtaining a good fit. This indicates that the one-day change in the total variance
surface was minor enough that retaining the previous day values for ρ and ϵ with
the new θT obtained from implied volatilities on current day at the money option
prices.
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(c) 366 days

Figure 3.3: Time slices showing fit of total variance surface over a range of log-
moneyness ”k”.
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A check of the time series of ρ and ϵ values was done to identify a day where a sub-
stantial change occurred, but the one-day change was still minor. Next, intervals
longer than one day were considered, where there is a more drastic change in the
total variance surface. On the 8th of March 2022 we found ϵ and ρ, the next day
with a significant change was the 16th of March. Performing the Modified algo-
rithm (Case 3) using the ϵ and ρ from the 8th of March (reference day) we obtained
a new ϵ and ρ which was used to produce a total variance surface for the 16th of
March. The new values are ϵ = 0.5529650569606183 and ρ = −0.6246179076807962.

The fit achieved was satisfactory. This is a good indication that the Wasserstein
metric may have merits in parameterising future volatility surfaces on days which
appear to have volatility that is more than just marginally different to their refer-
ence date. We were unable to check this Wasserstein adjusted algorithm broadly
enough to comment on how many future points we should include for optimal
performance, or how it would fair compared to other metrics that retained infor-
mation from the reference day. We can, however, conclude that it does appear to be
a feasible way to include the information that comes with future data points while
still retaining some information about the shape of the volatility surface (or more
accurately the implied risk neutral densities) on the reference date.
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4 Pricing Options Using Monte Carlo

4.1 Dupire Equation for Local Volatility

Using the Dupire equation, the total variance surface parameterised above can be
transformed into the local volatility surface[6].

σ(T,K) =

√√√√√√2

∂C

∂T
+ rK

∂C

∂K

K2 ∂
2C

∂K2

It can then be helpful to express this of the total variance surface w(k, T ), as op-
posed to its expression in terms of the Call Surface as stated above[7]:

σ(T, k) =

√√√√√√
∂w

∂T

1− k

w

∂w

∂k
+

1

2

∂2w

∂k2
+

1

4
(−1

4
− 1

w
+
k2

w2
)(
∂w

∂k
)2

For this investigation, the choice of parameterisation w is as follows, to eliminate
calendar spread and butterfly arbitrage:

w(T,K) =
θT
2

(
1 + ρψ(θT )k +

√
(ψ(θT )k + ρ)2 + 1− ρ2

)
In order to use our results obtained with this parametrisation to price these Amer-
ican put options, we must obtain the volatility surface’s time derivative, and first
and second derivative with respect to moneyness. The following are the results
from the derivations.

dw

dt
=

1

2

∂θT
∂t

(
1 + ρψ(θT )k +

√
(ψ(θT )k + ρ)2 + 1− ρ2

)

+
θT
2

ρk∂ψ(θT )
∂t

+
ψ(θT )k + ρ)k

∂ψ(θT )

∂t√
(ψ(θT )k + ρ)2 + 1− ρ2


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dψ(θT )

dt
= − η

(θγ1(1 + β1θ)
γ2(1 + β2θ)

1− γ1 − γ2)2

(
γ1θ

γ1 − 1(1+β1θ)
γ2(1+β2θ)

1− γ1 − γ2

+γ2θ
γ1(1 + β1θ)

γ2 − 1(1 + β2θ)
1− γ1 − γ2β1

∂θ

∂t
+ (1− γ1 − γ2)θ

γ1(1 + β1θ)
γ2(1+

β2θ)
−γ1 − γ2β2

∂θ

∂t

)

dθ

dt
=
θT2 − θT1

T2 − T1

dw

dk
=
θ

2
(ρψ(θT ) +

(ψ(θT )k + ρ)ψ(θT )√
ρψ(θT ) + (ψ(θT )k + ρ)2 + (1− ρ2))

)

d2w

dk2
=
θψ(θT )

2
(−1

2
((ψ(θT )k + ρ)2 + 1− ρ2)−

3
2 × 2ψ(θT )(ψ(θT )k + ρ)2

+
ψ(θT )√

(ψ(θT )k + ρ)2 + 1− ρ2

The derivatives above, when fed into the Dupire equation, specify a Local volatil-
ity Curve. The curve has the general correct shape[2] and is smooth in the strike
direction. However, it has a sub-optimal shape in time dimension due to the ex-
ponential interpolation between times for which at the money option prices were
available in the data (interpolation between θt).

Using this Local Volatility Curve one can read off a value for volatility, σ, at any
point in strike and time to maturity space. This value for volatility could then be
used and recalculated in each step in a Monte-Carlo pricing routine.
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4.2 Longstaff Schwartz

To further test that the volatility surface calibrated in Section 3 generates prices
consistent with the market, a method to price American options is required. This
is done by using the Longstaff-Schwartz method adjusted to intake Monte-Carlo
sample price paths generated using the local volatility surface.

The Longstaff-Schwartz method allows the pricing of American puts, whose values
can differ from European puts due to their early exercise premium. The method
achieves this by iterating backwards through times to maturity - from the maturity
date to the start date. At each date where the option can be exercised the algorithm
estimates the continuation value of the option if it is not exercised and compares it
to the exercise value at that point.
There was insufficient time to reach this stretch goal of the project. The option
prices retrieved using the Local Volatility Surface were reasonable, however, we
were unable to complete the checking of the Local Volatility Surface using numer-
ical techniques. We could not continue with the attempt of pricing the Ameri-
can Options using Longstaff-Schwartz. This means that we cannot comment on
whether or not the market has accurately priced in an early exercise premium.
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1 Introduction

The field of numerical option pricing is vast, as the need for fast and accurate val-
uation and hedging of option prices is crucial in the realm of quantitative finance.
Black and Scholes (1973) made a breakthrough by proposing a model with the un-
derlying price following a geometric Brownian motion and deriving an analytical
formula for European option prices. The Black-Scholes model is widely recognised
as one of the most important contributions in modern financial theory, allowing an-
alytical simplicity and tractability for European options. However, the overwhelm-
ing majority of traded options are of American type. The valuation of such financial
instruments remains a topic of active research as there is a lack of closed-form solu-
tions for evaluating such problems. This is due to the requirement of sophisticated
approaches to tackle the free-boundary and optimal stopping problems inherent
in the formulation of pricing American options. Many techniques, such as Least
Squares Monte Carlo (Carriere, 1996; Longstaff and Schwartz, 2001), Finite Differ-
ence methods (Duffy, 2013), Fourier Transform methods (Carr and Madan, 1999)
and Quantization (Pagès and Sagna, 2015), have been used to find approximate
solutions of various efficiency and accuracy. Recently there has been a surge of in-
terest in statistical machine learning approaches to pricing American type options,
including the use of Gaussian Mean Mixture Models (Kienitz, 2021).

On 19 October 1987 (Black Monday), the Dow Jones Industrial Average fell by more
than 22%, which marked the start of a global stock market decline (Bernhardt and
Eckblad, 2013). Since then, volatility smiles and smirks have been prevalent in
option markets, making the assumption of constant volatility controversial (Jones,
2003). The Heston model was subsequently established to overcome this limitation,
as it models stochastic volatility which accounts for variations in the asset price and
volatility and therefore, provides more realistic dynamics for the underlying asset
prices.

