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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial and
Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant research
project, while simultaneously developing links with international students and academics in the
field. An allied purpose is to bring a variety of international researchers to South Africa to give
them a glimpse of the dynamic environment that is developing at UCT in the African Institute of
Financial Markets and Risk Management. The primary goal, however, is for students to learn to
work in diverse teams and to be exposed to a healthy dose of fair competition.

The Sixth Financial Mathematics Team Challenge was held from the 24th of June to the 5th of July
2019. The challenge brought together five teams of Masters and PhD students from France, Ger-
many, China, Mexico, Zimbabwe, Zambia, South Africa and the UK to pursue intensive research
in Financial Mathematics. Each team worked on a distinct research problem over the twelve days.
Professional and academic experts from Canada, Australia, South Africa, and the UK individu-
ally mentored the teams; fostering teamwork and providing guidance. As they have in the past,
the students applied themselves with remarkable commitment and energy.

This years research included topical projects on (a) robust pricing and hedging of basket options,
(b) level-dependence of volatility and the CEV market model, (c) financing the green revolution,
(d) option pricing and hedging with deep learning, and (e) inferring OIS discount factors in the
South African market. These were either proposed directly by our industry partners or chosen
from areas of current relevance to the finance and insurance industry. In order to prepare the
teams, guidance and preliminary reading was given to them a month before the meeting in Cape
Town. During the final two days of the challenge, the teams presented their conclusions and solu-
tions in extended seminar talks. The team whose research findings were adjudged to be the best
was awarded a floating trophy. Each team wrote a report containing a critical analysis of their
research problem and the results that they obtained. This volume contains these five reports, and
will be available to future FMTC participants. It may also be of use and inspiration to Masters
and PhD students in Financial and Insurance Mathematics.

FMTC VI was a triumph, and we were particularly honoured when the UCT Vice-Chancellor
Professor Mamokgethi Phakeng and the UCT Commerce Dean, A/Professor Linda Ronnie vis-
ited the FMTC. We greatly appreciate their encouragement to continue bringing to UCT many
more FMTC editions. Meanwhile, FMTC VII, which will take place in July 2020, is already being
organised!

Last, but by no means less important, we take the opportunity to communicate our great pleasure
in acknowledging that the FMTC-BR took place, during 24 July 3 August 2019, for a second year
running at the Fundaco Getulio Vargas (FGV) in Rio de Janeiro. It was another success!

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

In this report we consider the problem of pricing and hedging basket options. The
typical underlying of a basket option is a basket consisting of several stocks, that
represent a certain economic sector, industry or region. In this study, SAFEX op-
tions have been used so the basket option is based on equity futures contracts (12).

The main advantage of a basket option is that it is cheaper to use such an option for
portfolio insurance than to use the corresponding portfolio of plain vanilla options.
Indeed, a basket option takes into account the correlation between the assets in the
basket. Furthermore, the transaction costs are minimized because an investor has
to buy just one option instead of several ones (6). We assume that call options are
liquidly traded and can be used as hedging instruments. The classic way of ad-
dressing derivative pricing is to postulate a model for the traded asset and derive
a fair price and associated hedging strategy from the model. Then by no arbitrage
theory, the price of the option is the expectation of the discounted expected payoff
of the option under the risk neutral measure. The popular assumption is that the
assets are driven by correlated exponential Brownian motions.

For pricing simple options on one underlying, the celebrated Black Scholes model
leads to a closed form solution, since the stock price at a fixed time follows a log-
normal distribution. However, using the Black Scholes model for a collection of
underlying stocks, does not provide us with a closed form solution for the price of
a basket option. The difficulty stems primarily from the lack of availability of the
distribution of a weighted sum of non-independent lognormals, a feature that has
hampered closed-form basket option pricing characterization. Indeed, the value of
a portfolio is the weighted average of the underlying stocks at the exercise date (6).

The Black Scholes model is often calibrated using the observed price of calls or
other derivatives. This provides some level of consistency, however, the success of
a replicating strategy is based on the fundamental truth of the model on which it is
based. Although market risk can be eliminated, model risk remains in the form of
misspecification. For example, prices of two traded calls can correspond to differ-
ent implied volatilities. The question that the writer faces is which volatility to use
for option pricing without creating arbitrage opportunities.

One can use Monte Carlo simulation techniques by assuming that the assets follow
correlated geometric Brownian Motions, to obtain a numerical estimate of the price.
Other techniques consist of approximating the real distribution of the payouts by
another more tractable one. For instance, in industry it is common to use the log-
normal distribution as an approximation for the sum of lognormals, although it is
known that this methodology can lead sometimes to poor results. An extensive
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discussion of different methods can be found in (1), (3) and (14).

An alternative approach in an environment in which there is model uncertainity
is to infer information about the potential distribution of asset prices from the call
prices available in the market rather than making explicit assumptions about the
dynamics of the price process of the underlying asset. This idea goes back to Hob-
son (7), and the resulting methods are called model independent or robust. This
second approach does not aim to derive a unique fair price but is robust in the
sense that it is not dependent on the efficacy of the underlying model.

Two main settings have been considered in the mathematical finance literature:

(i) If the prices of call options on an underlying X for a fixed maturity T and for
all strikes K > 0 are known, then by the Breeden-Litzenberger theorem the
full marginals of X at time T are known. In this case the Optimal Transport
and Skorokhod Embedding theories may be applied to study robust pricing
as demonstrated in (9).

(ii) The second case of interest is when there are only a finite number of calls
traded on each underlying. This is a more realistic situation. If we only know
call prices for a few strikes then we only know partial information about the
marginals. In this case the available market prices of call options can be used
to find bounds on the prices of exotic derivatives (10).

The scope of this report is to investigate the procedure in (ii) for basket options and
to provide an implementation of it based on available market data. The general aim
is to provide bounds on the possible price of an exotic option which are consistent
with no-arbitrage given the market prices of vanilla puts and calls available in the
market. In essence, rather than using a single model, we consider the class of all
models which are consistent with the observed call prices, and rather than quoting
a single option price we give the range of prices which arise under models from
this class. In this article we apply this philosophy to basket options in the setting
of a one period static arbitrage model. We will focus on the case of upper bounds
and leave the case of lower bounds to future research. In the early part of section
2 we assume a continuum of strikes and suppose that instead of hedging with just
the underlying stocks and cash, investors are allowed to hedge a basket call option
with calls on the constituent assets with the same maturity and all available strikes.
This provides the investor with a greater range of hedging instruments. However,
dynamic hedges based on stochastic calculus and delta hedging can no longer be
expected to work since we do not postulate any model for the underlying asset.

We have in mind the scenario of an option writer, who is both skeptical and risk
averse. Her risk aversion is such that she builds a portfolio that whatever happens
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in the market at time T, she will be better off. We define a super-replicating strat-
egy as a hedging strategy which generates a terminal fortune which dominates the
option payout in every possible scenario. Moreover, her skepticism means she is
not prepared to make any assumptions about how asset prices will behave. The
upper bound on the price of a basket option represents the lowest price at which
she is prepared to sell a basket option, and the lower bound the highest price which
she is prepared to pay. The bounds represent the limits on the possible price of the
basket option which are necessary for the absence of arbitrage (8).

The result in the case of finitely many strikes on each underlying has the advan-
tage that the proof involves finding the cheapest super-replicating strategy for the
basket option, and hence has an immediate interpretation as a hedging strategy (8).
This strategy only involves the traded assets and call options. Since knowledge of a
finite number of strikes only gives partial information about the marginals, it may
be anticipated that there is no such straightforward characterisation of the least
upper bound. The characterisation is based on an interpolation technique which
basically fills in the missing values of the call price functions and hence completes
the partial information about the marginal via Breeden and Litzenberger (4). This
is achievable as a consequence of the observation that the largest convex function
passing through n given points is the linearly interpolated function.

We investigate the problem of finding model independent bounds for basket op-
tions, but this can however also be posed for other exotic options. For example,
Hobson (7) considers model independent bounds of the price of a lookback op-
tions. Brown et al (5) and Hodges and Neuberger (10) consider barrier options. In
calculating the bounds for the price of a lookback option, Hobson (7) assumed that
the call prices are derived within a complete market without transaction costs.

This report is motivated by the paper written by Hobson, Laurence and Wang (8).
We applied their philosophies on the static-arbitrage upper bounds for the prices
of basket options to a particular set of data derived from the JSE top 40 index which
is discussed in section 3.1.

The remainder of this article is structured as follows: in section 2 we review the
theoretical background with regard to moving from a model based approach to a
model independent approach and the upper bound on the price of basket option.
The main body of results and analyses is found in section 3 and the conclusion of
the article follows in section 4.
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2 Theoretical Background

2.1 Moving from a Model-based Approach to a Model-independent Ap-
proach

The t = 0 price, C(K), of a European call option with strike K and maturity T on
non-negative underlying asset X can be computed as the discounted value of the
option’s expected payoff under a risk neutral measure, which we may write as:

C(K) = e−rTEQ[(XT −K)+] = e−rT
∫ ∞
K

(x−K)+fXT
(x)dx

where r is the continuously compounded riskless rate (which is market observable)
and Q is the risk-neutral measure, which is not directly observable. The method of
Breeden and Litzenberger (4) recovers the distribution function F (x) = Q(XT ≤ x)
and the density function of the asset price process at time T under the risk-neutral
measure Q from market-observable liquid European call options.
No arbitrage constraints imply that C(0) = X0 (i.e. we can think of the underling
asset as a call option with strike K = 0), C is decreasing and convex. Thus C is
bounded, 0 ≤ C(K) ≤ X0. In particular, left and right derivatives of C exist. For
example, when we take the right derivative with respect to K, we get:

C ′(K+) = −e−rTQ(XT > K)

We let G denote the distribution of XT , so that

G(K) = Q(XT ≤ K) = 1−Q(XT > K) = 1 + erTC ′(K+)

Here G is the distribution of XT driven by the option market data (no assumptions
are made about the underlying asset price dynamics). Since we only know the call
prices for a finite number of traded strikes, we cannot recover the full distribution
of XT . Hence G is piecewise linear (see figure 1) and the associated distribution is
discrete, placing mass at only the finitely traded strikes (see figure 2).
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2.2 Upper Bound on Price of Basket Option

Here we outline the method used in Hobson (8), to find an upper bound for the
price B(K) of a basket option with strike K and maturity M with payoff defined
on N traded underlyings, given N maturity-M calls on the individual stocks in the
basket with a finite number of traded strikes. This is equivalent to the cheapest
portfolio of calls and underlying assets which will super-replicate the basket op-
tion.
For any vector λ = (λ1, . . . , λN ) with λi ≥ 0 and

∑N
i=1 λi = 1, we have

(∑
i

wiX
(i)
M −K

)+
=
(∑

i

wiX
(i)
M −

N∑
i=1

λiK

wi
wi

)+

≤
∑
i

wi

(
X

(i)
M −

λiK

wi

)+
.

(1)

i.e. the payoff of the basket option is bounded by a weighted sum of calls on the
individual assets with strikes equal to λiK/wi
No-arbitrage considerations imply that for arbitrary λi

B(K) ≤
∑
i

wiC
(i)

(
λiK

wi

)
. (2)

This suggests a super-replicating strategy which consists of buying wi calls with
strike λiK/wi on underlying X(i). However, we have finite traded strikes in the
market, thus options with desired strikes may not exist.
Now, since the λi are arbitrary, we have

B(K) ≤ inf
λi≥0,

∑
λi=1

∑
i

wiC
(i)

(
λiK

wi

)
. (3)

Since we are minimising a bounded function over a compact interval, the infimum
is attained. We define λ∗i to be the minimising choice and write the upper bound as

B̄(K) =
∑
i

wiC
(i)

(
λ∗iK

wi

)
. (4)

To find the infimum of
∑

iwiC
(i)
(
λiK
wi

)
over choices λi satisfying λi ≥ 0 and∑N

i=1 λi = 1, (8) defines the Langrangian function

L(λ, φ) =
∑
i

wiC
(i)

(
λiK

wi

)
+ φ

(
N∑
i=1

λi − 1

)
(5)
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and shows that there exist φ∗ and λ∗i , so that

inf
λ:λ≥0

L(λ, φ∗) = L(λ∗, φ∗) =
∑
i

wiC
(i)

(
λ∗iK

wi

)
. (6)

For traded calls on asset X(i) with strikes (k
(i)
j )1≤j≤J(i) where k(i)

j < k
(i)
j+1, (8) con-

siders 3 cases below in the derivation of an upper bound for the basket option:
Case 1: C(k

(i)
J(i)) = 0 for all i (i.e. the call price of the largest traded strike is equal

to 0), and
∑

iwik
(i)
J(i) > K.

Then for for 1 ≤ i ≤ N , and 0 ≤ j ≤ J (i), (8) defines C̄(i) (see figure 3) the largest
decreasing convex function which agrees with C(i) at the traded strikes is defined
by:

• C̄(i)(k
(i)
j ) = C(i)(k

(i)
j ) if k(i)

j is a traded strike.

• C̄(i)(k
(i)
j ) = linearly interpolated value between neighbouring traded strikes

of k(i)
j .

• C̄(i)(k) = 0 for k ≥ k(i)
J(i).

Then for the λ∗i obtained from the optimisation of our Lagrange function, we let I
be the set of stock indices such that λ∗iK/wi is a traded strike and j̄(i) the index j
such that λ∗i = wik

(i)

j̄(i)
/K is a traded strike. If I contains all the stock indices, then

the upper bound, B̄ is given by:

B̄(K) =
∑
i

wiC̄
(i)(k

(i)

j̄(i)
) = wiC

(i)(k
(i)
j ). (7)

If λ∗iK/wi is a not traded strike, we denote Ic the set of such i. For such i we
define j̄(i) to be the index j such that λ+

i = wik
(i)

j̄(i)
/K and λ−i = wik

(i)

j̄(i)−1
/K where

wik
(i)

j̄(i)
/K and wik

(i)

j̄(i)−1
/K are traded strikes, and λ∗i ∈ (λ−i , λ

+
i ).

We define

θ∗i =
(Kλ∗i /wi)− k

(i)

j̄(i)−1

k
(i)

j̄(i)
− k(i)

j̄(i)−1

(8)

and we have
λ∗iK/wi = (1− θ∗i )k

(i)

j̄(i)−1
+ θ∗i k

(i)

j̄(i)
, (9)

hence

wi

(
X

(i)
M − λ

∗
iK/wi

)+
≤ wi(1− θ∗i )(X

(i)
M − k

(i)

j̄(i)−1
)+ + wiθ

∗
i (X

(i)
M − k

(i)

j̄(i)
)+. (10)

9



Thus we have an upper bound given by

B̄(K) =
∑
i∈I

wiC
(i)
(
k

(i)

j̄(i)

)
+
∑
i∈Ic

wi

{
(1− θ∗i )C(i)

(
k

(i)

j̄(i)−1

)
+ θ∗iC

(i)
(
k

(i)

j̄(i)

)}
, (11)

which suggests a super-replicating strategy consisting ofwi calls onX(i) with strike
k

(i)

j̄(i)
for each i ∈ I and, for i ∈ Ic, a combination of (1−θ∗i )wi calls with strike k(i)

j̄(i)−1

and θ∗iwi calls with strike k(i)

j̄(i)
.

According to Hobson (8), the upper-bound in equation 11 is the price attained in
the co-monotonic model (a model is one in which the underlying assets exhibit a
perfect positive dependence) and it is a least model-independent upper bound.
Case 2: C(k

(i)
J(i)) > 0 for some i and

∑
iwik

(i)
J(i) > K.