This report investigates the use of the Gaussian Mean Mixture with Dynamically
Controlled Kernel Estimation (GMM-DCKE) approach for pricing American op-
tions, under the Heston model. GMM-DCKE is a data driven and model free ap-
proach. It is model-free in the sense that it is not specific to a given model or class
of models. We rely only on observed realizations at given time points. The benefit
of GMM is that it can fit discontinuities better, which is beneficial in pricing certain
exotic options that can have discontinuities in option payoff. To investigate the
performance of the GMM-DCKE approach for pricing American options, we shall
implement two traditional methods of pricing American options, under the Hes-
ton model, which will be used as benchmark approaches. These two benchmark
approaches are the Least squares Monte Carlo and Finite Difference approaches.
Through the implementation of these two traditional methods, we shall perform
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a rigorous comparison between these approaches and various GMM-DCKE ap-
proaches. The Least Squares Monte Carlo (LSMC) method, although widely used,
has its shortcomings. The prices calculated using LSMC become less accurate for
out-the-money options because less data is used to calculate the fitted values. The
prices are also sensitive to the choice of polynomials used in the regression proce-
dure. This led to the exploration of the Gaussian Mean Mixtures Model as it makes
use of sophisticated machine learning techniques rather than regression to calcu-
late the American option prices.

This report will focus on the valuation of options on a non-dividend paying un-
derlying asset and therefore, will only investigate the valuation of American put
options. We only consider the valuation of American put options, as under equiva-
lent conditions, both American and European call options on a non-dividend pay-
ing underlying asset have the same valuation. The price of an American call option
can be directly evaluated through semi-analytical option pricing formula, which
uses Fourier inversion.

In addition to investigating the performance of the GMM-DCKE approach for pric-
ing American put options, we also price exotic options under the same model. We
shall specifically investigate the evaluation of prices for both American-type basket
and rainbow options. These exotic options are dependent on multiple underlying
assets and therefore, pricing these options will allow us to investigate the use of
the GMM-DCKE approach in a multi-dimensional setting.

In this report, we give a brief overview of the Heston stochastic volatility model
and the Quadratic Exponential (QE) Scheme, as these will be used to compute the
stock price paths required in the American option pricing valuations. We then
give a background on the various techniques that we have implemented to price
American options, with the GMM-DCKE being the crucial method. Thereafter,
we discuss the implementation of Least Squares Monte Algorithm, PDE schemes
and GMM-DCKE method. The GMM-DCKE method, as mentioned previously,
will be the focus of this report. Finally, we present the results and demonstrate
comparisons of the prices computed by the GMM-DCKE method, with the two
benchmark methods.
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2 Background

2.1 Options

A call option is an agreement between a buyer and a seller that lets the buyer, at
their discretion, purchase a financial instrument (in this case a stock) at a future
date for a specified price. A put option is a similar contract that allows the holder
to sell a financial instrument at a future date for a specified price. Two of the most
common types of options are the European and American options. A European
option can only be exercised at the expiration date, i.e. the maturity of the option.
An American option allows the buyer exercise the option at any time up until the
expiration date.

Since American options, unlike their European counterparts, allow exercise at any
time between their issue and maturity, they are worth at least the same as, but usu-
ally more than, their European equivalent, due to the additional optionally offered
by American options. The difference in price between American and European op-
tions is called the Early Exercise Premium. It can be shown that if a stock does not
pay any dividends, the price of an American and European call option is the same,
as it is never optimal to exercise an American call option before maturity (provided
the underlying asset pays no dividends). This is because there is a time premium
associated with the remaining life of an option, which makes early exercise sub-
optimal. Therefore, in this instance, one may treat American call options as Euro-
pean call options (in other words, there is no early exercise premium for American
call options). However, this is not the case for an American put option (regardless
of whether the underlying asset pays dividends or not), as there are conditions in
which an American put option may be rationally early-exercised. This is because
the holder can benefit from interest by exercising early and investing the payoff at
the risk-free rate.

2.2 Heston Stochastic Volatility Model

The Heston Model is a stochastic volatility model that seeks to overcome the short-
comings presented by the assumption of constant volatility of the underlying asset,
assumed in the Black-Scholes model (Black and Scholes, 1973). It allows the asset’s
variance to be modelled as a stochastic process in order to produce a more real-
istic model for the dynamics of asset prices. The Heston model assumes that the
underlying asset, St, follows a Black-Scholes type stochastic process, but with a
stochastic variance Vt (Rouah, 2013). The variance is mean reverting and follows a
square-root Cox, Ingersoll, and Ross (CIR) process. Hence, the Heston Model is de-
fined by the following bivariate system of stochastic differential equations (SDEs),
which represent the instantaneous asset price and change in variance under a risk
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neutral probability measure,

dSt = rStdt+
√
VtStdW

s
t (1)

dVt = κ(θ − Vt)dt+ σ
√
VtdW

v
t , (2)

where (W s
t )t≥0 and (W v

t )t≥0 are Brownian motions with E[dW s
t dW

v
t ] = ρdt, for the

correlation constant ρ ∈ [-1,1] (Rouah, 2013).

The parameters of the Heston model are defined in Table 1.

Parameter Definition
r The risk-free interest rate
θ The long-term price variance
κ The rate of mean reversion to the long-term price variance
v0 The initial level of the variance
σ The volitility of the variance

Table 1: Heston model parameters.

2.3 Quadratic Exponential Scheme

The calculation of American option prices using Monte Carlo methods will require
simulation of the stock price paths. Under the Heston model, this will mean simu-
lating a set of time-dependent stock prices and variances for each path, from which
option prices can be evaluated. There are a range of methods available to generate
these paths such as the popular Euler, Milstein or implicit Milstein schemes. While
these methods have well-known convergence properties, they occassionally gen-
erate negative values for the variances, even when the Feller condition, 2κθ > σ2,
is met. The negative variances can be overridden by either adopting a full trun-
cation scheme or a reflection scheme. In the full truncation scheme, the negative
variances vt are sent to zero. In the reflection scheme, the negative variances vt
are reflected with −vt. Although this ensures positive variances, the full trunca-
tion scheme creates zero variances and the reflection scheme can create very large
variances. Other techniques include IJK scheme, quadratic-exponential scheme,
transformed volatility scheme and the scheme of Alfonsi (Rouah, 2013). In Ander-
sen (2007), the Quadratic Exponential (QE) scheme was proposed for simulating
the Heston variance process. This will be explored further.

Solving the stochastic differential equation of the variance process results in real-
izations of vt+dt conditional on vt that follow the non-central chi-square distribu-
tion. The QE scheme relies heavily on this. The vt is estimated by sampling from
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an approximation of the non-central chi-square distribution. The method proposes
two algorithms that approximate the non-central chi-square distribution with the
choice of each algorithm depending on the magnitude of vt. If the value of vt is
moderate to high, then vt+dt can be approximated by applying a power function to
a standard normal random variable ZV ,

vt+dt = a(b+ ZV )
2, (3)

where a and b are determined by moment matching methods using the mean and
the variance of the Cox, Ingersoll and Ross (CIR) process. The mean and the vari-
ance of the CIR process are:

m = θ + (vt − θ)e−κdt = E [vt+dt | vt]

s2 =
vtσ

2e−κdt

κ
(1− e−κdt) +

θσ2

2κ
(1− e−κdt)2 = Var [vt+dt | vt] .

Given that vt+dt can be expressed as in (3), this can be further simplified to

vt+dt = a(b+ ZV )
2,

= a(b2 + 2bZV + Z2
V ),

where E [vt+dt] = a(b2+1) and Var[vt+dt] = 2a2(1+2b2) are deduced accordingly. By
equating these two equations withm and s2 and solving for a and b simultaneously,
the solutions to a and b are:

b =

(
2

ψ
− 1 +

√
2

ψ

(
2

ψ
− 1

)) 1
2

a =
m

1 + b2
,

where ψ = s2

m2 . The value of b is only defined for ψ ≤ 2 and this agrees with
the density of the variance process vt being far from zero. For values of vt that
are small, vt+dt will be approximated differently. For small values of vt+dt, the
cumulative distribution function of vt+dt can be approximated using

P [vt+dt ≤ x+ dx] = p+ (1− p)(1− e−dx), x ≥ 0,

with the corresponding probability distribution function being the weighted aver-
age of a term including the Dirac delta function δ and a term including e−dx given
by the following expression:

P (vt+dt ∈ [x+ dx]) = pδ(0) + β(1− p)(1− e−dx), x ≥ 0.

The expressions for p and β are also found by moment matching as in the first al-
gorithm with p ∈ [0, 1] and β ∈ R. From the PDF of vt+dt, we have

E [vt+dt] =
1− p

β
and Var [vt+dt] =

1− p2

β2
.
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Equating the above with m and s2 and solving for p and β gives

p =
ψ − 1

ψ + 1
and β =

1− p

m
.

The value of p must be greater than 0 and this will happen if and only if ψ ≤ 1. The
first approximation of vt+dt required that ψ ≤ 2. Combining these two conditions
means that the critical value ψc that is chosen should be such that ψc ∈ [1, 2]. To
approximate the values of vt+dt, the inverse distribution function for the above
must be computed. Inverting the cumulative distribution function produces the
inverse distribution function, which can be written as:

Ψ−1(u) =

{
0 for 0 ≤ u ≤ p
1
β ln 1−p

1−u for p ≤ u ≤ 1.

Finally, vt+dt = Ψ−1(UV ) where UV is a uniform random number. The QE scheme
can be summarized as a rule that switches between the two sampling algorithms.
The first algorithm being executed for ψ ≤ ψc and the second for ψ > ψc. We now
look at generating the stock prices using the variance process generated above.

Andersen (2007) abandons the Euler discretization for lnSt to avoid the problem
of ”leaking correlation”. Using the Euler discretization results in the correlation
between lnSt+dt and vt+dt being closer to zero than ρ. He shows through the use
of a characteristic function that the correlation between lnSt+dt and vt+dt is in fact
closer to ρ. We use the discretization in the paper that corrects for this correlation.
The integral form of the process for vt is

vt+dt = vt + κθdt− κ

∫ t+dt

t
vudu+ σ

∫ t+dt

t

√
vudB2,u,

which can also be written as∫ t+dt

t

√
vudB2,u =

1

σ

(
vt+dt − vt − κθdt+ κ

∫ t+dt

t
vudu

)
. (4)

Using Ito’s lemma to solve for lnSt together with (1) and applying the Cholesky
decomposition thereafter produces the following integral form for the increment
of lnSt

lnSt+dt = lnSt + rdt− 1

2

∫ t+dt

t
vudu

+

∫ t+dt

t

√
vu

(
ρdB2,u +

√
1− ρ2dB1,u

)
,

(5)
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where B1,u and B2,u are independent Brownian motions. Substituting (4) into (5)
gives

lnSt+dt = lnSt + rdt+
ρ

σ
(vt+dt − vt − κθdt)

+

(
κρ

σ
− 1

2

)∫ t+dt

t
vudu+

√
1− ρ2

∫ t+dt

t

√
vudB1,u.

(6)

The following approximations for the integrals above were made in the paper:∫ t+dt

t
vudu ≈ dt(γ1vt + γ2vt+dt) (7)∫ t+dt

t

√
vudB1,u ≈ ZV

√
dt
√
γ1vt + γ2vt+dt. (8)

Finally, substituting the approximations into (6) produces the discretization for lnSt

lnSt+dt = lnSt + rdt+K0 +K1vt +K2vt+dt +
√
K3vt +K4vt+dtZV

⇒ St+dt = Ste
rdt+K0+K1vt+K2vt+dt+

√
K3vt+K4vt+dtZV ,

where

K0 =
−κρθ
σ

dt,

K1 =

(
κρ

σ
− 1

2

)
γ1dt−

ρ

σ
,

K2 =

(
κρ

σ
− 1

2

)
γ2dt+

ρ

σ
,

K3 =
(
1− ρ2

)
γ1dt,

K4 =
(
1− ρ2

)
γ2dt.

Andersen (2007) suggests that there are multiple ways for setting the constants γ1
and γ2. The common ways include setting γ1 = γ2, giving a central discretisation,
or setting γ1 = 1, γ2 = 0, giving an Euler-type discretization.

2.4 American Option Pricing

Since the introduction of the Black-Scholes model, the problem of pricing American
options has become extremely important, because the majority of financial deriva-
tives traded in the markets are American-style derivatives. While the Black-Scholes
model provides an analytical solution to the valuation of European options, the
possibility of early exercise makes pricing an American option a more complicated
task compared with its European counterpart. Therefore, to price an American op-
tion one would need to generalise the method to allow for early exercise.
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The theory of American option valuation presents some mathematically challeng-
ing obstacles such the relationship between optimal stopping and free-boundary
problems. These problems stem from the fact that pricing American options in-
volves finding an optimal exercise strategy for the option. Therefore, due to the
complexity of the additional optionality offered by an American option, there is no
closed-from solution to the valuation of this option.

In general, the price of an option can be calculated by evaluating the expectation of
the discounted option payoff under a risk-neutral measure. Since the holder of an
American option can choose to exercise the option at any time until maturity, the
pricing of an American option involves an optimal stopping problem. The value
of an American option is the supremum over a range of possible stopping times of
the risk-neutral expectation of the discounted payoff of the option. Therefore, the
value of an American put option is defined as

sup
τ∈T

EQ [e−rτ (K − Sτ )
+].

Here, Q is a risk neutral probability measure and (K − Sτ )
+ represents the payoff

of the put option at time τ . Therefore, valuing an American option involves finding
the optimal time to exercise the option.

There are several methods for pricing an American option which value the option
by approximating it as a Bermudan option. A Bermudan option is a restricted form
of the American option that allows for early exercise at set dates.

To accurately value an American option, one needs to make use of a numeri-
cal approach. Some of the most commonly used numerical methods for pricing
American options include the Binomial Lattice model, Finite Difference methods,
Quadratic approximation and Least Squares Monte Carlo methods (Kienitz and
Wetterau, 2013). In this report we shall implement two traditional techniques for
American put option pricing, namely the Least squares Monte Carlo and Finite Dif-
ference method techniques, and use them as benchmark approaches to compare to
our evaluation of the GMM-DCKE approach for pricing American options.

2.5 Least-Square Monte Carlo Method

The Least-Squares Monte Carlo (LSMC) first proposed by Carriere (1996) and pop-
ularized by Longstaff and Schwartz (2001) provides an efficient algorithm for pric-
ing American options. The algorithm can be applied to any stock price process
that lends itself to simulation (Rouah, 2013). The purpose of this method is to de-
termine the optimal time to exercise the American option with each simulation
done. This is because the American option should only be exercised once during
the term of the option. Each path simulation has only one optimal time to exercise.
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The method implicitly determines the optimal time by finding the optimal stock
prices to exercise the option. The option prices are evaluated using the backward
dynamic programming formulation.
The method relies on assuming that the underlying variable processes are Marko-
vian. The key idea of this approach is to use least squares to estimate the condi-
tional expected continuation value at each time step. The continuation value is
the value of the option if the holder does not exercise immediately at that point
in time. The LSMC method relies on discretizing exercise times to a finite set
Ti = {ti < ti+1 < ... < tN = T} with t0 = 0. The LSMC method thus values
Bermudan-style options, with the values of these options approaching American-
style options as the discretization time steps become larger (Palupi et al., 2015).