In this case, for all i such that C(k
(i)
J(i)) > 0 Hobson (8) introduces a synthetic strike

k
(i)+1
J(i) > k

(i)
J(i) such that C(k

(i)
J(i)+1) = 0, which reduces the problem to case 1 above

and shows that the associated super-replicating strategy does not involve invest-
ments in the synthetic calls.

Strike, K

P
ri
c
e
 o

f 
c
a
ll 

o
p
ti
o
n
, 
C

(K
)

Figure 3: The largest convex call price function for finitely traded strikes

Case 3:
∑

iwik
(i)

J(i) ≤ K.

10



In this case, we have

(∑
i

wiX
(i)
M −K

)+
≤

(∑
i

wi

(
X

(i)
M − k

(i)

J(i)

))+

≤
∑
i

wi

(
X

(i)
M − k

(i)

J(i)

)+
. (12)

Thus, the upper bound is then given by:

B̄(K) ≤
∑
i

wiC
(i)
(
k

(i)
J(i)

)
. (13)

This suggests a super-replicating strategy which consists of buying wi calls with
strike equal to the largest traded strike on underlying X(i).

The derivation of the upper bounds is summarised in the following theorem:

Theorem 2.1. Suppose maturity-M calls with strikes (k(i)){1≤j≤J(i)} are traded on
assets X(i) and we wish to price a maturity-M basket option with payoff
(
∑

iwiX
(i)
M −K)+. Then, for any model which is consistent with the observed call

prices C(i)(k
(i)
j ), the fair price B(K) for the option satisfies B(K) ≤ B̄(K) where,

for
∑

iwik
(i)
J(i) > K,

B̄(K) =
∑
i∈I

wiC
(i)
(
k

(i)

j̄(i)

)
+
∑
i∈Ic

wi

{
(1− θ∗i )C(i)

(
k

(i)

j̄(i)−1

)
+ θ∗iC

(i)
(
k

(i)

j̄(i)

)}
. (14)

For
∑

iwik
(i)
J(i) ≤ K,

B̄(K) =
∑
i

wiC
(i)
(
k

(i)
J(i)

)
(15)

In both cases B̄(K) is the smallest model-independent upper bound on the price of
the basket option, in the sense that we can find models which are consistent with
the observed call prices for which the fair price for the basket option is arbitrarily
close to B̄(K).
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3 Numerical Simulation and Analysis

Volatility surfaces for various maturity dates were provided for the top 40 equities
on the Johannesburg Stock Exchange (JSE). The moneyness for each of the maturi-
ties was also provided for each equity. The values of moneyness used ranged from
75% to 125% for all traded calls. In addition to this, the weighting of each of the
top 40 constituents was provided along with the futures term structures for those
equities. The data was gathered from the South African Futures Exchange (SAFEX)
from the time period between 2009 and 2018.

The observed price of the basket option on the JSE Top40 was computed for a
variety of moneyness values (from 75% to 125% of the spot price) and a variety
of maturities. These were calculated using these values along with the implied
volatilities from the volatility surface given. The basket option price observed in
the market was plotted as a function of maturity and moneyness below:

Figure 4: The surface curve of observed normalised call prices on the JSE Top40 as
a function of moneyness and maturities (T)

As expected, figure 4 shows that the value of a call option on the JSE Top40 index
(the basket option) is a decreasing function of strike and an increasing function of
maturity. This simply shows that the given data behaves as we expected it to.
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The smallest model-independent upper bound, B̄(K), was then computed in line
with the methodology outlined in (8). The observed strike prices (k

(i)
j ){1≤j≤J(i)} of

call options which are traded on equities
(
X(i)

)
1≤i≤N have a maturity M . A basket

option on all of the equities X(i) has a payoff of
∑

i(wiX
(i)
M −K)+. The model in-

dependent bounds developed in (8) imply that the fair price of the basket option,
B(K) is bounded as follows: B(K) ≤ B̄(K) where B̄(K) is determined for two
cases. The upper bound of the price of a basket option is determined using the
equations outlined in theorem 2.1.

In theory, the weightings are determined by the respective market capitalisations
of each of the equities in the JSE top 40 constituents. However, because of the way
in which the JSE Top40 index is reported, the weightings are adjusted as outlined
in section 3.1. The implied volatilities (from the volatility surfaces), equity prices
X(i), maturities and strike prices (k

(i)
j ){1≤j≤J(i)} are used as inputs into the Black-

Scholes model to determine the observed market call prices C(i) for all 40 equities
and maturity dates considered. The stock price on any particular day, denoted by
time 0, is simply the futures prices on that day: X(i). The remainder of the inputs
into the Black-Scholes model are gathered from SAFEX directly. Using the individ-
ual call prices C(i)

(
k

(i)
J(i)

)
, the smallest model-independent upper bound, B̄(K), is

determined for the second case.

For the first case, the inputs used in theorem 2.1 are either directly observable or are
calculated in line with the explanation in section 2. Specifically, the explanations of
C(i)

(
k

(i)

j̄(i)

)
and C(i)

(
k

(i)

j̄(i)−1

)
as well as θ∗i are discussed in this section.

3.1 JSE Top40 Index

The JSE Top40 is a weighted index in which the market capitalisation of each con-
stituent of the index determines its weighting in the index. The index value there-
fore changes as the prices of the constituents change over time. The constituents
having larger market capitalisation’s affecting the index value changes more than
price changes of constituents having lower market capitalisation’s (13). According
to (13), the index value is merely a number which shows the market value of the
index constituents with reference to some starting point at a specific point in time.

In order to compare the share prices to the index value, the weightings, wi, need
to be changed from relative percentage values (that is, the fraction of the market
capitalisation’s) to values which, when summed up will give the total index value.
These new weightings (now not percentage values any longer) will henceforth be
denoted by w̃i. Now, if a weighted index ’price’ can be determined (for each T)
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from the weighted prices of the constituents and denoted by ZT as follows:

ZT =
∑
i

wiF
i
T

where FT is the forward price of the underlying for maturity T. If the index value
for any particular T is denoted by YT then the ’conversion factor’ between the index
value and the index ’price’, henceforth denoted byNT , can be calculated as follows:

NT =
YT
ZT

.

w̃i is then simply the percentage weight converted to a weight with respect to index
points:

w̃i = wiNT

and is the weighting which will be used in all above calculations in place of wi
to account for the index being reported in index points as opposed to a weighted
index ’price’.

3.2 The Call Price Function

As mentioned in section 2.2, there are only finitely traded strikes in the market.
The optimisation exercise discussed in this section must make use of a call price
function (with the call price given as an output based on a given strike) based on
these strikes which are observable in the market. The call price function can be
represented as a piece-wise linear function based on the discretely observable call
prices for the strikes which are traded in the market as follows:
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Figure 5: Piece-wise linear call price function based on market-observable call
prices

From a practical point of view, one can think of the call price function as linearly
interpolating between market-observable strikes and the corresponding call prices
in order to determine the call price for a strike which lies between market observ-
able strikes. It is important to note, however, that for strikes which are larger than
the highest market-observable strike, an additional point is added to the call price
function. This point is for a synthetically created strike of k(i)

J(i)+1. On the figure
above, this strike is given by extrapolating using the dotted line to get the strike for
which the call price is zero. As discussed, the call price is expected to be a convex,
decreasing function of the strike price. According to (8), the creation of this syn-
thetic strike is simply a linear extrapolation of the existing call price function. It is
calculated by first defining ∆0 = erT and determining the gradient of each section
of the function as follows:

∆
(i)
j =

C(i)
(
k

(i)
j−1

)
− C(i)

(
k

(i)
j

)
k

(i)
j − k

(i)
j−1

We then define ∆∞ to be less than the minimum of these gradients (which is the
final gradient if the function is convex). From this, the synthetic strike, kJ(i)+1, is
then calculated as:

kJ(i)+1 = kJ(i) +
C(kJ(i)

∆∞
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where kJ(i) is the largest market-observable strike.

For the second case of theorem 2.1, the lowest call prices (corresponding to the
highest observable strikes) are used. However, for the first part, the optimisation
exercise described in section 2.2 is used. The objective function in equation 4, is
minimised by using the piece-wise call price function shown above. If the strike
isn’t traded in the market (for example, the input into the call function in equation
4 is λ∗iK

wi
which is most likely not equal to the strike of a traded call option), then

the value of the call option was linearly interpolated from the call price function as
shown above. In this case, the value of the call option, C

(
λ∗iK
wi

)
, is given by the red

’x’ on figure 5.

3.3 Numerical Implementation

The upper bound of a basket option was determined using theorem 2.1. In the sec-
ond case, the computation of the upper bound, B̄(K), is trivial. In the first case,
however, an optimisation exercise is required. The objective function, equation 4,
is minimised with the optimal choice of λ∗i being the output of the exercise. The call
price price function in figure 5 is then used to determine what k(i)

¯j(i)−1
and k(i)

¯j(i)
are.

In other words, the market-observable strike prices which bound λ∗iK
wi

are referred

to as k(i)
¯j(i)−1

and k
(i)
¯j(i)

. The corresponding values of C(i)(k
(i)
¯j(i)−1

) and C(i)(k
(i)
¯j(i)

) are

determined from the observable call prices. The strike prices, k(i)
¯j(i)−1

and k
(i)
¯j(i)

, are
used along with equation 8 to calculate the value of θ∗i which is used in conjunction
with equation 14 in theorem 2.1 to determine the upper bound of the basket option,
B̄(K).

It is important to note that call options are not liquidly traded on the top 40 eq-
uities on the JSE, especially not call options for a range of strike prices. For this
reason, equations 14 and 15 in theorem 2.1 have to be adjusted such that the super-
hedging strategy still involves holdings in the equities for which call options are
liquidly traded. For the equities in which call options are not liquidly traded, the
spot price was used as a call option price - this imitates a call option with a strike
price of zero. For example, if call options for the top j equities were used (and
positions in the underlying were used for the remainder of the equities) to create a
super-hedging portfolio, equation 15 would be written as:

B̄(K) =

j∑
i=1

wiC
(i)
(
k

(i)
J(i)

)
+

40∑
i=j+1

wiF
(i)
0 . (16)

In our analyses, we investigate the effect of changing j on the resulting upper
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bound of the option by varying the number of calls (as opposed to positions in
the underlying) which are used in the super-hedging portfolio.

3.4 Results and Analysis

The sample data for the date 31-12-2018 was used to generate the following results.
Data from a different date could have been used but the effect would be expected
to be the same. The first point to be investigate was the effect of the number of
equity call options used to estimate the upper bound of the price of the basket
option as shown in equation 16 - that is, the effect of a changing j. It would be
expected that increasing the number of equities for which the call option price is
used (as opposed to the spot price) would more accurately estimate the minimum
upper bound, B̄(K). Because B̄(K) is a minimum upper bound, increasing j should
therefore decrease B̄(K). If one were to think of equation 16 very simply, the call
price of an option will be less than its equivalent spot price and therefore including
the call price of more equities (as opposed to the equivalent spot price) should
decrease the value of B̄(K). When the number of call options used to estimate B̄(K)
was changed from call options on the top 5 to the top 15 equities, the following
result was produced:
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Figure 6: The minimum upper bound of a basket option based on a changing num-
ber of call options used to estimate the minimum upper bound from the top 5 to
15 equities. This plot is produced for an at-the-money option with a maturity of 1
year.

This plot was produced for an at-the-money basket option with a maturity of one
year. As can be seen in figure 6, increasing the number of call options used does, as
expected, decrease our minimum upper bound of the basket option price. Increas-
ing the number of call options used to estimate B̄(K) (as opposed to using the spot
prices) would be expected to increase the accuracy of the estimate. This is because
the use of the prices of more call options makes use of more market information
than the use of the spot prices. As discussed in (7), robust hedging involves the use
of observable call prices to ”infer” a distribution of the equity price process. There-
fore, the use of more call prices (and thus more information) should ”infer” a more
realistic distribution which should lead to a more accurate minimum upper bound.

It is worth noting, however, that the upper bound of B̄(K) (or the cost of the super
replicating portfolio) changes by less than ZAR100 from approximately ZAR5840
to just less than ZAR5750 when the number of equities changes from 5 to 15. This
is a relatively small change of less than 2% of the original upper bound (using call
prices on the top 5 equities). From this, it seems that the upper bound is relatively
static as incorporating more market information doesn’t change its value signifi-
cantly. In fact, if the call options on the top 25 equities were used in the super-
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hedging portfolio (implied volatility surfaces were only available for the top 25
equities which made up approximately 70% of the Top40 index in terms of market
capitalisation), the effect can be seen below:
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5680

5700

5720

5740

5760

5780

5800

5820

5840

Figure 7: The minimum upper bound of a basket option based on a changing num-
ber of call options used to estimate the minimum upper bound from the top 5 to
25 equities. This plot is produced for an at-the-money option with a maturity of 1
year.

As can be seen in this plot, there is a decrease in B̄(K) as the number of equities
for which the call options are used in the super-hedging strategy (j in equation 16)
increases as before. However, this effect only seems to be significant up to a point.
After this point, the effect of j is relatively insignificant. We can postulate from
this that the optimal number of equities for which the call options are used in the
super-hedging strategy is 20. This is most likely because the weights of the equities
outside the top 20 aren’t high enough to significantly impact the value of B̄(K). A
table showing the total cumulative proportion (

∑
iwi) of the JSE Top40 index of

the top j equities is given:
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Table 1: The total proportion of the JSE Top40 index represented by the top j equi-
ties and the effect that this has on B̄(K)

Top equities Cumulative weight Upper bound Slope Component weight
j

∑j
i=1 wi (%) B̄(K) wi (%)

5 44.74 5838.927 703
6 48.5 5833.583 232 −5.344 471 444 3.76
7 51.89 5826.816 953 −6.766 278 82 3.39
8 55 5818.759 841 −8.057 111 717 3.11
9 57.37 5796.594 567 −22.165 274 56 2.37

10 59.3 5781.594 376 −15.000 191 01 1.93
11 61.03 5775.756 541 −5.837 834 765 1.73
12 62.58 5762.162 483 −13.594 058 33 1.55
13 64.07 5760.192 422 −1.970 061 039 1.49
14 65.47 5751.096 922 −9.095 499 86 1.4
15 66.79 5747.593 434 −3.503 487 972 1.32
16 68.02 5740.589 977 −7.003 456 591 1.23
17 69.22 5736.171 092 −4.418 885 342 1.2
18 70.33 5735.869 455 −0.301 637 179 1.11
19 71.31 5731.077 664 −4.791 790 728 0.98
20 72.26 5699.956 881 −31.120 783 12 0.95
21 73.18 5699.055 09 −0.901 791 127 0.92
22 74.07 5697.160 559 −1.894 531 077 0.89
23 74.94 5696.735 952 −0.424 606 815 0.87
24 75.78 5695.054 456 −1.681 496 3 0.84
25 76.46 5694.745 007 −0.309 449 024 0.68

The estimate of B̄(K) is given for a changing j. This is the data from which figure 7
is plotted. Importantly, the total weight that the top j equities held in the JSE Top40
are given in this table and can be seen to be increasing at a decreasing rate (as j in-
creases). This is intuitive in that each added j has a lower market capitalisation.
This table reinforces the idea that the effect of an increasing j on the value of B̄(K)
is insignificant for equities outside the top 20 (partly) because the weights which
they have in the Top40 index are either 1% or less (see the values of wi).

The value of B̄(K) as a function of j is once again given in figure 8 below. The
market price of the base is plotted along with this to show the relative value of the
bound to the market price:
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Figure 8: The minimum upper bound of a basket option based on a changing num-
ber of call options used to estimate the minimum upper bound from the top 5 to 25
equities along with the observed market prices of the JSE Top40 index option (the
basket option). This plot is produced for an at-the-money option with a maturity
of 1 year.