The Least-Squares method calculates the early-exercise option through a backward
inductive process. The value of the option at each time step for a single (risk-
neutral) path is given recursively by the following equations:

VN (SN ) = HN (SN )

Vi−1(Si−1) =

{
Hi−1(Si−1) if Hi−1(Si−1) > E

[
e−r∆tiVi(Si) | Si−i

]
e−r∆tiVi(Si) otherwise,

for N ≥ i ≥ 1 and where Si represents the asset price at time ti. The Hi−1(Si−1)
stands for the immediate exercise payoff at time ti−1. At each time step, the value
of the option is calculated as the maximum of the immediate exercise payoff and
the continuation value at that time. Calculating the American option price is then
given as V0 = E [V1(S1)]. The difficulty with valuing American options is the eval-
uation of the conditional expectations at each time.
Longstaff and Schwartz (2001) propose a way of calculating these conditional ex-
pectations as the fitted values of a least-square regression of a set of basis functions.
They assume that the conditional expectation can be written as

e−r∆tiE [Vi(Si) | Si−1 = x] = f(β̂i−1, x),

where f(β̂i−1, x) =
∑R

r=0 βrϕr(x) in terms of the basis functions ϕr(x), 0 ≤ r ≤
R and β = [β0, β1, ..., βR] . Longstaff and Schwartz select the basis functions to
be the Laguerre polynomials. Other basis functions including Hermite, Legendre,
Chebyshev, Gegenbauer and Jacobi polynomials are also possible options. The β
parameters are estimated using a regression procedure and simultaneously used to
calculate the conditional expectations. The algorithm for the Least Squares Monte
Carlo is presented in algorithm 1.
At maturity, the vector VN of the terminal payoffs is computed. At each tk for
1 ≤ k ≤ N − 1, the value of the option is set to be the maximum of the early
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exercise payoff and the realized continuation value. This process is performed re-
cursively until time t1 is reached. The price of the option is then the average of the
continuation values assuming that there is no early exercise is not possible at t0.

2.6 Heston Model PDE

The price (U ) of a contingent claim, on a non-dividend paying stock, under in the
Heston model, (1) and 2, is given as the solution to the following PDE :

∂U

∂τ
=

1

2
νS2∂

2U

∂S2
+ rs

∂U

∂S
− rU +

1

2
σ2ν

∂2U

∂ν2
+ rS

∂U

∂S
+ κ(θ − ν)

∂U

∂ν
, (9)

where τ = T − t, ν is the spot volatility and the rest of the parameters are defined
as in Table (1). As with any PDE, a boundary and initial conditions are required.
We give these for an American put option.

U(S, ν, T ) = (K − S)+

∂U

∂S

∞−→
S

0 (10)

U(0, ν, τ) = 0

∂U(S, 0, τ)

∂τ
= rS

∂U(S, 0, τ)

∂S
− rU(S, 0, τ) + rS

∂U(S, 0, τ)

∂S
+ κθ

∂U(S, 0, τ)

∂ν
U(S,∞, τ) = (K − S)+.

The boundary condition in (10) can also be stated as U(∞, ν, τ) = K. The finite
difference method is used to find numerical approximations of this PDE, and is
described in detail in the implementation section.
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2.7 Gaussian Mean Mixture Models

A Gaussian Mixture Mean model is a weighted sum of Gaussian component den-
sities. It is a parametric probability density function, where parameters are esti-
mated using training data and an iterative Expectation-Maximization(EM) algo-
rithm. More formally it is specified as follows:

2.7.1 Definition

Definition 2.1. let x ∈ Rd be a continuous-valued data vector, A Gaussian mixture
model with K components, denoted as GMM(K) is defined as

p(x|θ) =
K∑
k=1

ωkf(x|µk,Σk), (11)

where ωk and f(x|µk,Σk), k = 1, ...,K , are the mixture weights and component
Gaussian densities respectively. The mixture weights are strictly positive and sum
to one. Each density is a d-dimensional Gaussian function of the form,

f(x|µk,Σk) =
1

(2π)(
d
2
)|Σk|

1
2

exp
1

2
(x− µk)

TΣ−1
k (x− µk)

with covariance matrix Σk and mean vector µk. Gaussian mixture models are pa-
rameterized by the mean vectors, covariance matrices and mixture weights from
all the component densities, denoted as θ = {ωk, µk,Σk}, k = 1, ...,K.

GMM comes in a variety of forms. The covariance matrices, may be restricted to
be diagonal or full rank. The Gaussian components can also share or be connected
to parameters, such as having a single covariance matrix for all components, the
quantity of data available for estimating the GMM parameters frequently dictates
the model architecture (number of components, complete or diagonal covariance
matrices, and parameter) Reynolds (2009).

Gaussian mixture models are often used for data clustering. Clustering is defined
as the unsupervised classification of data into homogeneous groups (Najar et al.,
2017). We can use GMMs to perform either hard clustering or soft clustering on
data. Hard clustering assigns data point to the multivariate normal components
that maximize the component posterior probability given data, it assigns a data
point to one cluster. Soft clustering assigns a score to a data point for each cluster,
the value of the score indicates the associated strength of the data point to the
cluster. They can assign a data point to more than one cluster. GMM clustering
accommodates clusters that have different sizes and correlation structures within
them, however it requires you to specify the number of clusters before fitting the
model.
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2.7.2 Parameter Estimation

Estimating the parameters for the GMM model is done using maximum likelihood
estimation (MLE). The likelihood function is defined as

L(θ|x) =
N∏
i

p(xi|θ). (12)

In other words the likelihood function is the joint probability distribution of the
random vectors xi, i = 1, · · · , N . Each xi has density function as in (11). The pa-
rameters of the GMM model are estimated by finding the parameters θ that max-
imise the joint probability. In order to avoid the product in (12), the log-likelihood
is rather maximised since it will have an extremum at the same parameter values.
The log-likelihood function for the GMM, (11), is then,

l(θ|x) =
N∑
i

log

(
K∑
k

ωif(x|µk,Σk)

)
. (13)

This is a constrained maximisation problem since
∑K

i ωi = 1 and ωk > 0. The
log-likelihood function can be maximised with the Expectation Maximisation (EM)
scheme. First we need to introduce the idea of a latent variable. A latent variable,
is a variable that can not be directly observed. In the GMM framework the label of
component k, is the latent variable z, where

p(z) = ωk

p(x|z) = f(x|µk,Σk)

p(x, z) = ωkf(x|µk,Σk).

The EM scheme has 2 steps, namely an E-step and a M-step. In the E-step, calculate

p(z|xi) =
p(xi, z)

p(xi)

=
ωkf(xi|µkΣk)∑K
l ωlf(xi|µkΣk)

=: γik.

In the M-step, maximise

N∑
i

K∑
k

γik log(p(xi, z))

=

N∑
i

K∑
k

γik log(f(xi|µk,Σk)) +

N∑
i

K∑
k

γik log(ωk). (14)
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Maximising this with respect to ωk can be done using the Lagrange multiplier
method, where

L =

N∑
i

K∑
k

γik log(ωk)− λ

(
K∑
k

ωk − 1

)
.