As can be seen in the figure, the observed market prices are significantly below the
upper bound, B̄(K). It is worth noting that, firstly, it is obvious that B̄(K) is indeed
an upper bound, albeit approximately 60% higher than the observed market value
of the option. This high value of the upper bound implies that it may not be the
minimum upper bound. However, (5) states that the implemented super-hedging
strategy is ”less ambitious in scope” in that it doesn’t aim to estimate a price of
the option but rather a strict upper bound. The upper bound therefore may not
necessarily approach the price of the actual option. The super-hedging strategy is
expensive as it is required, by definition, to completely hedge the exotic derivative
being priced (in this case a basket option). In practice, super-hedging is not used as
a hedging strategy because it is often too expensive (11). For this reason, the upper
bound of a basket option price determined from a super-hedging strategy will be
high relative to the observed market price.

In addition to the above explanation as to why the value of B̄(K) is so much higher
than the observed market prices, it is important to consider that we haven’t esti-
mated the lower bound. Because the scope of our study excluded the computation
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of the lower bound of a basket option, we are not able to hypothesize where this
may be. A simplified sketch can be used to explain this:
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Figure 9: The minimum upper bound and possible maximum lower bounds of a
basket option along with the observed market prices

In this sketch, the upper bound is presented as constant. This is obviously a simpli-
fication but as it changes very little, it is presented as constant for this explanation.
If the lower bound is as far from the observed price (that is, ”Lower bound 1” in
the figure), then we can conclude that the nature of the super-hedging strategy is
conservative for both the lower and upper bounds. However, if the observed price
is closer to the lower bound than to the upper bound (that is, if the lower bound
is ”Lower bound 2” in the figure), then the JSE behaves in such a way that it is
comparable to a model under which the lower bound holds.

In section 2, it is discussed that the minimum upper bound generally coincides
with the price under a model in which the constituents are co-monotonic. This
is substantiated by the ”Numerical Results” of (5) which states that it is precisely
when a model in which the correlation is close to 1 that the upper bound represents
the price predicted by the model. This is intuitive in that, if the constituents behave
in a way such that they have a correlation of 1, then if the price of a call option
with a fixed maturity in a certain direction (when the strike changes), the prices of
the call options on the other equities with the same maturities will all behave in an
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analogous way. In this scenario, a weighted investment in the constituents of a bas-
ket option will perfectly hedge the basket option itself and the upper bound will
represent the price of the basket option. From the results of this study, because the
observed prices differ significantly from the upper bound, we can conclude that
the constituents of the JSE Top40 index are not co-monotonic.

Investigating the error (difference between the derived upper bound and the ob-
served price) as a percentage of the observed price (see table 2 below), we see that
this increases as the time to maturity increases. This maybe because, liquidity in
trading of futures contracts reduces as the time to maturity increases, as it is com-
mon for investors to use short-dated futures for hedging and then roll the hedge
forward. This results in less liquidity in trading of call options written on these fu-
tures contracts. Hence dealers will be expected to demand an extra premium to be
encouraged to trade in less liquid call options, resulting in higher prices and thus it
becomes more costly to super-replicate the basket option using traded calls on the
market. In addition to this, the model used for option pricing isn’t co-monotonic.
Thus as maturity increases, we would expect less correlation among the underly-
ing assets in the basket, thus the model bound would move further away from the
observed prices.

Table 2: The error (that is, the difference between the upper bound and the ob-
served price) as a function of different maturities of a basket option on the JSE
Top40

Time to maturity Error
T %

30 26.52
60 33.62
90 34.12

120 35.2
150 44.12
180 48.51
270 55.71
365 59.82
545 66.82
730 72
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4 Conclusion and Proposed Future Work

Theorem 2.1, which is outlined in (8), was used to determine the robust upper
bound, B̄(K), of a basket option on the JSE top 40 equities. As discussed in section
3.4, the observed market prices lie far below the minimum upper bound. This in-
dicates that the constituents of the JSE Top40 are not co-monotonic. It also implies
that the super-hedging strategy is expensive which is why it is rarely used in prac-
tice according to (11).

However, as the number of equities for which the call prices were used in the com-
putation of B̄(K) was increased, the value of the upper bound seemed to decrease
until the top 20 call prices were used. This indicated both that the use of the top
20 equity call prices in the computation is optimal and that the upper bound ap-
proaches some value (which is approximately ZAR5700) for an at-the-money bas-
ket option with a maturity of 1 year.

In addition to this, it appears that the observed price of the basket option is closed
to the upper bound for smaller maturities. This indicates that the JSE top 40 eq-
uities are more co-monotonic for shorted maturities than for longer maturities. In
addition to this, it may indicate that there is less liquidity in the market for shorter-
dated options.

The predominant future work which is proposed based on this study is the com-
putation of the lower bound of a basket option. In this way, the position of the
observable market prices of the basket option within a band of model-independent
can be determined. This will help in understanding whether the upper bound is an
extreme estimate (if the lower bound is significantly lower than the observed mar-
ket prices) or whether the observed prices are simply close to the lower bound. In
addition to this, any method that can account for the correlation structure between
the JSE Top40 constituents will probably improve the minimum upper bound in
that it will be able to impose constraints on the co-monotonicity of constituents.
This should lower the upper bound as it may no longer have to coincide with the
situation in which the constituents have a correlation of 1.

Additionally, a time series of the data can be analysed as data from 2009 to 2018
was analysed. Although a major trend in this time series can be foreseen, it may
provide insight into market changes over this period. For example, if the top 40
equities were more co-monotonic and therefore approached B̄(K) at certain points
in time.
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Chapter 1

Introduction

This report presents the study of volatility level-dependence in the LIBOR Market
model using the CEV model during the Financial Mathematics Team Challenge,
UCT, held from 25th June to July 2nd 2019.
The aim of the project is to uncover ways to calibrate the constant elasticity of variance
(Andersen and Andreasen, 2000) or CEV model, to incorporate level-dependent
volatility (volatility with dynamics depending on the changes but also the actual
value of the underlying) as presented in empirical studies in Filipovic et al. (2017,
Section IV, G) and Piazzesi (2010, Section 7.7). Informally, we model the forward
rate process (Lk(t), t ≥ 0) defined by an initial value Lk(0) and the stochastic
differential equation

dLk(t) = σ(Lk(t))
γdWk(t), t ≥ 0,

for k ∈ {1, . . . ,M + 1} where (Wk(t), t ≥ 0) is a Brownian motion under the Tk+1-
forward measure for t ∈ [Tk, Tk+1] (see details in Section 2.1), γ ≥ 0 is the CEV
parameter and σ > 0 is the volatility. This parameter allows to go from a Gaussian
model (γ = 0) to a log-normal model (γ = 1) via the so-called square-root process
(γ = 1/2) (Piazzesi, 2010, Section 3).
An important motivation of this challenge comes from the conjecture of recent re-
sults (Filipovic et al., 2017) along with classical observations about financial data
(Andersen and Andreasen, 2000). Those references explore further the impact of
the underlying on the diffusion coefficient and precise the notion of level depen-
dence of volatility. Simple vector autoregressive models find a positive correlation
between their squared residuals and the interest rate levels (Piazzesi, 2010, Section
7.7). Alternatively, the approach that is studied herein is a simple regression of
changes in implied volatility against change in interest-rate (Filipovic et al., 2017,
Section IV.G).
We propose to investigate the role the CEV model might play in handling the
volatility level-dependence as the CEV parameter γ can potentially be adjusted
to do so. For that, we compare four calibration methodologies and their effect on
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this issue. Those will span from fitting the market skew using different strikes to
optimising the profit-and-loss of a CEV hedging strategy.

1.1 Report structure

The main task of the project is to consider the calibration of the Constant Elasticity
of Variance (CEV) model (Andersen and Andreasen, 2000). Our report is subdi-
vided into smaller tasks. In Section 1.2 and 1.3, we introduce the dataset provided
on EURIBOR caps from 2013 and 2014. We also recall the definition of caplets and
caps as they are the derivatives of interest in this project. Then, in Section 2, we
present the LIBOR market model (LMM) and one of its extensions that is the CEV
model as well as pricing formulas for caplets and caps. This is augmented by a
practical and succinct understanding of the CEV model on volatility and its level
dependence (Section 2.4). Section 3 comprises of details on the implementation of
the implied volatility extraction and the caplet pricing formulas

1.2 Data overview

For this challenge, the data was two years worth of three daily EURIBOR 10-
year caps log-normal implied volatilities and corresponding 20 semi-annual bonds
prices (more precisely for the years 2013 and 2014). As required, the strikes for the
three caps (H ∈ {0.01, 0.0175, 0.025}), the underlying forward rate, bond maturi-
ties and daily short rates were included in the dataset. This short rate is taken to be
the simply-compounded instantaneous rate.

The daily bonds data show an increasing term structure of yields which is expected.
Below is a plot of the term structure for bonds taken at days 1, 250 and 500 of the
504 days given in the data. The days were chosen at random.
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Figure 1.1: Yield plotted against term to maturity of bonds in the dataset.

The log-normal implied volatility of the three different strikes given in the dataset
show that as the strike increases the volatility decreases. This is expected, caps with
lower strike (in-the-money) have a greater price as to comparable caps with higher
strike (out-the-money). Furthermore, price and volatility have positive relationship
in the log-normal Model. Hence as strike increases, volatility decreases. Below are
three histograms of the implied volatility of the log-normal model of the 504 days
given under three different strikes (0.01, 0.0175, 0.025).
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Figure 1.2: Histograms of daily implied volatility at different strikes.

Remark 1. In the paper the strike H2 = 0.0175 is referred to as the at-the-money strike,
however it is not at-the-money but close to at-the-money.

1.3 Cap/caplet definition

A cap is a contract which limits the the amount of interest which the buyer has to
pay to a limit, called the strike. The buyer can be viewed as a payer of an interest
rate swap where each exchange payment is executed only if it has positive value.
A cap is made up of caplets just like an interest rate swap is made of forward rate
agreements (Brigo and Mercurio, 2007). The caplet payoff is

δ(L−H)+,

where x+ := max(0, x), δ is the difference between maturity time and when the
caplet resets, L is the forward rate at its specific maturity time and H is the strike
rate.
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Chapter 2

CEV Market Model and caps

2.1 LIBOR Market Model

We consider the LIBOR Market Model (LMM) in this section. Similarly to Section
2, Andersen and Andreasen (2000), consider the sequence of increasing maturity
structure 0 = T0 < T1 < · · · < TM+1 and define the right-continuous mapping
function n : [0,∞)→ N such that Tn(t)−1 ≤ t < Tn(t). For t, T ≥ 0, denote the price
at time t of a zero-coupon bond with maturity T as P (t, T ). The discrete forward
rates on the aforementioned maturity structure is defined as

Lk(t) :=
1

δk

(
P (t, Tk)

P (t, Tk+1)
− 1

)
, with δk := Tk+1 − Tk.

for t ≤ Tk and k ≤M . For each individual time set [Tk, Tk+1], we fix the probability
measured to be the Tk+1-forward measure Qk+1 as induced by the zero-coupon
bond with Tk+1 maturity as numeraire.
As per Andersen and Andreasen (2000), we assume Qk+1 to be unique which im-
plies no arbitrage. This means that P (t, Tk)/P (t, Tk+1), and hence Lk(t), are mar-
tingales.

Remark 2. We will use both the Lk(t) and L(t, Tk) notations depending on which is easier
to interpret given the context: for pricing theory, we shall mostly use Lk(t) to denote the
underlying rate and L(t, Tk) when discussing properties of the cap option itself.

2.2 CEV model

As defined in Andersen and Andreasen (2000), we define the forward rates dynam-
ics as

dLk(t) = σ(t)Lγk(t)dWk(t), k ∈ {1, . . . ,M} (2.1)

where γ > 0 and t 7→ σ(t) is a positive bounded deterministic function. Local
Lipschitz continuity and linear growth of x 7→ xγ are equivalent to the existence
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and uniqueness of no-arbitrage solutions for Lk(t) under the collection of measures
(Qk+1, n(t) ≤ k ≤M), respectively.

2.3 Cap and caplet under CEV

The price of a caplet is known exactly under the CEV model as follows

Theorem 1. (Andersen and Andreasen, 2000, Theorem 3)
Let Ck(t) denote the price of a LIBOR caplet with strike H and payment time Tk+1. Let
Φ(·) be the standard normal cumulative distribution function, and χ2(·, θ, λ) be the cu-
mulative distribution of a non-central χ2 distribution random variable with non-centrality
parameter λ and θ degrees of freedom. Define

vk(t, Tk) :=

∫ Tk

t
σ(s)2ds; a :=

H2(1−γ)

(1− γ)2vk(t, Tk)
; b :=

1

1− γ
;

c :=
Lk(t)

2(1−γ)

(1− γ)2vk(t, Tk)
; x± :=

ln (Lk(t)/H)± 1
2vk(t, Tk)√

vk(t, Tk)
.

Assuming the forward rate dynamics are as specified in Equation (2.1), the arbitrage-free
value of Ck(·) is given by the following:

1. For 0 < γ < 1 and an absorbing boundary at the level Lk = 0;

Ck(t) = δkP (t, Tk+1)
{
Lk(t)(1− χ2(a, b+ 2, c))−Hχ2(c, b, a)

}
. (2.2)

2. For γ = 1:

Ck(t) = δkP (t, Tk+1) {Lk(t)Φ(x+)−HΦ(x−)} . (2.3)

3. For γ > 1:

Ck(t) = δkP (t, Tk+1)
{
Lk(t)(1− χ2(c,−b, a)−Hχ2(a, 2− b, c)

}
. (2.4)

We also augment this result with the derivation of the Gaussian-distributed im-
plied volatilities.

Proposition 1. Consider the framework of Theorem 1 and assume the forward rate dy-
namics are as specified by an initial value Lk(0) and

dLk(t) = σdWk(t), t ≥ 0.

9



Then, the arbitrage-free value of Ck(·) is given by the following:

Ck(t) = δkP (t, Tk+1)σ(Tk − t)1/2 {η(t, Tk)Φ(η(t, Tk)) + φ (ψ(t, Tk))} ,

where η(t, Tk) := (L(t)−H)/(σ
√
Tk − t) and φ, Φ are respectively the standard normal

probability density function (PDF) and cumulative distribution function (CDF).

Proof. We have directly Lk(t) = Lk(0) + σWk(t) for any t ≥ 0. Now, we compute
EQk {(LTk −H)+|Ft} as follows

EQk

{
(LTk

−H)+|Ft
}

= EQk

{
(Lk(0) + σWt + σ(WTk

−Wt)−H)+|Ft
}

=

∫ ∞
−η(t,Tk)

{
(Lk(t)−H + σ

√
Tk − tx)(2π)−1/2 exp{−x2/2}

}
dx

= (Lk(t)−H)Φ (η(t, Tk)) + σ(Tk − t)1/2φ (η(t, Tk))

= σ(Tk − t)1/2 {η(t, Tk)Φ(η) + φ (η(t, Tk))}

We then evaluate this expectation at time Tk and discount back to time t from pay-
ment time Tk+1 and conclude.

2.4 Intuition behind the CEV model

Recall that LMM corresponds to the LIBOR Market Model and CEV to the Constant
Elasticity of Variance model.
The main task of this challenge is to calibrate the CEV model and infer the value
of the parameter γ which correctly prices the caps as per Equation (2.1). The LMM
model is not the best model neither is the normal model. In the LMM model we
assume that γ is one and normal model γ is zero. Below is a plot of the weekly and
daily changes in the implied volatility and the change in the at-the-money strike.
This is done for γ equal to 1, 0.005 and 0.

Remark 3. We denote by diffusion coefficient the coefficient of the Brownian motion.
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Figure 2.1: Regression of changes in implied volatility against change in the un-
derlying interest-rate (given as at-the money strike) for the log-normal, CEV and
normal cases, for respectively the strikes {0.01, 0.0175, 0.02} column-wise.

The plots show that there is correlation between changes in implied volatility and
changes in the forward rate.
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2.4.1 Log-normal case (γ = 1)

Recall that the rate dynamics are now defined by

dLk(t) = σLk(t)dWk(t), t ≥ 0.

The model features positive level-dependence between volatility and forward rate
level. Indeed, the diffusion coefficient increases as Lk increase. The scatter plot of
changes in implied volatility against changes in the forward rate might then feature
negative correlation. Indeed, if the forward rate increases, the implied volatility
decreases to accommodate the strong positive increase in the diffusion coefficient.
Hence, observe the downward sloping dotted line for the log-normal model (first
row, Figure 2.1). A positive change in the forward rate leads to a negative change in
the volatility to compensate for strong positive level-dependency assumed by the
model. We can conclude that the log-normal model would misinterpret an increase
in the forward rate by having artificially low implied volatilities. This might affect
a hedging portfolio for example.

2.4.2 Normal case (γ = 0)

In this case, one has that

dLk(t) = σdWk(t), t ≥ 0.

The normal model above assumes zero level-dependence between volatility and
interest rate level as the forward is not apparent in the diffusion coefficient. Con-
trary to the log-normal case, an increase in the forward rate will potentially imply
an increase in the implied volatility as it may try to replicate the presence of the
underlying in the diffusion coefficient. Empirical evidence from the dataset (last
row, Figure 2.1) shows that a positive change in the at-the-money strike leads to a
positive change in the volatility. A blue dotted upward line makes this relationship
more clear in the last row of Figure 2.1. This evidence shows that there is a need for
some volatility level-dependence in our model as we observe positive correlation
between changes in normal implied volatility and changes in the forward rate.

2.4.3 CEV case (0 < γ < 1)

The rate dynamics are now taken to be as follows

dLk(t) = σLγk(t)dWk(t), t ≥ 0.

The correlation of implied volatility and forward rate level shown by the normal
and the log-normal model show that the two models are not best fitted to price the
caps as they promote ill-specified behaviour. On the other hand, the capacity to
tune the impact of the underlying forward rate on the diffusion coefficient might
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be helpful in taming the excessive of the underlying in the log-normal case or the
absence of the underlying as per the normal case. Therefore, a CEV model above
with an appropriate γ could address the level dependency in such a way that the
correct amount of level dependency will give constant volatility. The second plot
gives some insight, when γ is 0.005 the correlation is very low which means that
there could be a γ between 0 and 1 which can give a CEV model with minimum
correlation.
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Chapter 3

Implementation

3.1 Testing results with the theory and intuition

During the project, we devised a series of tests for our implementation to test its
behaviour in both an intuitive context or its asymptotic behaviour (e.g. as γ → 0 or
γ → 1).

• Caplet pricing: caplets behave similarly to call options and have therefore
an intuitive behaviour with respect to time-to-maturity, its strike rate and
forward rate. We harness these properties to strengthen the foundations. As
an example, we know that the value of the caplet should decrease as time
to maturity increases. However, as the strike price increases a caplet with
a small time-to-maturity would see its value decrease quicker than a caplet
with larger time to maturity. See Section 3.2 for details.

• Implied volatility: we replicated the implied volatility tables presented in
Andersen and Andreasen (2000) as featured in Section 3.3. An important
test was to check the monotonicity of the pricing formula with respect to the
volatility parameter σ. This allowed the computation times to speed up by a
factor of approximately 100.

• Finally, we replicated the results from Figure 2, Andersen and Andreasen
(2000) which sets the CEV implied volatility at σ = 30% for a strikeH = 6% to
obtain the corresponding price and computes implied volatilities for different
strikes and γ values (Section 3.5).

3.2 Caplet Pricing

As defined above, we implement the closed-form solution of the caplet pricing for-
mula to calculate the caplet (Theorem 1). The parameters from Section 4, Andersen
and Andreasen (2000) for γ, the forward rate and volatility are used to price caplets.
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The strike rate H ranges from 0.01 to 0.1 and the time-to-maturity Tk ranges from
1 to 30.

Figure 3.1: Caplet prices vs strike rate for γ = 0.5, forward rate of 0.05, implied
volatility of 0.05 (RHS) and γ = 1.5, forward rate of 0.06, implied volatility of 0.83
(LHS).

Unfortunately, the seminal paper Andersen and Andreasen (2000) did not feature
caplet prices as a benchmark hence we could not double-check those results. This
said, we can infer the prices behaviour as follows: it is clear that as the strike rate
increases, the caplet price decreases. This is as expected due to the fact that as
strike rate increases, the caplet will be less in-the-money or more out-the=money
which in turn drives the caplet price down. Moreover, when the strike rate is low
(i.e., when the caplet is in-the-money), as time-to-maturity increases, the caplet
price decreases. This is because the caplet is currently in-the-money, therefore if it
is closer to maturity, the caplet will be realised in-the-money. On the other hand,
when the strike rate is high (i.e., when the caplet is out-the-money), as time to ma-
turity increases, the caplet price will decrease. This is because as time-to-maturity
increases, the out-the-money caplet will have more time for the interest rate to in-
crease so that it can be realised in-the-money.
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3.3 Implied volatility of caplets

After calculating the caplet price from the CEV model, we could use this price to
calculate the Black (log-normal) implied volatility. The relationship between the
caplet price and volatility in the log-normal model is stated in section 2.3. We have
used a bisection method to find the implied volatilities from the caplet prices. We
used a tolerence level of 10−5 to implement the bisection method.
The tables below show the implied volatilities with the same parameters as the sec-
tion above.

Tk/H 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 0.3093 0.2655 0.2417 0.2256 0.2137 0.2042 0.1964 0.1899 0.1842 0.1792
5 0.3104 0.2662 0.2422 0.2261 0.2141 0.2045 0.1967 0.1901 0.1845 0.1795
10 0.3114 0.2669 0.2428 0.2266 0.2145 0.2049 0.1971 0.1905 0.1847 0.1797
20 0.3113 0.2677 0.2436 0.2273 0.2152 0.2056 0.1977 0.191 0.1853 0.1802
30 0.3084 0.267 0.2436 0.2276 0.2155 0.2060 0.1981 0.1914 0.1856 0.1806

Table 3.1: Implied volatilities with the bisection method with γ = 0.5, σk(t) = 0.05
and forward rate Fk = 0.06.

The table below shows the same table from Andersen and Andreasen (2000)’s pa-
per.

Figure 3.2: Implied volatility as given in Figure 1A, Andersen and Andreasen
(2000).

From the above two tables, we can see that all the entries are the same to 4 decimal
places except the first entry where H = 0.01 and Tk = 1. The error might be caused
by the non-central chi-squared distribution when the parameter is very small.
Table 3.2 below shows the implied volatilities with a different set of parameters
and Figure 3.3 shows the same table from Andersen and Andreasen (2000). From
the tables, it can be seen that when γ = 0.5, as the strike rate increases, implied
volatility decreases. Whereas when γ = 1.5, as the strike rate increases, implied
volatility also increases. This relationship is also shown graphically in Figure 3.4
which is presented in Andersen and Andreasen (2000).
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Tk/H 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 0.1526 0.1702 0.1835 0.1943 0.2034 0.2113 0.2184 0.2247 0.2305
5 0.1527 0.1704 0.1837 0.1945 0.2037 0.2117 0.2188 0.2252 0.2310

10 0.1529 0.1706 0.184 0.1949 0.2041 0.2121 0.2193 0.2257 0.2315
20 0.1532 0.1710 0.1845 0.1955 0.2048 0.2128 0.2201 0.2264 0.2323
30 0.1535 0.1714 0.1849 0.1958 0.2051 0.2132 0.2203 0.2267 0.2324

Table 3.2: Implied volatilities with the bisection method with γ = 1.5, σk(t) = 0.83
and forward rate Fk = 0.06.

Figure 3.3: Implied volatility as given in Figure 1B, Andersen and Andreasen
(2000). In their setting, we have α = γ and λk = σk.

However the relationship between time-to-maturity and caplet prices depend on
the parameters (γ, σk, Fk). With the first set of parameters, as time-to-maturity in-
creases from 1 to 10, implied volatility increases. But, as time-to-maturity increases
from 10 to 30, implied volatility decreases. However, with the second set of param-
eters, as time-to-maturity increases, implied volatility only increases.
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Figure 3.4: Implied volatility vs Strike rate for different CEV parameters (Andersen
and Andreasen, 2000, Figure 2).

Remark 4. It is noted that the strike rate of the second table starts from 0.02 as opposed
to 0.01 in the first table. According to our implementation, we found that there will be an
error when calculating the implied volatility when the strike rate is 0.01. Andersen and
Andreasen (2000) also excluded the 0.01 strike rate. The option is well in-the-money which
probably causes precision errors in the computation as the price is then much less sensitive
to price moves and volatility.
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3.4 CEV implied volatilities as a function of γ

An additional check consisted of plotting the CEV implied volatilities as a function
of γ to verify that the inversion procedure was working as expected. The argument
being, using

dL(t) = σL(t)γdW (t),

since |L(t) < 1| in this project, as γ goes to 0, L(t)γ increases to 1 and therefore the
implied volatility should decrease to keep the diffusion coefficient σL(t)γ constant.
This is what can be observed in Figure 3.5.

Remark 5. Note that as γ gets close to 1, the parameters a, b and c from Theorem 1
explode which makes the χ2 CDF estimation cumbersome. For that reason, we use large
thresholds of value 106.
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Figure 3.5: CEV implied volatility as a function of γ for a fixed cap price ≈ 0.01.
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3.5 Cap pricing

A cap is simply a combination of caplets with different time to maturities. As a
result, the cap price can be calculated as the sum of all the caplets. We calculated
the cap prices based on the EURIBOR market data. The tenor of each caplet is 0.5
(half year) and the term of the cap is 10 years. When pricing the cap, special care
needs to be taken when the first caplet is priced. At time 0, the interest rate is
already known, therefore the payoff at time t = 0 (payment date of first caplet) is
deterministic. The formula below shows thee price of the first caplet

C0(0) = δ0P (0, T1) (L(0, T1)−H)+ .

The remaining caplets will be calculated as before using the formula mentioned in
Section 2.3.
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Chapter 4

Methodologies

In this section, we present the four methodologies explored in this project. We also
present the theoretical foundations of the CEV hedging strategy.

4.1 Daily market skew calibration

To calibrate the model, firstly, a nave approach using daily cap prices was used
to estimate the value of γ and σ across the three strikes available. This method
is very crude because two unknown parameters are estimated using three data
points. However, this method was carried out to have an insight of the range of the
γ value and corresponding σ for the cross-sectional caps. This approach is indeed
the industry standard when it comes to calibrating stochastic models, also known
as fitting the market skew as we fit the model for different strikes on one specific
day.

4.2 Parametric inference

Remark 6. This approach suffers from the fundamental flaw that results are difficult to
interpret. We include in the report for completeness with regards to the progress made
during the week but do not rely on it to conclude anything. Indeed, it seems the CEV model
does not have a global minimum in this context and leading to a non-identifiability issue.

Consider the CEV model (Equation (2.1)) from a statistical perspective. Note that
the likelihood function is difficult to obtain for a general γ ∈ [0, 1] and quantifying
its dependence structure is intractable. This said, the availability of market prices
for different strikes allows for a parametric inference by simple sum of squares
minimisation of the three different strikes as follows

3∑
i=1

M+1∑
k=1

(
Ck (γ, σ;Hi, Fk)− (Ck

(
γ = 0, σBimp;Hi, Fk

))2
,
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where σB,iimp is Black’s implied volatility as seen on the market for strike Hi.
This allows us to take the strikes’ cross-sectional information into account whilst
minimising the error on pricing.

4.3 Level-dependence minimisation

4.3.1 Stylised fact

We hope to capture level-dependence through this measure of absolute correlation
as hinted by Filipovic et al. (2017).

Remark 7. As given in (Filipovic et al., 2017, Section IV.G): ”[..] there is a strong and
positive relation between volatility and swap rate changes when swap rates are close to the
zero lower bound.”

They first present a linear model in the form

∆σ = β0 + β1∆L+ ε,

where σ are normal implied volatilities. They find a significant β1 ≈ 0.2. Subse-
quently, they found a more suitable formulation

∆σ = β0 +

d∑
i=1

βiI{L ∈ [ui−1, ui)}∆L+ ε,

where I{·} is the indicator function and (ui, i ∈ {0, . . . , d}) is a collection of increas-
ing thresholds for the interest rate. In their work, they take d = 5 and ui = i/100
and compute, conditionally on each sub-categories of rate values, the coefficient of
determination (R2). They find sufficient proof that this conditional model fits the
data well, especially in the low interest-rate domain. Indeed, they find

• Significant βi for i ∈ {1, 2, 3}, insignificant for i ∈ {4, 5}.

• Positive and decreasing βi for i = 1, 2, 3.

For this reason, we consider a framework which minimises the correlation between
the two series of increments by navigating γ between 0 and 1.

Assumption 1. We investigate the capacity of the CEV model to continuously interpolate
(potentially) negative correlation of the log-normal model and (potentially) positive of the
normal model.
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4.3.2 Level-dependence minimisation

We denote the level-dependence minimisation method as the method which finds
γ ∈ [0, 1] such that changes in implied volatility and changes in the underlying
forward rate are (empirically) uncorrelated.
This comes directly from the intuitive advantage of the CEV model over the normal
and log-normal models as described in Section 2.4. More specifically, we look for

γ̂reg := arg min
γ∈[0,1]

{
|Cor(∆σimp,k(γ),∆Lk)|

}
,

where ∆σimp,k(γ) := σimp,k+1(γ) − σimp,k(γ) with σk(γ) the CEV-implied volatil-
ity with respect to γ at time Tk for k ∈ {1, . . . ,M}. Similarly, ∆Lk := Lk+1 − Lk.
We take Pearson’s empirical correlation estimator for the correlation. Note that,
again as in Section 2.4 and Figure 2.1, a typical setting is to have positive correla-
tion for the Normal model or negative correlation for the log-normal case (or both).

For that we proceed as follows: for a given γ, compute CEV implied volatilities.
Then, compute the correlation between the weekly differences in the interest-rate
and the implied volatility and then the optimiser finds new candidates which lower
the absolute value of the correlation.

Remark 8. Weekly differences are used instead of daily changes as external effects such as
weekends, first day of week and liquidity issues need not be considered.

As an example, the changes in implied volatilities for the log-normal case are neg-
atively correlated with changes in the interest rate whereas we have negative cor-
relation in the normal case.
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Figure 4.1: For the in-the-money strike H1 = 0.01, different level-dependence
showcased for log-normal and normal implied volatilities.

More precisely, with this approach we investigate the following assumption
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Assumption 2. The CEV model can continuously adjust the level-dependence between
the (potentially positive) correlation of the normal model and the (potentially negative)
correlation of the log-normal model.

If this assumption is correct, we hope to achieve uncorrelation between the two by
exploring the set [0, 1] for the γ parameter.

4.4 Delta hedging

In this part, we use delta hedging to calibrate the parameter γ such that the profit
and loss (P&L) of the hedging portfolio reaches its minimum.