Conditioning on ωk > 0 is not necessary since the log(ωk)
0−→
ωk

∞. solving dL
dωk

= 0,

yields

ω̂k =

∑N
i γik∑N

i

∑K
k γik

=

∑N
i γik
N

. (15)

Maximising (14) with respect to µi and Σi leads to the following estimates

µ̂k =

∑N
i γikxi

γik
(16)

Σ̂k =

∑N
i γik(xi − µk)(xi − µk)

T∑N
i γik

. (17)

From (15), (16) and (18), it might seem as if the estimates can be calculated di-
rectly, but the estimates are dependent on p(z|xi), which itself is dependent on
{ωk, µk,Σk}. To solve this problem, we implement the EM algorithm. The EM al-
gorithm, (3), is a recursive scheme that takes as input an initial guess of parameters.
It then uses these initial parameters to recursively calculate accurate estimates of
the parameters.
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3 Implementation of Pricing Techniques

Throughout this report, the parameters as defined in Table 1, will take on the values
in Table 2. These parameters will be used to generate the stock paths needed to
implement the different approaches for evaluating the option prices.

Parameter Value
r 0.1
θ 0.16
κ 5
v0 0.0625

Table 2: Heston model parameter values.

3.1 Least-Squares Monte Carlo Method

A summary of the Least Squares Monte Carlo method is as follows:

A The first step is to simulate the stock price paths. The quadratic exponential
scheme using the parameters above was used to generate the stock paths. A
sample size/number of paths of 50000 and weekly exercise dates were used.

B The next step is to calculate the terminal payoff for each path. Since an Amer-
ican put option is being considered, the payoff is in this form:

HN (SN ) = max(K − SN , 0).

The payoffs are then discounted to the previous time step tN−1 using the
following:

VN−1(SN−1) = e−r∆(tN−tN−1)max(K − SN , 0).

The stock prices for which HN−1(SN−1) is greater than zero are found. These
will be used as regressors in the least squares regression procedure.

C Calculate V(SN−1) for only the stock prices identified under B. If we set this
vector of values to Y and the regressors as X , the formulation is as follows:

β̂ = (FF T )−1FY and f(β̂,X) = F T β̂

where F is the matrix of the Laguerre polynomials presented below.

D The next step is to compare HN−1(X) to f(β̂,X). For values of X where
HN−1(X) < f(β̂,X) this means that early exercise is optimal for those stock
prices. Hence, VN−1(X

′
) must be set equal to the early exercise payoff, where

X
′

is the stock prices for which the above condition is met.
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E The above steps are repeated recursively backward through the time steps
until t1 is reached. It is assumed that early exercise is not applicable at t0 as
mentioned above. Hence, the price of the American put option is computed
as V0 = E [V1]. A summary of the algorithm is presented below.

Algorithm 1 Algorithm for the Least Squares Monte Carlo.

1. Use the Quadratic Exponential Scheme to generate the stock price paths with values at each of
the exercise dates.

2. Set VN to be the vector of terminal payoffs for each of the paths.

3. At each iteration evaluate the realised continuation values as:

Vi−1 = e−r∆tiVi.

4. Identify paths for which Hi−1(Si−1) > 0 where H represents the payoff function.

5. Set the vector X to be the stock prices for the corresponding paths (Si−1) and Y to be the
realized continuation values for these paths.

6. Perform least squares regression on Y and f(β̂,X) to produce an estimate of β̂.

7. Calculate f(β̂,X) as the conditional expected continuation values. For the stock prices in X
where the early exercise payoff is greater than the corresponding continuation value, set Vi−1

to be the early exercise values(Hi−1(Si−1)).

8. Repeat steps 3-7 for i = N,N − 1, ...., 2.

9. Compute the value of the option as V0 = E
[
e−r∆t1 V1].

In this report, we explored changing the number of Laguerre polynomials to see
whether this improved the accuracy of the option prices calculated. The compar-
ison section provides more detail on this. Presented below are the Laguerre poly-
nomials that were used in the regression procedure:

ϕ0(x) = 1

ϕ1(x) = 1− x

ϕk+1 =
(2k + 1− x)ϕk(x)− kϕk−1(x)

k + 1
(18)

3.2 Finite Difference Method

In order to use the finite difference method to solve, (9), it is necessary to discretise
the state variables S, ν and τ . This is done by creating a grid on which the variables
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lie. This grid may have uniform spacings or non-uniform spacings. A non-uniform
grid will give more accurate results than a uniform grid. A uniform grid is formed
by discretising the variables as follows,

Si = i× ds, i = 0, ..., Ns

νj = j × dν, j = 0, ..., Nν

τn = n× dτ, n = 0, ..., Nτ

where ds = Smax−Smin
Ns , dν = νmax−νmin

Nν and dτ = τmax−τmin
Nτ .

A non-uniform grid can be created by discretising the state variables so that the
grids are finer around the strike price and ν0 = 0 (In’t Hout and Foulon, 2010).
This grid has the following form

Si = K + c sinh ξi, i = 0, ..., Ns

where

ξi = sinh−1

(
K

C

)
(19)

∆ξi =
1

Ns
[sinh−1

(
Smax −K

C

)
− sinh−1

(
−K
C

)
].

νj = d sinh(j∆η), j = 0, ..., Nν,

with

∆η =
1

Nν
sinh−1

(
Vmax

d

)
.

In’t Hout and Foulon (2010) , use C = K
5 and d = νmax

500 . The grid for τ remains
uniform. Figure 1 illustrates this non-uniform grid.
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Figure 1: Non-uniform grid as described in In’t Hout and Foulon (2010).

The finite difference method uses approximations for the derivatives in (9). The
interior points on the grid use central differences formulae as follows,

∂U(Si, νj)

∂S
=

Un
i+1,j − Un

i−1,j

Si+1 − Si−1
(20)

∂U(Si, νj)

∂ν
=

Un
i,j+1 − Un

i,j−1

νj+1 − νj−1
(21)

∂2U(Si, νj)

∂S2
=

Un
i−1,j

(Si − Si−1)(Si+1 − Si−1)
−

2Un
i,j

(Si − Si−1)(Si+1 − Si)
(22)

+
Un
i+1,j

(Si+1 − Si)(Si+1 − Si−1)

∂2U(Si, νj)

∂ν2
=

Un
i,j−1

(νj − νj−1)(νj+1 − νj−1)
−

2Un
i,j

(νj − νj−1)(νj+1 − νj)
(23)

+
Un
i,j+1

(νj+1 − νj)(νj+1 − νj−1)

∂2U(Si, νi)

∂ν∂S
=

Un
i+1,j+1 + Un

i−1,j−1 − Un
i+1,j−1 − Un

i−1,j+1

(Si+1 − Si−1)(νj+1 − νj−1)
. (24)

On the boundary of the grid forward and backward difference formulae for the
derivatives are used. For example the forward difference formula for the first
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derivative is

∂U(Si, νi)

∂S
=
Un
i+1,j − Un

i,j

(Si+1 − Si)
. (25)

3.2.1 Explicit Method

The Explicit method is the simplest method to numerically solve the Heston PDE,
(9). The explicit method solves the following,

Un+1
i,j − Un

i,j

dt
=

1

2
νS2 ∂

2

∂S2
Un
i,j + rS

∂

∂S
Un
i,j − rUn

i,j +
1

2
σ2ν

∂2

∂ν2
Un
i,j

+κ(θ − ν)Un
i,j

∂

∂ν
Un
i,j + ρσν

∂2

∂s∂ν
Un
i,j

(26)

Since the Solution (U ) on the boundary can easily be calculated, (25). The deriva-
tives are calculated in the interior using (20) – (24) . This method is explicit in the
sense that the derivatives are calculated at time point n instead of n− 1. There are
numerous other techniques that can also be used to numerically approximate the
solution of the PDE. We also consider ADI methods.