4.4.1 Derivation for delta

Recall that for each caplet, starting at time Tk terminating at Tk+1, with strike H
and forward rate L, there exists a unique risk-neutral measure Qk+1 such that, the
price of caplet can be calculated as follows:

Ck(t) = δkP (t, Tk+1)E[(Lk(Tk)−H)+|Ft],

where k = 1, 2, 3, . . . and δk = Tk+1 − Tk. Similar to the stock market, the Fun-
damental Theorem for Asset Pricing (FTAP) and unique martingale measureQk+1

implies that there exists a unique self-financing strategy (Nt, ψt) such that we can
perfectly replicate European contingent claim g(L) = (L − H)+, where (Nk

t , ψt)
are the quantity invested in the underlying asset and bank account respectively. In
the interest rate market, however, interest rates are not a tradeable asset. We can
instead trade the forward contract on L and bonds instead.
Under Qk+1, C̃k(t) = Ck(t)/P (t, Tk+1) is a martingale such that the dynamic of L
satisfies dLk(t) = g(Lk(t))dWk(t) for some non-negative function g. Suppose that
L follows log-normal model with g(Lk(t)) = σLk(t), then we have a closed form
solution for Ck(t) which is stated in Equation 2.3.
From the martingale property, and Feyman-Kac Theorem, we have

dC̃k(t) =
1

P (t, Tk+1)

∂C

∂Lk(t)
dLk(t) = δk

∂F

∂L
dLk(t), (4.1)

where, F (t, Tk) = Ck(t)/δkP (t, Tk+1). In the case where γ = 1 (log-normal model),
the ∂F

∂L can be calculated from the for) which gives ∂F
∂L = Φ(x+). However, in

the case where 0 < γ < 1, we have to calculate this quantity by approximation:
∂F
∂L ≈ (∆L)−1(F (L+ ∆L)− F (L)).
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4.4.2 Delta hedging procedure

This hedging procedure was used by Fan et al. (2003, 2007); Driessen et al. (2003);
Gupta and Subrahmanyam (2005) and we adapt it to our notation. Since caplets
and floorlets are essentially options on the forward interest rate, they can be hedged
with appropriate positions in the LIBOR forward market
(Gupta and Subrahmanyam, 2005). In practice, they are most commonly hedged
using Eurodollar future contracts, due to the liquidity of the futures markets. A
vanilla call option has a payoff function of (ST −K)+. It can be hedged by shorting
(St − K) since K is just a constant. In a similar way, a caplet which has a payoff
function (LT − H)+ can be hedged by using a FRA which has a payoff function
(LT −H).
Furthermore, a FRA can be decomposed into a short bond P (t, Tk) and a long bond
P (t, Tk+1). In addition, it is also necessary to hedge the long bond which acts as
the discounting factor for the payoff. This discounting factor can be found in the
pricing formula for a caplet. Therefore, in order to hedge a caplet, a combination
of the short and long bond is used.
Referring to the (reference), delta hedging the caplet can be done by building a
self-financing portfolio (Nk

t , ψ
k
t −Nk

t ) consisting of two bonds: P (t, Tk), P (t, Tk+1).
Nk
t = ∂F

∂L should be held in (P (t, Tk)− P (t, Tk+1)) and

ψt =
Ck(t)−Nk

t (P (t, Tk)− P (t, Tk+1))

P (t, Tk+1)
,

should be held in P (t, Tk+1).
In our model, the delta is calculated numerically through finite difference method
by

∂F

∂L
≈ F (L+ ∆L)− F (L)

∆L
(4.2)

In theory, this delta-neutral hedge can perfectly replicate the porfolio but requires
continuous rebalancing. In practice, however, only discrete rebalancing is possi-
ble. The accuracy of a delta hedge depends on how well the model’s assumptions
match the actual movements in interest rates.
In our data, we have caps with a 10 years maturity which consists of 20 caplets
with 0.5 year maturities. Except for the first caplet which is deterministic at the
beginning, we need to invest in 20 bonds P (t, Tk), k = 1, ..., 20 with weights
(ω1, ω2, ..., ω20) calculated as:

ω1 = N1
t , ω20 = ψ19

t −N19
t

ωk+1 = ψkt +Nk+1
t −Nk

t with k = 1, ...18

For each cap, we build the hedging portfolio on the first day and hold it for 5-days.
To assess the hedging portfolio performance, we compare the hedging portfolio
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value after one week with the actual cap price after one week. This new cap, which
is used to compare against the new hedging portfolio value, has a maturity time of
10 years still instead of 10 years less one week. This is because the cap market does
not quote the evolution of the cap price over its term. The reason for using a cap
with the same maturity is that if the volatility and underlying interest rate remains
unchanged, the actual cap price will not change much after one week. Hence, to
calculate the new cap price, instead of using interpolation on the cap prices, we just
use the current term structure of volatilities (from the current prices of caps/floors)
and put them into the pricing formula to calculate the current cap prices. This
hedging procedure was used by Fan et al. (2003, 2007); Driessen et al. (2003); Gupta
and Subrahmanyam (2005).
The hedging portfolio value will change due to changes in the bond prices. In our
research, we only have data of bond prices for a fixed term. This means that we
do not have prices of bonds with 1 year to maturity on day 1 and bonds with 1
year less 1 week to maturity after one week. Therefore, to overcome this problem,
we used interpolation to calculate the price of bonds with maturity time being the
original maturity time less 1 week. This is calculated as:

log

{
P

(
t+

1

50
, Tk − 1

50

)}
= log

{
P

(
t+

1

50
, Tk−1

)}
× 1

50
+ log

{
P

(
t+

1

50
, Tk

)}
× 49

50
.

(4.3)
For a hedging portfolio on the first cap, we record the P&L after a week. So on day
2, we compute the new hedging portfolio. Then 1 week after day 2, a new portfolio
value and a new cap price is calculated. The difference is then again recorded as
P&L.
For comparison purposes, we also computed the unhedged position to assess the
relative performance of hedging. This is done similarly to the hedging strategy. The
only difference is that instead of investing in a delta hedged portfolio, the value of
the cap is simply put into the bank account to earn simple interest. Therefore, after
1 week, the difference between the value in the bank account and the new cap price
is recorded as P&L for unhedged portfolio.
In our research, we repeat this procedure over 2 years and record the P&L for the
hedging portfolio PLhedged(i) and unhedged portfolio PLunhedged(i) on the i-th day.
To assess the overall hedging performance, we use a hedging-equivalent R2 as a
performance measure. This is calculated as

R2 = 1−
SShedged
SSunhedged

(4.4)

where SShedged is calculated as

SShedged =
∑
i

(PLhedged(i))
2 (4.5)

where i is the day where we calculate profit and loss.
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SSunhedged is calculated as

SSunhedged =
∑
i

(PLunhedged(i))
2. (4.6)

If R2 is closer to 1, this means that the hedging strategy performs well under a
certain model.

4.4.3 Hedging algorithm

Our hedging procedure can be summarised as follows (the subscriptB denotes the
log-normal pricing formula and corresponding implied volatility): V H

0 V U
0 are, re-

spectively, the current values of the hedging portfolio and the unhedged portfolio.
V H
1 V U

1 are, respectively, the values of the hedging portfolio and unhedged portfo-
lio after a week.

Data: 2013 - 2014 EURIBOR Caps market data
Fixing γ and strike H
for day i = 1... do

Calculate the corresponding implied volatility vi;
Initial amount for hedging V H

0 = C0 = market price of cap on day i ;
Calculate (Nk

t ,ψkt ) for each caplet and deriving W = (W1,W2, ...,W20) ;
if First caplet > 0 then

putting corresponding money Cp1 into bank account;
else

No need to hedge
end
Build unhedged portfolio V U

0 = C0, i.e., put into bank account to earn interest;
After a week;
Interpolate between the term structure Pinp and the term structure data on day

i+5;
Where Pinp = (P ( 1

50 , T1 −
1
50), ...P ( 1

50 , T20 −
1
50))T ;

Profit and Loss;
PLHedge(i) = V H

1 (Pinp)− CB1 (Pinp, v
B
i+5) = WPinp + Cp1er

1
50 − CB1 (Pinp, v

B
i+5) ;

PLUnhedge(i) = V U
1 − CB1 (Pinp, v

B
i+5) = C0e

r 1
50 − CB1 (Pinp, v

B
i+5);

Calculate the R2.
end
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Chapter 5

Results on EURIBOR data

In this section, we focus on presenting the numerical results and performances of
the different approaches on the EURIBOR dataset.

5.1 Daily calibration with cap prices

The estimation was done through minimising the squared errors between the ac-
tual cap prices and prices obtained using the optimum parameters across all the
strikes. L-BFGS-B optimising function was used to minimise the squared residuals
but there were computational difficulties due to a lack of data.

Remark 9. Minimising the error sum of squares function is a difficult problem numerically
as we only have three prices to work with, making the error very small in any case. To
resolve this, we re-standardise this function with the Euclidean norm of the true prices and
multiply by 106.

The plots below show the different gamma values that were obtained through daily
calibration.
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Figure 5.1: CEV parameters fitted each day on three cap prices with strikes H1 =
1%, H2 = 1.7% and H3 = 2%.

Minimum Lower quartile Median Upper quartile Max
γ 0.1905 0.4194 0.4632 0.5003 0.6437
σ 0.0155 0.0412 0.0486 0.0573 0.1099

Table 5.1: Distributional summaries of daily-fitted parameters (γ, σ).

The table above shows the quantiles for the γ and σ. The daily calibration suggest
a γ between 0.2 and 0.64, a σ between 0.016 and 0.11. The sample mean for the γ
is 0.45 and 0.05 for σ. This suggests that if there exist single γ and σ parameters
which price the CEV model across different strikes, the parameters should be close
to the values obtained above. As expected, we conclude that daily calibration to
the market skew is useful as the market dynamics seem non-stationary as γ grows
with time.
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Figure 5.2: LHS: Scatter plot of daily calibrated (γ, σ) on market skew with fitted
parametric exponential model σ(γ) = exp{θ1γ + θ2} with (θ1, θ2) = (4.224 (1.1e −
2),−4.971 (2.4e − 2)) (standard errors in parenthesis and R2 = 0.98 on log-scale).
RHS: CEV diffusion coefficient γ 7→ γLγ where we fix L to have the value of the
ATM strikeH = 0.175; the linear regression yields an intercept of 6.91e−3 (8.4e−5)
and a coefficient of 1.36e− 3 (1.83e− 5), which is about 7 times as small.

In Figure 5.2, the scatter plot shows the exponential shape of σ as a function of γ
which seems to be a reasonable fit. This is complemented with a computation of
the fitted diffusion coefficient σLγ as a function of γ. This is shown to be constant
across time and values of γ. This is an essential result as it shows that the CEV
model can be adapted to fit market data daily whilst keeping its stationarity with
respect to volatility.
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5.2 Calibration via parametric inference

The BFGS optimisation routine was used to perform the minimisation which
yielded results for the strike H2 = 0.0175.

Figure 5.3: Parametric inference via error sum of squares for CEV, normal and log-
normal models on one year of data and inference on the second year for the cap
with strike K2 = 0.0175.

We complement Figure 5.3 by calculating three performance measures: the mean
average percentage error (MAPE), the coefficient of determination R2 (percentage
of explained variance) and the proportion of correctly predicted price movements.
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MAPE R2 PM
CEV (γ = 0.49) 2.76% 98.9% 86%

Normal 6.71% 97.8% 86%
log-normal 6.46% 97.4% 86%

Table 5.2: Performance metrics for out-of-sample data with strikeK2 = 0.0175 (one
year worth of data).

We observe that both from Figure 5.3 and Table 5.2, the best model is the CEV
model on out-of-sample data.
Note that although the three models have the same performance with respect to
price move prediction, they do not always agree on that for a particular day.

5.3 Calibration via level-dependence minimisation

5.3.1 Results

Using the EURIBOR data and as featured in Figure 2.1 and Figure 5.4, we observe
negative correlation between changes in implied volatilities and changes in the
interest rate for the log-normal model. On the other hand, the normal is charac-
terised by a small, yet significant, positive correlation between those aforemen-
tioned quantities.
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Figure 5.4: For in-the-money strikeH1 = 0.01, positive correlation is showcased be-
tween changes in implied volatilities and changes in the underlying for log-normal.
Normal implied volatilities are positively correlation to change in the underlying.

The fitting procedure found that it would reach its optimal solution by finding the
smallest value of γ one would allow. Indeed, Figure 5.6 with γ = 0.002 found a
minimal correlation of −3.21%. Although this seems to be indicating that the cor-
rect model with respect the volatility level-dependence should very close to the
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normal model. However, one notices the discontinuity this implies for the correla-
tion as it should jump from slightly negative to positive as it reaches zero.
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Figure 5.5: For in-the-money strike H1 = 0.01, γ close to 0 seem to be adjusting for
level-dependence.

5.3.2 Interpretation

It remains to explain the discontinuous behaviour of the CEV model as γ → 0.
Consider the CEV equation

dL(t) = σL(t)γ︸ ︷︷ ︸
diffusion coefficient

dW (t), t ≥ 0.

The diffusion coefficient is σL(t)γ for γ ≥ 0. In particular, for γ = 0, we have

dL(t) = σ × 1× dW (t), t ≥ 0.
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Figure 5.6: Discontinuity in the diffusion coefficient.

The discontinuity at L = 0 of L 7→ Lγ as γ approaches 0 involves that the underly-
ing always play the role features in the log-normal model albeit in a less impacting
way. This is the fundamental difference between any CEV model with γ > 0 and
the normal model. This is particularly difficult to diagnose given implied volatility
data since implied volatility does behave smoothly as γ → 0 (Figure 3.5); which is
explained by the scaling role σ has in the diffusion coefficient which is continuous
with L.
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5.4 Calibration via hedging

In this part, we are going to present the results from implementing the delta hedg-
ing procedure to calibrate the parameter γ such that the profit and loss (P&L) of
the hedging portfolio reaches its minimum.
In order to check whether our hedging algorithm works, we use the hedging algo-
rithm described in Section 4.4.2 but with a slight difference. The difference is: after
a week, instead of using CB1 (Pinp, v

B
i+5), we are now using CCEV1 (Pinp, vi).

The reason being, if the volatility remains unchanged for a week, then we would
expect the delta hedging to almost perfectly catch the change in the underlying
term structure in short term (a week in our case). Then the hedging R2 should be
around 99%. The reason for theR2 not being 100% is that there exists discretisation
error. If we delta hedge daily rather than weekly, then R2 will increase closer to
100%.

LNM H1 H2 H3

Hedging test 99.94% 99.87% 99.78%
Real Hedging 92.72% 81.72% 59.60%

CEV H1 H2 H3

Hedging test 99.93% 99.85% 99.77%
Real Hedging 95.01% 89.69% 77.87%

NM H1 H2 H3

Hedging test 99.86% 99.77% 99.68%
Real Hedging 95.14% 90.33% 79.22%

Table 5.3: Hedging results for both the testing procedure and its optimal perfor-
mance.
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Figure 5.7: Hedging R2 for CEV model with respect to γ

In table 5.3, we could compare those results in the column, it seems that the normal
model always performs the best, and the log-normal model always perform the
worst. The CEV performance is in between the two models.
As we can see from the above figures, the R2 in the three cases tends to increase
when γ ∈ (0.1, 1) decreases. However, the R2 keeps increasing when γ decreases
in (0.01, 0.1). We haven’t investigated the limited distribution of the CEV model
when γ ∈ (0, 0.01). There seems to be a jump when setting a gamma close to 0. The
results shown in the table for CEV are achieved by setting γ = 0.01.
Of the three strikes, only the normal model flattens the market skew the most which
indicates there is almost no level-dependence between the underlying and normal-
implied volatility. In other words, for the normal model, the change in the volatility
mainly comes from randomness rather than coming from the change in the under-
lying. The hedging performance is therefore the best for the normal model
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Figure 5.8: Price of caplet and Underlying movement

Sum of square (×104) H1 H2 H3

Delta Hedging (log-normal) 6.878100 9.516891 11.32189
Delta Hedging (CEV) 4.707577 5.362554 6.200317
Delta Hedging (normal) 4.584600 5.031673 5.824122
Cash Hedging 94.51882 52.06307 28.02997

Table 5.4: Statistics from hedging R2

It is also worth noting that no matter which model we are using, the hedging per-
formance for caps of strike H3 is always the worst.
From figure 5.8, we could see that the underlying is actually decreasing from around
the 200th day to the end. Hence, it is clear that for most of the time, the caplet with
StrikeH1 stays in the blue part of the right hand side plot. Although, price changes
can be caused by both changes in the underlying and the volatility, in the short
term the price change caused by underlying movement is much more significant
than volatility movement.
On one hand, for the caplet with strike H3, it will stay in the red part of the plot
for most of the time. The delta in this case, is almost 0, hence price changes in the
caplet mainly come from the change in the volatility. Hence in this case, the delta
hedge is not going to hedge the change of price caused by volatility movements.
As a result, from table 5.4, the cash-hedge performs much better (sum of squares
decrease) as the strike increases from H1 to H3. and the delta-hedge performs the
worst.

37



Chapter 6

Conclusion

In this report, we explored the CEV model for caps as featured in Andersen and
Andreasen (2000) through the lens of volatility level-dependence. The latter is the
effect of an increase in the underlying on implied volatility motivated in (Piazzesi,
2010, Section 7.7) or (Filipovic et al., 2017, Section IV. G) and which is a mispeci-
fied feature of the normal, CEV and log-normal models. Given EURIBOR cap price
data, we observed a significant negative correlation between changes in volatility
and changes in the forward rate for the log-normal case - which has strong posi-
tive volatility level-dependence. On the other hand, the normal model is charac-
terised by the absence of level-dependence and we observed a positive correlation
between the two aforementioned quantities. The CEV does provide a flexible link
between those two models and provides close to no correlation.
To this regard, we calibrate the CEV model according to three different approaches.
The classical market skew fit using daily implied volatilities across strikes does not
take volatility level-dependence into account and the resulting model does fea-
ture significant ill-specified behaviour as it overestimates the impact the underly-
ing has.
Purpose-built calibration approach such that the level-dependence minimisation and
effective hedging methodologies do provide alternatives and agree on their recom-
mended values of the CEV parameter.
However, the fitted CEV parameters with respect to level-dependence are very
close to zero with the EURIBOR dataset and we explain this by the discontinu-
ity at L = 0 of L 7→ Lγ as γ → 0. Although the marginal effect of the underlying
on the diffusion coefficient becomes small, this discontinuity is very much present
between the CEV and the normal model.
We also do the calibration by minimising the delta hedging error. For three differ-
ent strikes, the log-normal model is as we expected from the previous part results
that it overemphasises the relationship between the underlying and volatility, and
hence is the worst performing model with respect to the hedging error. The normal
model, on the other hand, shows little and even no-level dependence in the market
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data and hence performs the best in the hedging results. Then, we confirm that
the CEV model can adjust the level dependence between underlying and volatility
by tuning the parameters γ, which is shown by the changing R2 with respect to γ.
Finally, discontinuity also appears in the hedging results such that it seems to have
a jump between CEV model with γ ∈ (0, 0.01) and normal model.
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Chapter 7

Further Research

From the results, we know that our dataset shows little volatility level-dependence
for the normal model. As next step, we could investigate even lower interest
rate markets to check whether CEV model does feature to same asymptotic be-
haviour as γ → 0 with respect to volatility level-dependence. Finally, we may try
other models with different modelling methods on the level-dependence. More
specifically, stochastic volatility models might be better suited to handle level-
dependence as one would define extra degrees of freedom which could offset the
re-balancing behaviour between volatility and the underlying as studied in this
report.
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1 Introduction

Climate risk poses a significant long-term risk for the financial industry. Many sec-
tors are either directly or indirectly exposed to the effects of rising global
temperatures, ranging from high losses for the insurers of natural disasters (grow-
ing by 30% annually) to the potential plummet of carbon-intensive asset values.
Along with these risks, there is a substantial need for funds in order to migrate to a
low-carbon environment. The most recent value for global climate finance is $455
billion, whereas required annual investment ranges from $450 billion to $2,000 bil-
lion by 2035 in order to reach the desired 2°C temperature increase above
pre-industrial emissions (the goal of the 2015 Paris Agreement).

There are thus 2 key aspects to this problem: The actions needed to manage cli-
mate risks, and the funding needed to finance such actions. In order to assess these
fundamental aspects, we make use of a stock-flow consistent integrated assessment
model (IAM), which is a model that incorporates various elements from different
spheres into a single model. This paper will focus on analysing the effect of differ-
ent financing strategies on (i) debt accumulation and (ii) global warming.

Previous IAMs have assumed private debt as an aggregate of bank loans, but in
this report we examine the effect of another financing tool in transitioning to a
low-carbon economy, namely green bonds, which are bonds used for green
purposes. Green bonds, which have a rapidly growing issuance and increasing de-
mand, add another form of debt to the model at a different return to bank loans.
Given that green bond funds are to be used in reducing greenhouse gas (GHG)
emissions, they also play a role in abatement costs (costs of reducing emissions),
and further affect total nominal profit in the productive sector, which impacts real
investment. There is, thus, a significant interplay between components of the
model due to the addition of these green bonds. It is therefore worthwhile to
assess the effect of certain parameters on debt and average temperatures. These
parameters are: the convexity of the abatement cost function θ, the rate of decline
of backstop technology prices δpBS , and the spread between the rate of returns on
green bonds and bank loans. Further assessments are done on three key policy
mechanisms: Carbon Tax, which is advocated by the Stern-Stigltiz Commission;
Public Subsidies, which are recommended to be implemented with Carbon Taxes
by the High Level Commission on Carbon Pricing; and a Cap-and-Trade System.
The methodology is consistent with that done by Bovari et al. (2018b).

We conduct sensitivity analyses on these three parameters, and a scenario analy-
sis with these policy tools to assess the effect on remaining below a threshold of
2°C above pre-industrial emissions and a debt-to-output ratio of 2.7 (the threshold
when aggregate equity in the private sector approaches zero, with correspondingly
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high probability of systemic default) (Feenstra et al., 2015).

The report is organised as follows: Section 2 provides an overview of the important
risks of climate change along with information on current decarbonisation strate-
gies. Section 3 will review the current landscape of green finance with particular
attention to green bonds. Section 4 provides a review on hedging strategies found
in recent literature and in practice. Section 5 is an outline of the original Integrated
Assessment Model used in Bovari et al. (2018b) which forms the base of our method-
ology. Section 6 then presents the modifications to this model along with results
from scenario and sensitivity analyses. Main conclusions and recommendations
for future research are provided in the last section.

2 Risks and Mitigation

2.1 Risks of Climate Change

Financial institutions are facing significant risks due to climate change. These risks
can be summarised into three key channels: risks that arise from the physical im-
pact of climate change; risks that arise from devaluation of assets; and risks related
to the transition to a low-carbon economy.

2.1.1 Physical

The most apparent physical risks that are associated with climate change are caused
by extreme weather events such as droughts, floods and earthquakes. Almost ev-
ery sector is susceptible to short- and long-term physical implications, likely re-
sulting in huge financial losses. These implications include possible damage to
inventory, equipment, agriculture or infrastructure; disrupting the production pro-
cess.

Climate-related disasters occurring in 2017 amounted to losses valued at $320 bil-
lion (GCEC, 2018). It is, therefore, in the best interest of the economy as a whole
to impede the rising global temperatures, which in turn lowers the probability of
such extreme weather events.

A further consequence relates to insurance and coverage. A rise in the frequency
of naturally-
occurring disasters related to climate change leads to an increase in premiums and
deductibles. Insurers and reinsurers may also decide to adjust the terms of cover-
age based on which areas are more subject to severe weather (Gardiner and Asso-
ciates, 2011).
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Not all physical risks are directly related to the market. Climate change can pose
a risk not only to human health, but to the ecosystems. It is difficult to quantify
the potential loss associated with non-market-related risks, however each one in-
directly affects the market, and thus the economy. The Intergovernmental Panel on
Climate Change (IPCC) reports that a 4°C increase in global temperatures will lead
to damages accounting for 1-5% of GDP.

In our model, we define the total damages function, D, as the sum of the distri-
bution of damages over output, DY , and the distribution of damages over capital,
DK :

D = DY + DK (1)

= 1− 1

1 + π1T + π2T 2 + π3T ζ3
, π1, π2, π3 ∈ R (2)

DY = D−DK (3)

DK = fKD (4)

where fK represents the share of total damages corresponding to the capital.

2.1.2 Stranded Assets

In order to keep climate change in accordance with the Paris Agreement of a 2°C
target limit above pre-industrial temperature levels, a large portion of current fos-
sil fuel reserves must remain unused. New governmental regulations around GHG
emissions, or a decrease in the demand for fossil fuel reserves will cause these as-
sets to lose value. It is for this reason that companies are being encouraged to
disclose any risks to which they may be exposed due to climate change.

Stranded assets pose possible systemic implications: an abrupt adoption of greener
policies may have a destabilising effect on the economy. The Global Commission
on the Economy and Climate estimated a potential loss of $12 trillion in stranded
fossil fuel assets by 2035, compared to the $250 billion loss in stranded mortgage as-
sets in 2008. Minimising this risk can be achieved by a slow and smooth transition
to a low-carbon economy.

2.1.3 Transitional

There are several repercussions that industries and investors face as a result of the
subsequent transition to a low-carbon economy. These include regulatory risks,
and mitigation and
adaptation costs.

Climate change is a major problem that should be addressed immediately and
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earnestly.
Implementing several abatement strategies concurrently is likely to have the most
promising outcome. The challenge then becomes how to transition to a low-carbon
economy without jeopardising the global economy. As the risks of climate change
become more noticeable, industries will have to start allocating a portion of their
capital to backstop technologies and renewable energy. In the DICE model, Nord-
haus showed that abatement costs, A, vary with the price of backstop technology,
as well as the emission reduction rate, as follows

A =
σpBSn

θ

θ
, θ > 1 (5)

where pBS is the price of backstop technology; n is the emission reduction rate; and
θ controls the convexity of the costs.

Currently, there is a lack of stringent global policies regarding carbon emissions.
In fact, according to (Andersson et al., 2016), investors with low-carbon portfo-
lios are projected to benefit financially more than those with standard portfolios as
soon as the market begins to regulate CO2 emissions. Thus, there are also potential
losses associated with not anticipating the transition, and acting accordingly.
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2.2 Decarbonisation Strategies

As climate change continues to present an increasing problem for the global econ-
omy, various researchers and economists are probing into potential methods of de-
carbonisation. These include, but are not limited to, energy conservation, carbon
pricing, carbon mitigation, and transitioning to other, environmentally-friendly
sources of energy.

Pollution that occurs as a result of transportation could be reduced by switching to
electric vehicles or other modes of transportation with minimal negative environ-
mental effects, as well as increasing energy efficiency to reduce usage. The transi-
tion to renewable energy sources such as hydro-, solar and wind power; while safer
for the environment; can be costly and prove difficult to execute on a global scale.
Unfortunately, current levels of research and development in renewable energy
are relatively low, despite the International Renewable Energy Agency (IRENA)’s
claim that renewable energy coupled with energy-efficiency improvement strate-
gies could account for up to 90% of emission reductions by 2050.

Conserving energy is easily implementable; it simply involves the preservation of
current resources, as well as investing in energy-efficient technology. The down-
side of this strategy is the cost of conversion to the aforementioned technology,
which requires capital (at least $50 billion of new capital by 2020 to allow changes
beyond the energy sector (GCEC, 2018)). Furthermore, it is not easily enforceable
and does not fully place the burden on the sectors that cause the most pollution,
but rather on the economy as a whole. On the other hand, introducing a penalty
on carbon dioxide emission (carbon pricing) aids in decreasing global emissions by
decentivising the use of CO2-emitting technologies and making cleaner
technologies a more appealing investment, particularly to said sectors. Carbon
pricing typically
falls into two categories:

1. Cap-and-trade system.

2. Carbon tax.

The former involves enforcing a cap on the volume of CO2 emissions. This is done
by creating CO2 permits and distributing them to the various industries. A permit
is required for every ton of CO2 emitted; enabling some industries to sell their ex-
cess permits, given that they are able to reduce their level of emissions. Moreover,
industries that exceed their permissible CO2 emissions have to buy the excess per-
mits from other industries, hence the term “cap-and-trade”. This system presents
a problem in the form of how to allocate the permits. The EU Emissions Trading
Scheme has faced scrutiny regarding the effectiveness of its cap-and-trade scheme,
with critics claiming that the permit allocation scheme was too lenient (Sterner and
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Köhlin, 2015). In the first two years of the initial implementation (2005-2007), emis-
sions reduced by 2.4-4.7% (Muûls et al., 2016). However, the European price of
carbon has dropped significantly from €30 in 2008 to under €5 in 2016. There is a
trade-off between the price of the permits and the severity of the cap: if the cap is
too low, then the price of permits will skyrocket; whereas if the price of permits is
kept low, then the cap will have to be less strict. As a consequence of the latter case,
carbon emissions would not be significantly reduced.
Proposing a tax on carbon is arguably one of the most efficient and easy ways of
regulating CO2 emissions. We define the payment of carbon tax, pTf , as

pTf = ppcEind (6)

where p and pc are the price of commodities and carbon, respectively; and Eind is
the industrial emissions level (defined in Equation (23)).

Carbon pricing is currently, or will be, in effect in over 70 countries and jurisdic-
tions globally. Carbon pricing initiatives account for approximately 20% of global
GHG emissions. While this figure is an improvement on the 15% coverage in 2017,
half of these jurisdictions have policies that charge less than $10/tCO2-e (GCEC,
2018). According to a report released by the High-Level Commission of Carbon
Prices, meeting the 2°C target demands that major economies (i.e. G20 countries)
impose a carbon tax of at least $40-80 by 2020; and $50-100 by 2030. These figures
are based on the Effective Carbon Rate, which is the culmination of taxes on fossil
fuels, carbon taxes, and estimated prices of pollution permits.

The carbon pricing gap measures the difference between the benchmarka prices
and the actual carbon prices per percentile of emissions. The following table com-
pares the 2015 carbon pricing gap for a select number of countries.
The carbon pricing gap measured against the EUR30t/CO2 benchmark was 76.5%
in 2018, compared to 79.5% and 83% in 2015 and 2012 respectively. Hence, the car-
bon gap has decreased by 3% since 2015 and 6.5% since 2012. Although the price
of carbon is rising over time, assuming the carbon pricing gap continues to fall at
its current rate of ±1%, carbon costs would only equate to the benchmark prices in
2095. (OECD, 2018).

Unlike the cap-and-trade system, a carbon tax will encourage industries to con-
tinue to look for ways to reduce their CO2 emissions, rather than just reduce them
enough to meet the cap. This also ensures that the sectors responsible for the most
pollution get charged the most. The revenue from the tax could then be invested
in research into more effective decarbonisation strategies, or green technology. The

aTwo benchmark prices are applied; the EUR30t/CO2, a low-end estimate of current carbon
prices; and the EUR60t/CO2, a low-end estimate of carbon prices in 2030 and a midpoint estimate of
carbon prices in 2020.
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Country Carbon Pricing Gap (%)
Switzerland 27

Norway 34
United Kingdom 42

Germany 53
Sweden 63
Canada 65
Mexico 68

United States of America 75
South Africa 89

China 90
Russia 100

Table 1: Table depicting the carbon pricing gap in 2015 (%)

price of backstop technology decreases according to

˙pBS
pBS

= δpBS < 0 (7)

The 2018 costs of various backstop technologies, as well as their respective changes
in price, are tabulated below (IRENA, 2019).