3.2.2 Alternating Direction Implicit (ADI) Method

When using any other method that is not the explicit method, it is difficult to ap-
proximate the solution since derivatives w.r.t two variables together with a cross
derivative term are required. ADI methods implements this by treating each state
variable separately. In order to do that first notice that the PDE can be specified in
terms of an operator

∂U

∂τ
= LU,

where

L =
1

2
νS2 ∂

2

∂S2
+ rS

∂

∂S
− r +

1

2
σ2ν

∂2

∂ν2
+ κ(θ − ν)

∂

∂ν
+ ρσν

∂2U

∂S∂ν
.

This operator is then split up into parts only containing derivatives of S, ν and it
cross derivative terms. That is,

A0 = ρσν
∂2U

∂S∂ν
.

A1 =
1

2
νS2 ∂

2

∂S2
+ rS

∂

∂S
− 1

2
r

A2 =
1

2
σ2ν

∂2

∂ν2
+ κ(θ − ν)

∂

∂ν
− 1

2
r.
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ADI schemes usually handle each one of these operators implicitly, hence the name
Alternative direction implicit method. It can be solved using a variety of different
ADI schemes, some of which we list below.

• Douglas Scheme,

• Craig-Sneyed scheme and

• Modified Craig-Sneyed scheme.

The algorithms for the different schemes are shown in, algorithm 2. The operators

Algorithm 2 ADI schemes

• Douglass scheme

1. Y0 = [ I+ dtL]Ut−1

2. Yk = [ I− θdtAk]
−1[Yk−1 − θdtAkUt−1 ] k=1, 2

3. Ut = Y2

• Craig-Sneyed scheme

1. Y0 = [ I+ dtL]Ut−1

2. Yk = [ I− θdtAk]
−1[Yk−1 − θdtAkUt−1 ] k=1, 2

3. Ỹ0 = Y0 +
1
2dt[A0Y2 −A0Ut−1 ]

4. Yk = [ I− θdtAk]
−1[ Ỹk−1 − θdtAkUt−1 ] k=1, 2

5. Ut = Ỹ2

• Modified Craig-Sneyed scheme

1. Y0 = [ I+ dtL] Ut−1

2. Yk = [ I− θdtAk]
−1[Yk−1 − θdtAkUt−1 ] k=1, 2

3. Ŷ0 = Y0 − θ[A0Y2 −A0Ut−1 ]

4. Ỹ0 = Ŷ0 + ( 12 − θ)[ LY2 − LUt−1 ]

5. Ỹk = [ I− θdtAk]
−1[ Ỹk−1 − θdtAkUt−1 ] k=1, 2

6. Ut = Ỹ2

must be matrices and U must be a vector instead of a grid. Refer to Rouah (2013)
to see how to build these operator matrices, and solution vectors.

21



3.3 Gaussian Mean Mixture with Dynamically Controlled Kernel Esti-
mation

The GMM-DCKE builds upon the Dynamically Controlled Kernel Estimation (DCKE)
proposed by Kienitz et al. (2021). DCKE uses kernel density estimation which
includes local bandwidth selection and applies Gaussian process regression for
inter-/extrapolation and smoothing. GMM-DCKE replaces the numerical methods
using analytic expressions for conditional expectations after numerically fitting a
GMM (Kienitz, 2021).

3.3.1 GMM-DCKE Algorithm

The algorithm is as follows,

• Input
Training set X = {x1, ..., xN} with d-dimensional elements and Y = {y1, ..., yN},
yn ∈ R, (xn, yn) represents the joint realisations of some random variables
(X,Y ), where X is the random vector of underlying risk factors for some
t < T and Y is a function of X. In our setting Y represents the payoff of
the Bermudan derivative at time T . We let X∗ = {x∗1, ..., x∗M} be the test set,
however we assume X = X∗.

• Output
Predictions y∗ = (y∗1, ..., y

∗
m) for y∗i ∈ R, such that y∗i ≈ E[Y |X = x∗i ], i.e.,

conditional expected values representing the value of a Bermudan derivative.

• Calculation
We fit a GMM model to approximate the joint distribution of the risk factors
X and payoff Y , using X and Y by applying the EM. However, we need to
specify number of components K for the GMM model. Each component of
the GMM model is a multivariate normal distribution given by,(

Y
X

)
∼ N

((
µY
µX

)
,

(
ΣY Y ΣY X

ΣXY ΣXX

))
. (27)

For the fitted GMM(K) we have the conditional mean and variance resp.
given as

µY |X = µY +ΣY XΣ−1
Y X(X − µX) (28)

ΣY |X = ΣY Y − ΣY XΣ−1
XXΣXY (29)

for each single component k = 1, ...,K of GMM(K). Furthermore

pY |X(y|θk) =
fk(x,y|µk,Σk)∫
fk(x,y|µk,Σk)dy

∼ N (µk,X|Y ,Σk,X|Y )
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and for the conditional distribution of GMM(K),

pY |X(y) =

K∑
k=1

ω̃kpY |X(y|θk) (30)

ω̃k =
ωkϕ(x|µk,X ,Σk,XX)∑
l ωkϕ(x|µk,X ,Σk,XX)

,

where N (µ,Σ), ϕ(·) denote the multivariate normal density with parameters
µ, Σ and corresponding PDF respectively.

• Control Variate
We can improve the accuracy of our estimator by applying the control-variate
variance reduction technique. Suppose we have a random variable Z with
known conditional expectation given by µZ|X = E[Z|X = x]. Then for any
x ∈ Rd and any βx ∈ R, the random variable,

Y ∗ := Y |X + βX(Z|X − µZ|X)

has the same conditional expectation. Choosing

βX=x :=
−Cov[Y,Z|X = x]

Var[Z|X = x]

minimizes the variance since

Var[Y ∗] = (1− Corr[Y,Z|X = x]2)Var[Y |X = x]

for x ∈ X. The higher the control variate Z is conditionally correlated to
Y , the higher the variance reduction. The realisations of the control variate
Z = {Z1, ..., ZN} are included into the fitting of GMM(K). Hence in this case

y∗i = Ê[Y |X = x∗i ] + β̂X=x∗
i
(Ê[Z|X = x∗i ]− µZ|X)

with

β̂X=x∗
i
=

−Ĉorr[Y,Z|X = x∗i ]

V̂ar[Z|X = x∗i ]
.

where Ê[·], V̂ar and Ĉorr are the estimates which can be calculated from the
fitted data using (28) and (29). When we use the underlying as the control
variate, βX=x represents the minimum variance delta.
We have to choose the optimal number of components K, choosing a larger
K over-fits the model and a smaller K under-fits the model. The number of
componentsK for the GMM model are determined using empirical results or
statistical methods, e.g. Silhouette scores or minimizing information criteria.
Kienitz (2021) proposes all values of K between 3 and 6.
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3.3.2 Parameter Estimation and GMM Regression

The Parameters θ = {ωk, µk,Σk} for the GMM are estimated using the EM
algorithm. The EM algorithm is presented below in Algorithm3. Once the
parameters are estimated, the conditional mean for each component µY |X can
be calculated using 28. The conditional distribution for the GMM(K) model
is then calculated with (30). This is effectively a regression problem since
the expected value of the conditional distribution is then needed for pricing
American options. We illustrate the EM algorithm used to calculate the con-
ditional distribution of the GMM(K) model below. Figure 2, shows the EM
algorithm in action. It is clear that the estimated mean values converge to the
true mean values.

Figure 2 shows the GMM regression together with non-linear regression us-
ing Laguerre polynomials as basis functions. When regressing using La-
guerre polynomials, the number of basis functions needs to be set. This can
easily lead to under or over fitting, where as the GMM model is less prone
to overfitting. Figure 3 shows the conditional distribution of the GMM(K)
model for 3D data. No Laguerre polynomials were fitted for the 3D data. It is
clear from these two Figures that the GMM(K) model is adequate for use in
non-linear regression, with the advantage that the GMM(K) handles disconti-
nuities better, Figure (2), whereas the Laguerre polynomials are not accurate
for data with discontinuities. This can be beneficial when pricing certain ex-
otic options where discontinuities can arise in the payoff of the option. The
EM algorithm suffers from the curse of dimensionality since it has to calcu-
late a d × d covariance matrix. This only marginally effects the success of
the GMM model as can be seen from the ease of calculating the conditional
expectation in multiple dimensions.
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Algorithm 3 EM algorithm for multivariate Gaussian mixtures.

1. Choose a set of initial values θ, that is πold
k , µold

k ,Σold
k .

2. E-Step: Calculate the p(z|xi)

γnewik =
ωold
k f(xi|µold

k ,Σold
k )∑K

j=1 ω
old
j f(xi|µold

j ,Σold
j )

.

3. M-Step: Update the unknown parameters, that is

ωnew
k =

Nk

N
.

where Nk =
∑N

i=1 γ
new
ik , and

µnew
k =

∑n
i=1 γ

new
ik xi

Nk
,

and

Σnew
k =

1

Nk

n∑
i=1

γnewik (xi − µnew
k )(xi − µnew

k )T .

4. Set θold = θnew.

5. Repeat steps (2) to (4) until convergence.
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Figure 2: Plot of conditional distribution using a) GMM(K), b) Laguerre polynomi-
als. The crosses indicate the the estimate of the mean of each component at each
step in the EM algorithm. The GMM(K) model above used two components to cal-
culate the conditional distribution, where as five polynomials were used for fitting
with Laguerre polynomials as the basis function.
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Figure 3: Plot of the conditional distribution of the GMM(K) model on 3D data. The
diamonds indicate the mean of each component at each step of the EM algorithm.
The GMM(K) model used two components to calculate the conditional distribu-
tion.

3.3.3 Pricing Using the GMM-DCKE Algorithm

Analogous with the Least-Squares Monte Carlo Algorithm, pricing using the
GMM-DCKE algorithm follows a Dynamic Programming Formulation. How-
ever instead of regressing realised payoffs at each exercise time from continu-
ation values on the function of state variables (prices), we fit the GMM model
at each exercise time and compute the conditional expectation using (28). Es-
sentially we are replacing step 5, 6 and 7 from the Least Squares Monte Carlo
algorithm, with the following steps, using two different methods,

– GMM-DCKE without Control Variate

* 5’. Set the vector X to be the stock prices for the corresponding paths
(Si−1), Y to be the realized continuation values for these paths and
the vector Z to be corresponding variance (vi−1).

* 6’. Fit the data (Y,X,Z) to a GMM-model with (X,Z) representing
our risk factors.

* 7’. Calculate a conditional expected continuation values using (28).
For the paths in X where early exercise is greater than the corre-
sponding continuation value, set Vi−1 to be the early exercise values
(Hi−1(Si−1)).
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– GMM-DCKE with Control Variate
We use the underlying at each exercise time as a control variate, since we
can calculate its conditional expectation using the Martingale property,
that is:

E[Sti |Sti−1 ] = E[Si|Si−1] = Si−1e
r∆ti .

Now we have the following steps:

* 5’. Set the vectorX to be the stock prices for the corresponding paths
(Si−1), Y to be the realized continuation values for these paths and
the vector Z to be control variate (Si).

* 6’. Fit the data (Y,X,Z) to a GMM-model.

* 7’. Calculate a conditional expected continuation values using (31).
For the paths in X where early exercise is greater than the corre-
sponding continuation value, set Vi−1 to be the early exercise values
(Hi−1(Si−1)).

The GMM-DCKE with control variate, rewards us with the minimum vari-
ance delta β̂X=x∗

i
at each time step, which is our conditional trading strategy

with respect to the underlying. Pricing using the GMM-DCKE algorithm can
be extended to multi-dimensions, whereby our risk factor is actually a vector
of underlying stocks, and therefore can be used to price exotic options which
are dependent on multiple underlying stocks.
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4 Results and Discussion

4.1 Pricing Vanilla American Options
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Figure 4: Plot showing the price of a vanilla American option as a function of strike
price, spot volatility, volatility of variance and time-to-maturity. The standard pa-
rameters used were κ = 5.0, θ = 0.16, σ = 0.2, ρ = −0.1, K = 120, r = 0.1,
S0 = 100, and V0 = 0.0625. Note that these parameters were kept constant unless
used as the independent variable for each graph.

In this section we present our results on pricing vanilla American options using
PDE, LSMC and GMM Monte-carlo methods. The GMM Monte-carlo methods
are then compared to the PDE and LSMC method. Figure 4 shows the prices of
a vanilla American option using these methods. The price values are all within
the Monte-carlo error bounds at a 3σ confidence level. The GMM-DCKE method
uses the EM algorithm to estimate the parameters of the GMM model. These pa-
rameters are needed to calculate the expected continuation value from the cross-
sectional data at each time-step, as is standard for these Monte-Carlo methods of
pricing American options. Similarly the LSMC uses Laguerre polynomials to fit
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the cross sectional data. Under the Heston model, the expected continuation value
are a function of both the underlying and the spot volatility. These methods must
thus be used in three dimensions (For exotic options the number of dimensions can
be considerably more, for example basket and rainbow options). The GMM-DCKE
model has the advantage that mixtures of Gaussian are relatively easy to generalise
to multiple dimension, whereas using Laguerre polynomials for example are not
straight-forward to generalise to multiple dimensions.

Figure 5 illustrates the cross sectional data fitted using the GMM-DCKE model.
Some exotic options can have a payoff with discontinuities. When that is the case
the GMM-DCKE method is superior. Another benefit of using the GMM-DCKE
method is that together with control variates, it produces the Greeks as well. It is
considerably harder to get stable estimates of the Greeks using the LSMC model.
PDE methods are also able to calculate the Greeks effiently but only if the PDE is a
few dimensions. Once the option is more complex, e.g basket or rainbow options,
the PDE method suffers from the curse of dimensionality.

The next section illustrates the sensitivity of price as a function of the number of
Laguerre polynomials used.

Figure 5: Plot of the continuation value as a function of spot stock price and volatil-
ity. The GMM(K) model is used to calculate the conditional expectation.
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4.2 Price Sensitivity as a Function of Number of Components
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Figure 6: Comparison of GMM(K) method and least squares approach. The y-
axis indicates the price of the option. The x-axis is the number of components
used for calculating the conditional expectation. The standard parameters used
were κ = 5.0, θ = 0.16, σ = 0.2, ρ = −0.1, K = 120, r = 0.1, S0 = 100, and
V0 = 0.0625. The number component for least squares approach is the number of
Laguerre polynomials used for calculating the conditional expectation.