Global Weighted-Average
Cost of Electricity

(USD/kWh)

Decrease in the
Cost of Electricity

2017-2018 (%)
Bioenergy 0.062 14
Geothermal 0.072 1
Hydro 0.047 11
Solar PV 0.085 13
Offshore wind 0.127 1
Onshore wind 0.056 13

Table 2: Table depicting the 2018 prices of renewable energy and the percentage
change in price

It should be noted that if the carbon tax is set too low, then the respective industries
will simply pay the amount owed and not waste any resources on transitioning to
eco-friendly technology. Many decarbonisation strategies are most effective when
used in conjunction with one another; for example, a carbon tax may lead to an
increased investment in green technology. However, this does not affect the cur-
rent emission levels. In other words, although the economy is moving towards a
greener means of production, we still need to address the current pollution prob-
lem, by way of carbon mitigation.
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Cumulative carbon emissions totalled 545GtC* between 1870 and 2014, with the
current CO2 concentration in the atmosphere averaging approximately 400ppm**

(McGee, 2019). The graphs below illustrate global CO2 emissions from 2000-2018;
and the respective percentage of total CO2 emissions induced by several countries
(Wang, 2019), respectively.

Figure 1: Global CO2 emissions from 2000-2018 in billion tons per year

The graph in Figure 2 pinpoints China and the USA as the primary contributors to
worldwide CO2 emissions. Given the ongoing increase in emissions, it is clear to
see that carbon mitigation technology is essential.

*Gigatons of carbon
**Parts per million
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Figure 2: Worldwide CO2 emissions in 2017

Carbon capture and storage (CCS) is a geoengineering technology that allows for
negative emissions. CCS technology can capture up to 90% of CO2 emissions in a
plant (Leung et al., 2014). The process involves three steps:

1. Capture CO2.

2. Transport CO2.

3. Store CO2 emissions/reuse carbon industrially.

Naturally, CCS technology has its limitations. Once captured and transported, the
CO2 is typically stored several hundred metres below the ocean. While this method
of storage could keep the CO2 contained for extended periods of time, there is a
risk of ocean acidification, which may have adverse effects on the marine ecosys-
tem (Leung et al., 2014). There are several global projects that make use of a CCS
system presently. However, it is estimated that over 3000 CCS projects need to be
initiated by 2050 in order to meet the 2°C limit. This, of course, places a further fi-
nancial burden on the economy. It is estimated that the current cost of a CCS plant
is $60/tCO2; and that by 2025, the cost will reduce to $40/tCO2(Institute, 2019).
These figures form part of the mitigation costs.

Research into other breakthrough technologies is underway, with nuclear fusion
energy a strong contender, provided it can be made cheap and scalable. Fusion,
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the energy that powers the sun, is produced when two light atoms (hydrogen) fuse
into one another under intense pressure and temperature. Recreating the condi-
tions necessary for the atomic nuclei to coincide and fuse is not an easy task; the
main challenges arise from the cost and complexity required. Presently, nuclear
plants can only produce fission energy. Radioactive waste is a byproduct of fission
energy, whereas generating fusion energy results in a non-toxic inert gas (helium).
Consequently, radioactive waste is not a risk associated with nuclear fusion. Once
technology has evolved enough to allow us to harness this type of clean energy on
a large scale, nuclear fusion could prove to be the long-awaited, long-term solution
for mitigating climate change.

The debate on which means of decarbonisation is the most cost- and energy-efficient
is still up for discussion. However, there is a serious lack of funding required to fi-
nance the changeover to a low-carbon economy. It is estimated that between $9
and $40 trillion will need to be invested in green infrastructure by 2040; close to
half of the entire current stock of capital, which was estimated to be $84.4 trillion
in 2018. (GCEC, 2018). Considering that global green investment in 2018 totalled
$332.1 billion, it is clear to see that there is a significant funding gap. Furthermore,
the United Nations Environment report states that adaptation costs could leap to
$280-500 per year by 2050. Adaptation costs are set to escalate rapidly unless fer-
vent efforts are made to regulate climate change in the near future. Thus, in terms
of our model, the cost of abatement will increase as a result.

3 Green Finance

Green Finance is a broad term which encapsulates a large system of cash-flows
related to environmental sustainability goals. It refers to the flow of funds into:
public and private green investments, the financing of policies, and the financing
of financial instruments with all of these aimed at the mitigation of environmen-
tal damages and to the promotion of environment friendly initiatives (Lindenberg,
2014).

Table 3 below provides a breakdown of funding towards climate change mitiga-
tion in recent years as per the Climate Policy Initiatives Organisation 2018 Finance
Update (Oliver et al., 2018).

3.1 Public Funding

Public funding can have a huge impact on climate change and the world economy.
It is affecting climate change in two ways: on the one hand by supporting renew-
able energy, and on the other hand by the still-existing subsidies on fossil fuels. In
the year 2016, subsidies for renewable power generation amounted to $140 billion,
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Actors 2015 2016
Private 267 230
Commercial FI 54 42
Corporates 46 28
Households 39 44
Institutional Investors 3 2
Private Equity 2 1
Project Developers 124 113
Public 205 224
Governments and their agencies 17 19
Climate Funds 2 3
Public FI (Bilateral) 17 14
Public FI (Multilateral) 44 48
Public FI (National) 124 140
Total 472 455

Table 3: Breakdown of global and private investment (USD Billions)

with most of them issued by developed countries, while most fossil fuel subsidies
were in developing countries (International Energy Agency, 2017). According to
the IEA, the net fossil fuel subsidies sum up to $493 billion. In fact, the subsidies
and damages of fossil fuels accumulated to 6.3% of the world GDP in 2015 accord-
ing to the IMF. The same study predicts that by pricing fossil fuels optimally; by
cutting all subsidies; and imposing a tax on CO2 that covers the losses from the
damages of fossil fuels, the global CO2 emissions could decrease by 28% (Coady
et al., 2019).

3.2 Green Bonds

In 2006, the Swedish pension fund was looking for an easy way to invest in sus-
tainable projects. Together with the World Bank, they developed the green bond, a
financial instrument that works just like a normal bond except that it has dedicated
funding (Bank, 2019). So what is a green bond? Or in other words: what classifies
a bond to wear the green label? Since there is no regulation in place, there is no
clear definition in most major markets. Several approaches have been brought for-
ward where the (probably) most important ones are the Green Bond Principles; the
CICERO shades of green; and the Climate Bonds Initiative criteria. Even though
no certification is required, 89% of the bonds labelled as green do have some sort
of certification (Filkova et al., 2019). Today, the total value of outstanding green
bonds is $644 billion with an expected issuance of $200 billion in 2019. Whilst the
market issuance has been growing rapidly in the past from only $2 billion in 2012
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to $168.5 billion in 2018 (Filkova et al., 2019), the demand is still high as indicated
by the bid-ask-spread of green bonds being about 10bps tighter than for compara-
ble non-green bonds (Harrison, 2019), and the yield being 7bps lower on average
Pronina (2019).

Year 2012 2013 2014 2015 2016 2017 2018 2019 (proj)
Green Bonds Issued($bn) 2.0 11.0 36.6 41.8 81.0 155.5 168.5 (250)

Table 4: Number of green bonds issued each year (https://www.climatebonds.net)

Recent studies looked for a mathematical explanation for this phenomenon and
found a simple justification similar to the CAPM: Let us assume that there are two
types of investors in the market. The first one is the classical mean variance max-
imiser, i.e. following the utility function

wt1r −
γ

2
wt1Σw1

with w1 the portfolio weights, r the returns of the assets, γ the risk aversion param-
eter, and Σ the covariance matrix. The second one is also looking at the environ-
mental impact, e, of the assets where a positive value of e corresponds to a positive
environmental impact. Therefore the utility function is

wt2r + wt2e−
γ

2
wt2Σw2.

Simple optimisation gives us:

w∗1 =
1

γ
Σ−1r

and
w∗2 =

1

γ
Σ−1(r + e).

Rewriting these formulas gives us

r = γΣw∗1

and
r = γΣw∗2 − e

respectively. Now, the investors have a capital of a1 and a2 which they invest ac-
cording to their preferences. The total market return is then

r =
a1

a1 + a2
γΣw∗1 +

a2
a1 + a2

(γΣw∗2 − e)

=
γΣ(a1w

∗
1 + a2w

∗
2)

a1 + a2
− a2e

a1 + a2
.
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This enables us to conclude that assets with a positive environmental impact have
a lower return (Baker et al., 2018). This gives an incentive for investors to finance
their green projects with green bonds and also shows why the demand is not met
(Zerbib, 2018). We will use this in the implementation to justify a spread between
the rate of green and normal bonds and that we need not consider lack of demand.
It is worth mentioning that, besides green bonds, green loans for smaller compa-
nies and individuals also exist. Similar to green bonds, they follow the green loan
principles and are usually monetarily beneficial for the recipient†.

†https://www.bbva.com/en/the-green-loan-principles-updated-to-offer-a-wider-range-of-
sustainable-products
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4 Hedging Climate Change

Due to high uncertainty around climate change, there are risk factors which can
affect financial parties. Financial players face exposure to physical impacts, for
example, insurers correctly need to model, price and reserve funds for natural dis-
asters and extreme weather events. If not, insurers suffer severe losses such as the
full economic loss of $340 billion that arose from natural disasters in 2017 (the high-
est recorded figure) (IAIS, 2018). Another example is businesses directly exposed
to carbon intensive assets. Another risk comes from exposure to carbon intensive
firms and industries. Carbon Delta estimates that the coal industry faces $221 bil-
lion in losses by 2050. Investors, such as pension funds and asset managers, also
face possible losses from stranded assets, which is projected to be $12 trillion in
2035 for fossil fuel assets. It is therefore important for such parties to protect their
financial positions. In this section, we introduce several strategies suggested in
recent literature and examine current schemes of well-performing investors.

4.1 Mitigation and Adaptation Investment

Two types of investments have been proposed in recent literature: mitigation in-
vestment actions and adaptation investment actions. Mitigation actions involve
investments which are linked to the reduction of GHG emissions and an increase
in exposure to the low-carbon economy (IIGCC, 2015). Therefore mitigation can
include:

• Direct investment into environmentally-sustainable infrastructure and projects,
which can further reduce the price of backstop technologies, that are found
in the model.

• Divestment from stranded assets.

• Divestment or minimisation of exposure to sectors and companies with high
carbon footprints.

• Portfolio optimisation and regression techniques for carbon efficiency.

Such actions which spark more funding into renewable energy are also likely to
reduce the price of backstop technologies in the future. Adaptation actions involve
the reduction of an entity’s vulnerability to the physical effects of climate change
(IIGCC, 2015). In implementing mitigation strategies, investors implicitly make
use of adaptation finance. Therefore adaption investment can include:

• Investments into financing tools such as green bonds, green funds, equities
in green companies and green ETFs. Green Exchange Traded Funds (ETF)
are investment funds which can be traded on an exchange and are based
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on companies involved in the support and development of environmentally-
friendly technology. Many green ETFs focus on sources of renewable energy
such as wind energy, solar energy and nuclear energy. Therefore these funds,
much like standard ETFs, provide a method for investors to diversify their
portfolios across green sectors. This also allows investors to gain exposure to
the green economy, which is a common approach found in practice.

• Partnerships with development banks, which are banks that can provide fi-
nancing to developing groups who often have higher exposures to climate
risks and struggle to adapt.

Mitigation actions have been more popular with only 5% directed to adaptation
finance in 2016 (Oliver et al., 2018). This is because it is often easier to measure the
mitigation of emissions than to quantify the long-term impact of climate change.
Indeed in Engle et al. (2019), it is discussed that choosing the correct index for a
news source to hedge climate news is non-trivial and subjective. However, adap-
tation investment is vital as there are many financial sectors with more exposure
to geophysical risk events, such as agriculture and the insurance industry. These
risk events are due to extreme weather events such as floods, hurricanes, and
heat waves. For insurers, current losses are estimated to be approximately 0.5%
of global GDP which amounts to $400 billion; losses are expected to increase by
6% annually. The United Nations Framework Convention on Climate Change also
estimates that these losses can grow to 1-1.5% of GDP by 2030 (Liska and Holley,
2014). So far, most financial institutions hedge climate risk by reducing portfolio
exposure to carbon-intensive firms, but recent literature recommends to go a step
further by applying optimisation and regression techniques.

4.2 Optimisation Techniques

Andersson, Bolton and Samama (2015) have proposed a dynamic hedging strategy,
for passive investors, which seeks to hedge climate risk without sacrificing returns.
Passive long-term investment strategies often involve the tracking of benchmark
green indices as opposed to tracking standard benchmark indices. These are ei-
ther pure-play indices, which are indices related to environmentally-friendly busi-
nesses, or ’decarbonised’ indices which are
constructed by removing or under-weighting companies with high carbon foot-
prints from benchmark market indices (e.g. NASDAQ 100) (Andersson et al., 2016).
Changes in climate mitigation policies across different nations (e.g. Spain and the
US), and changing expectations regarding delays to carbon limits have worked in
favour of carbon-intensive firms, and this can explain how pure-play indices have
under performed compared with their market benchmarks
(e.g. S&P500). Table 5 below shows the under performance of such indices by con-
sidering the indices that track: the Market Vectors Environmental Services Fund
(PP1) and the Market Vectors Global Alternative Energy ETF (PP2).
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S&P 500 NASDAQ 100 PP1 PP2
Annualised Return 4.79% 11.40% 5.02% -8.72%

Table 5: Pure-play clean energy indices vs global indices 09/01/2015

It has thus been more appropriate to use decarbonised indices in such hedging
portfolios. Decarbonised indices also provide protection against the timing risk of
mitigation policies. This is an important risk, as an investor can decide on tracking
a green index if they believe in a short-term implementation of such policies, only
to have further delays which can result in underperformance (Andersson et al.,
2016). An example of such an index is the S&P 500 Carbon Efficient Index, whose
performance relative to the S&P500 index is shown in Figure 3.
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Figure 3: Comparison of green and standard benchmark index
(source: spindices.com)

Andersson, Bolton and Samama (2015) show how such a decarbonised index is
constructed. Two optimisation schemes which differ by the treatment of compa-
nies with high carbon footprints have been proposed. Let N be the number of
stocks in the benchmark index. Define weights wbi = MarketCap(i)

TotalMarketCap . Let Rg, Rb

be the return from the green index and the return from the standard benchmark
index, respectively. Each company is then ranked in decreasing order of carbon
intensity qil , where l = 1 has the highest intensity (Andersson et al., 2016). The
first approach is then to minimise the tracking error (the standard deviation of the
difference in benchmark and green returns) when the companies with the high-
est intensities are excluded. Say if k are excluded, then the following function is
minimised: minTE = stdev(Rg −Rb) subject to

wgj = 0, j = 1, ..k0 ≤ wgi i = k + 1, ..N

The second approach instead under-weights the companies with the highest inten-
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sities, in which case the first constraint is replaced by the constraint that:
∑N

l=1 qlw
g
l ≤

Q. Both approaches allow us to obtain a decarbonised index, so as then to construct
a decarbonised portfolio through the following:

Minimise √
(W p −W b)′(βΩfβ′ + ∆AR)(W p −W b)

subject to
wgj = 0, j = 1, ..., k and 0 ≤ wgi , i = k + 1, ..., N

(W p − W b) is a vector of differences in the weights of the decarbonised and the
benchmark portfolio respectively. Ωf is the variance-covariance matrix of the risk
factors, ∆AR is a diagonal matrix of risk variances and β is a vector of risk factor
exposures/sensitivities. However, a key concern around this approach is how the
carbon footprints of companies are measured. Inaccurate measurements can place
implicit bias when filtering high-carbon companies.