We have mentioned above that one of the shortcomings of the Least Squares Monte
Carlo is that the prices calculated will be sensitive to the number of polynomials
used to calculated the expected conditional continuation values. Figure 6 shows the
effect on the option prices by varying the degree of the Laguerre polynomials used.
All the other model parameters were kept constant. The values of the parameters
that were used in computing these prices are: S0 = 100,K = 100, v0 = 0.0625,
r = 0.1, ρ = −0.1, θ = 0.16, κ = 5, σ = 0.8. Although, the price sensitivity does not
seem too large, the sensitivity may be large for more exotic options. The GMM(K)
model substantially improves on this. The sensitivity on option prices is minuscule
for this vanilla American option but for exotic options that will not be the case.

4.3 Multi-dimensional GMM-DCKE

To illustrate the performance of the GMM-DCKE method in a multi-dimensional
setting, we consider options dependant on multiple underlying assets. For this re-
port we consider both American-type basket and rainbow options. Both options
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will be considered to be dependent on five underlying assets and therefore, we
use a five dimensional Heston model to simulate five sets of time-dependent stock
prices and variances for each path, as referred to in (2.3), from which the option
prices can then be evaluated. While we consider only five underlying assets, both
options can be easily adjusted to any number of underlying assets, within reason.

We price both the American-type basket option and American-type rainbow op-
tion with the fixed parameters described in Table 3.

Parameter Value
Sample Size 50 000

Number of Components 5
Number of Underling Assets 5

Initial Stock Prices [100 100 100 100 100]
Initial Variances [0.0625 0.0625 0.0625 0.0625 0.0625]

Volatility’s of Variance [0.15 0.4 0.15 0.2 0.3]
Correlation between Stock and Variance [0.1 -0.7 -0.4 0.15 -0.9]

Table 3: Option pricing parameters.

The parameters required in the five-dimensional Heston model used to generate
the stock paths, will be the same as in Table 2. We show the effect of a change in
strike price and maturity time by varying these parameters. Additionally, we value
these options by considering them as Bermudan options with weekly exercise dates
to approximate an American option.

4.3.1 Pricing American-type Basket Options

An American-type basket option is an exotic option which is a contract dependant
on multiple underlying assets, and its payoff is determined by the weighted av-
erage price of these assets on or before the expiration date. This type of option
entitles a holder to the right, but not the obligation, to trade at the strike price
within a specified date. Therefore, there is a certain price to be paid for acquiring
this right, which produces the problem of pricing such an option. A lot of litera-
ture shows that the price of a basket option is usually cheaper than that of option
portfolios on the same individual underlying assets (Hanbali and Linders, 2019).
Based on this advantage, basket options are popular among investors. The payoff
for an American-type basket option at time τ ∈ T (where T is the set of all possible
exercise times) is of the form(

η

(
d∑

i=1

ωiSiτ −K

))+

, (31)
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where d is the number of underlying assets the option is dependent on, ωi are the
weights and η = 1 for an American-type call basket option and η = −1 for an
American-type put basket option.

A basket call option can be viewed similarly to that of a vanilla call option where
the single underlying is a basket of assets. Therefore, as with an American call
option on a non-dividend paying underlying asset where it is never optimal to
exercise the option before maturity, an American-type call basket option is equiva-
lent to a European-type call basket option under the same conditions and on non-
dividend paying underlying assets. As a result of this, we only consider pricing an
American-type put basket option, on five underlying assets (i.e. d = 5), which are
all equally weighted (i.e. ωi = 1

5 for all i). The asset correlation matrix (positive
definite matrix) used to parameterize the Heston model is

C =


1.0 0.2 0.0 0.5 0.7
0.2 1.0 0.4 0.0 0.1
0.0 0.4 1.0 0.3 0.2
0.5 0.0 0.3 1.0 0.25
0.7 1 0.2 0.25 1.0

 . (32)

We now show the effect of a change in both the strike price and maturity time
by evaluating an American-type put basket option with the parameters shown in
Table 3.

Figure 7: Surface plot of American-type put basket option price.
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Figure 8: Plot of American-type put basket option price.

Figure 7 depicts the effect on the American-type put basket option price with changes
in both the strike price and maturity time. The option has been priced at the strike
prices [80 90 100 110 120] and maturity times [0.25 0.5 0.75 1.0]. Figure 8 clearly
indicates how the option price increases with an increase in strike price, which is
a result of the option moving further in the money with an increase in the strike
price. Additionally, the option price increases with an increase in maturity time,
as a longer maturity time results in greater optionality for the option holder which
will result in a higher early exercise premium and hence a greater price.

4.3.2 Pricing American-type Rainbow Options

Similarly to an American-type basket option, an American-type rainbow option
is an exotic option which is a contract dependant on multiple underlying assets.
However, unlike an American-type basket option, rainbow options are instead
structured as calls and/or puts on the best or worst performer as it relates to the
underlying assets involved, where each underlying asset is referred to as a colour
of the rainbow (Ouwehand and West, 2006). Therefore, the payoff of an American-
type rainbow option can take on many different forms. Some of the forms that
American-type rainbow options take on, include the following payoffs at time
τ ∈ T (where T is the set of all possible exercise times),
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max (S1τ , S2τ , ..., Snτ ,K) (33)
(max (S1τ , S2τ , ..., Snτ )−K)+ (34)
(min (S1τ , S2τ , ..., Snτ )−K)+ (35)
(K −max (S1τ , S2τ , ..., Snτ ))

+ (36)
(K −min (S1τ , S2τ , ..., Snτ ))

+, (37)

where (33) is referred to as a best of assets or cash option, (34) is referred to as a call
on max option, (35) is referred to as a call on min option, (36) is referred to as a put
on max option and (37) is referred to as a put on min option (Ouwehand and West,
2006). In this report we only consider pricing a put on min American-type rainbow
option (37), however the methodology used to price such an option can be easily
adjusted to account for any of the American-type rainbow options mentioned in
payoffs (33) – (37). Similarly to Section 4.3.1, we now show the effect of a change in
both the strike price and maturity time by evaluating a put on min American-type
rainbow option with the parameters shown in Table 3 and asset correlation matrix
(32).

Figure 9: Surface plot of put on min American-type rainbow option.

Figure 9 depicts the effect on the put on min American-type rainbow option from
a change in both the strike price and maturity time. Similarly to Section 4.3.1, the
option has been priced at the strike prices [80 90 100 110 120] and maturity times
[0.25 0.5 0.75 1.0]. Figure 9 clearly indicates how the option price increases with an
increase in strike price, which is a result of the option moving further in the money
with an increase in the strike price.
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5 Conclusion

We have demonstrated that GMM-DCKE is purely data driven and model-free, in
the sense that we do not fix a particular model or class of models, and no other
information such as the underlying stochastic differential equation is required.
Hence, it is easy to incorporate transaction costs and other market frictions into the
GMM-DCKE model. We illustrated the use of the GMM-DCKE approach to pric-
ing American options in a multi-dimensional setting by pricing an American-type
basket option with five underlying stocks, this problem can be extended to price
baskets with more than five underlying stocks. It is impossible to price such op-
tions using the PDE scheme due to the curse of dimensionality, and using the LSMC
will be inefficient. The GMM-DCKE model overcomes the curse of dimensionality
by fitting the underlying stocks and payoff process, and analytically calculating the
price. We also priced a rainbow option which has a discontinuous payoff. Because
of the high dimensionality of the problem, it is difficult to price such derivatives
using PDE or LSMC approaches. When we incorporate the control variate to the
GMM-DCKE approach, the variance of our price estimates is reduced and we ob-
tain the Greeks for free. This is important for both trading and risk management.
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