4.3 Regression Techniques

Instead of applying optimisation algorithms to minimise tracking errors, one can
also apply regression techniques to construct hedging portfolios. In this way, in-
vestors can incorporate climate change news as a new risk factor. Engle et al. (2019)
propose a dynamic hedging strategy using the mimicking portfolio approach. Con-
sider n assets and p + 1 risk factors. Let rt be an n × 1 vector of returns above the
risk-free rate at time t. Asset returns are driven by p risk factors given by νt and by
climate change news CCt. Returns are given by the linear factor model:

rt = (βCCγCC + βCC(CCt − E[CCt])) + βγ + βνt + µt

where γCC , γ are the returns in excess of the risk-free rate for the climate news fac-
tor and other risk factors. The error term is given by µt. In this mimicking portfolio
approach, a regression is conducted on the climate risk factor CCt using excess
returns r̃t given by CCt = ξ + w′r̃t + et (i.e. the climate risk factor is projected
onto these excess returns). The estimated weights, ŵ, are then used to construct the
hedge portfolio.

A set of projection portfolios are then chosen which are well-diversified and have
constant risk exposures to the underlying risk factors. This can be done by sort-
ing assets based on characteristics such that the exposures are dependent on these
characteristics. Hence, a matrix of such firm-level characteristics Zt is chosen such
that r̃t = Z ′t−1rt.
This results in the following

CCt = ξ + w′Zt−1rt + et
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A fundamental aspect of this approach is determining how to construct an index
that measures changes in climate change news. New sources reflect information
that may not be material to investors across sectors. For example, investors ex-
posed to fossil fuel industries may be more concerned with regulatory news, while
investors with exposure to agricultural sectors may be concerned with news on
physical impacts.

Another approach comes in the form of cross-sectional regressions used in the
Fama-MacBeth approach (Engle et al., 2019). Firstly, the risk exposures, βCC and β,
are measured by a time-series regression on their corresponding factors (CCt and
νt respectively). Therefore, the estimates β̂iCC , β̂i for asset i are estimated from the
following time-series regression:

rit = αi + βiCCCCt + βiνt + µt.

Hedge portfolios are then determined via the following cross-sectional regression
of returns

rt = hCCt β̂CC + htβ̂ + et.

4.4 Practical Implementations

The PDC update report 2017 provides key insights into how companies are decar-
bonising their portfolios. The most common approach relies on the exclusion or
reduction of exposure to companies with high carbon footprints such as the Fron-
tera Resources Corporation (FRR), who have excluded companies whose thermal
coal mining business exceeds 20% of those companies’ revenues (PCD, 2017). This
is also coupled with preferential investing into particular sectors and companies
that are involved in decarbonisation technologies such as renewable energy, recy-
cling and electric cars. There is also greater emphasis towards developing the green
investment system. Companies like AP4 have been involved in the development
of low-carbon indices and other products, in the method described above. The
critical finding is that companies do not use a single-track strategy to decarbonise
their portfolio, but instead have a variety of such strategies which are implemented
holistically. There has also been significant improvements to the divestment from
fossil fuels to hedge against stranded asset risks. Figure 4 shows that more than
1000 institutions have divested assets amounting to approximately $8 trillion in
2018.
However, the key problem is the lack of global finance. The UNEP adaption report
also states that $150 billion is required per year in adaption investment by 2035 in
order to meet the 2°C target, while $23 billion was the total amount of adaptation
investment in 2016. Furthermore, the IEA estimated that $2.3 trillion of mitigation
investment is required by 2035 to achieve the 2°C target and total global mitigation
investment finance is $427 billion (Bender et al., 2019).
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Figure 4: Fossil fuel divestment flow and number of committed companies
(source: gofossilfree.org)

5 Stock-Flow Consistent IAM Model

In this section, we provide a brief overview of the ecological macroeconomic model
proposed in Bovari et al. (2018b). This continuous-time model is based on three
main pillars that interact with each other: the monetary macrodynamics, the cli-
mate module, and the damages and mitigation costs which links the former two.

5.1 Macroeconomic Dynamics

This module aims to model the global monetary economy. As a consequence of the
mitigation efforts of climate change, the need for funding coming from the private
sector and some other financial strategies results in over-indebtedness. The main
purpose of this framework is to measure the long-term economic deflation and
degrowth on this scenario.

5.1.1 Production, Damages and Abatement

We assume the productive sector produces a real amount of a homogeneous con-
sumption and investment good which will be denoted by Y 0. This good is gener-
ated by a combination of labour and capital, L andK, respectively, in the following
way

Y 0 =
K

ν
= aL (8)

where ν is a constant that represents the capital-output ratio, and a is the labour
productivity which is assumed to grow exogenously at a constant rate

ȧ

a
= α (9)
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where α ≥ 0 (see Table 8 for value implemented in the model). We assume that full
capital is used and Say’s law is postulated, namely that supply equals demand at
all times.

We further assume that a decarbonisation strategy policy is adopted and a car-
bon tax is paid when CO2-e is emitted as a consequence of the economic activities.
Then the productive sector might engage in abatement strategies to lower its CO2-e
emissions and hence the tax burden is reduced. That is, the productive sector de-
flects directly a proportion, A ∈ [0, 1] (defined in Equation 5), of Y 0 to lower the
CO2-e emissions. Moreover, similar to Nordhaus (2018), a proportion, DY ∈ [0, 1],
(defined in Equation 3) is damaged by global warming and is considered lost. The
production available in the commodity market is then given by

Y := (1−DY )(1−A)Y 0. (10)

In addition, we assume that the public sector subsidises a fraction, sa ∈ [0, 1], of
the abatement cost3. Therefore a real transfer

Scf := saAY
0 (11)

is performed to the productive sector.

5.1.2 Profits, Investment and Inflation

We define the variables: D, Π, p, w, r, pc, Eind and δ according to Table 6.

Variable Definition
D Private debt burden.
Π Nominal net profit.
p Price level.
w Unitary money wage.
r Short-term interest rate.
pc Real price of a ton of CO2-e expressed in USD.
Eind Volume of industrial emissions in GtC.
δ Depreciation rate of capital.

Table 6: Profit, investment and inflation variables

Recall, the payment of the carbon tax, pTf , and the global depreciation rate of cap-
ital, δD are given by

pTf = ppcEind, (12)

δD = δ + DK , (13)
3We analyse in Section 6 different scenarios in which sa ∈ {0, 1/2}
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where DK is the rate of depreciation induced by climate change (defined in Equa-
tion 4). In this report we assume that the carbon price pc is piece-wise linear (see
Figure 5).
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Figure 5: Carbon price path with respect to time (note p = 1 in 2016)

The nominal net profit is then

Π = pY − wL− rD + pScf − pTf − pδDK. (14)

In words, the nominal net profit is the nominal output minus production costs
(wage bills, private debt burden, payment of the carbon tax and depreciation of
capital) plus subsidies. Thus, the private debt ratio, d, and the nominal profit share,
π, can be expressed by

d =
D

pY
and π =

Π

pY
.

In addition, we define the public debt ratio dpub4 as

dpub =
pScf − pTf

pY
(15)

that is, the amount paid in subsidy minus the amount received in tax divided by
the output. Equation (15) represents the increment in public debt ratio induced by
green policies. Let κ be an increasing real-valued function depending on the profit
share, π.

4We assume that, apart from green subsidies and carbon taxes, the public sector runs a balanced
budget.
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Such a function will determine the percentage of the production, Y , destined for
re-investment, I (see Figure 6), i.e.

I = κ(π)Y, (16)

K̇ = I − δDK. (17)

The latter equation tells us that the increment of capital depends on the amount
invested minus the depreciation of the current capital. The increment of corporate
debt is calculated in terms of the amount of investment, the dividends paid to the
shareholders, the profits, and the depreciation of capital according to the following
formula

Ḋ = pI + Πd(π)−Π− pδDK,
Πd(π) = ∆(π)pY,

where ∆ is a non-increasing function (see Figure 7) that specifies the proportion of
Y that
will be paid as a dividends to the shareholders.
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Increments of the price level, i.e. inflation i, are given by the equation

i :=
ṗ

p
= ηp(mc− 1) (18)

where ηp ≥ 0 is a fixed parameter, m ≥ 1 is a markup and c is the labour cost of
production given by

c =
wL

pY
.

5.1.3 The Labour Market

The workforce, N , is assumed to be bounded by PN ≥ 1, and increases in line with
the following formula

Ṅ

N
= q

(
1− N

PN

)
(19)

where q is the rate of convergence of N to PN . The employment rate is defined as
the ratio between the number of employed workers, L, and the global labour force,
N , i.e.

λ :=
L

N
. (20)

Hence, we assume that the increment of the wage is directly linked to the employ-
ment rate via

ẇ

w
= φ(λ) (21)
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where φ is an increasing, real-valued function. From Figure 8 we easily deduce
that the wage decreases exponentially when the employment rate is below 1/2 and
increases exponentially when λ ≥ 1/2.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

λ

φ

Figure 8: Wage function

5.2 Climate Dynamics

It is important to mention that the climate module is mainly based on the DICE
model proposed by Nordhaus (2018) which is defined on a discrete-time frame-
work. Figure 9 represents a simplified version of the DICE model. The red arrows
indicate the effect of climate on the economy; the blue arrows indicate the effect of
the economy on the climate; the green arrows correspond to the effect of climate
policy; and the orange arrows show the purely economic component of the model.
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Figure 9: Simple schematic of the DICE model

Bovari et al. (2018a) adapted the DICE model to a continuous framework as fol-
lows: We assume that the total CO2-e global emissions, E, come from two main
sources: industrial and land (e.g. implied release of CO2-e induced by deforesta-
tion), Eind and Eland, respectively, i.e.

E = Eind + Eland. (22)

Industrial emissions, Eind, are assumed to be directly proportional to the real pro-
duced output, Y 0, and is given by the formula

Eind = Y 0σ(1− n) (23)

where σ is the current emission intensity of the economy and n is the emission
reduction rate chosen by the productivity sector as a function of the carbon price
and the abatement technology (defined in Sections 2.2 and 5.3). The value of σ is
driven by the following
differential equation where δgσ ≤ 0 is a fixed parameter (see Figure 10):

σ̇

σ
= gσ, (24)

ġσ
gσ

= δgσ . (25)
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On the other hand, we assume that the land-use emissions are exogenous and de-
crease at a rate of δEland ≤ 0, i.e.
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Figure 10: Function σ

˙Eland
Eland

= δEland . (26)

Denote COAT2 , COUP2 and COLO2 as the CO2-e concentrations in the: atmosphere,
upper ocean and biosphere and deep ocean, respectively. In addition, define Cipind
as the relative pre-industrial concentrations for i ∈ {AT,UP,LO} in GtC.

As a consequence of the accumulation of GHGs in the atmospheric layer, we get a
rise in the radiative forcing, F . This is considered to be a sum of two terms:

F := Find + Fexo (27)

where Fexo is a residual forcing which is assumed to be exogenous and linear with
respect to time up to 2100, followed by a plateau (see Figure 11). On the other hand,
Find represents the industrial forcing (from CO2-e) and is modelled by

Find =
F2×CO2

log(2)
log

(
COAT2

CATpind

)
(28)

where F2×CO2 represents the increase in the radiative forcing resulting from a dou-
bling of the pre-industrial CO2-e concentration.
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Figure 11: Exogenous radiative forcing function

The change of COi2, i ∈ {AT,UP,LO} concentrations are given by an interacting
three-layer model

 ˙CO
AT
2

˙CO
UP
2

˙CO
LO
2

 =

 E
0
0

+ Φ

 COAT2

COUP2

COLO2

 , (29)

where

Φ :=

 −φ12 φ12C
AT
UP 0

φ12 −φ12CATUP − φ23 φ23C
UP
LO

0 φ23 −φ23CUPLO

 , (30)

and

Cji :=
Cjpind
Cipind

, i, j ∈ {AT,UP,LO} (31)

where φ12 and φ23 are fixed parameters. We denote T (resp. T0) as the mean of
global temperature anomaly in the atmosphere and upper ocean (resp. the lower
ocean). Then the dynamics of T and T0 are assumed to be given by

Ṫ =
1

C
(F − ρT − γ∗(T − T0)) , (32)

Ṫ0 =
γ∗

C0
(T − T0), (33)
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where ρ =
F2×CO2

S is the radiative feedback parameter, γ∗ the heat exchange coef-
ficient between the two layers, C the heat capacity of the atmosphere, and C0 the
heat capacity of the deep ocean layer.

5.3 Damages and Mitigation

Recall from Section 2, we define D as the total damages function. Such a function
aims to summarise the economic impacts caused by climate change. It is assumed
the changes of the damages are a function of the temperature anomaly according
to the next equation

D := 1− 1

1 + π1T + π2T 2 + π3T ζ3
(34)

where π1, π2, π3 and ζ3 are fixed parameters (see Table 8 and Figure 12). A fraction
of the total damages correspond to damages to the capital, DK . Then,
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Figure 12: Damages function.

DK := fKD (35)

where fK ∈ [0, 1] represents the share of total damages corresponding to the cap-
ital. Analysis on the sensitivity is carried out in Section 6. On the other hand,
damages to the total output denoted by DY are defined as

DY := D−DK . (36)
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As an attempt of reduction of the carbon tax (see Equations (6) and (12)), some
efforts on reduction of the emissions are made. This cost is a proportion of the
total output given by AY 0. We assume the existence of a “backstop technology”,
which is a technology that produces energy services with zero greenhouse emis-
sions. Hence, the proportion of abatement, A, is calculated according to the abate-
ment formula

A :=
σpBS
θ

nθ (37)

where pBS is the price of the backstop technology, θ is a parameter that controls the
convexity of the cost and n is the resulting emission reduction rate as a consequence
of the minimisation efforts of the carbon tax and abatement. In other words, n is
such that it minimises Tf + Scf . From equations (5), (6), (12), (23) and (37) we get
that

min
n∈[0,1]

(
Tf + Scf

)
= min

n∈[0,1]

(
pcEind + saAY

0
)

= min
n∈[0,1]

(
pcY

0σ(1− n) + sa
σpBS
θ

nθY 0
)
.

Taking derivatives with respect to n and equating to zero we obtain that n must
solve the equation

−pcY 0σ + saσpBSn
θ−1Y 0 = 0.

Hence, solving the equation and assuming that θ > 1 5, we obtain that n then takes
the form

n = min

{(
pC

(1− sa)pBS

) 1
θ−1

, 1

}
(38)

The price of the backstop technology is assumed to be available at a declining rate
δpBS ≤ 0:

˙pBS
pBS

= δPBS . (39)

Section 6 provides a sensitivity analysis taking into account variations on θ and
δpBS .

5Checking the second derivative we conclude that n is a minimum only when θ > 1
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5.4 Benchmark and No-Policy scenarios

In this subsection we provide a brief overview of the results obtained on the model
described above. This with the objective to provide a benchmark for the modifica-
tions to the model and results obtained in the next section. In addition, we present
when no public policy is assumed, i.e. no carbon tax. The parameters and initial
values can be found in Tables 7 and 8.

Variable Description Value
COAT2 CO2-e concentration in the atmosphere layer 851 Gt C
COUP2 CO2-e concentration in the biosphere and upper ocean layer 460 Gt C
COLO2 CO2-e concentration in the deep ocean layer 1,740 Gt C
d Private debt ratio of the economy 1.53

Eind Industrial CO2-e emissions 35.85 Gt CO2-e
Eland Exogenous land use change CO2-e emissions 2.6 Gt CO2-e
Fexo Exogenous radiative forcing 0.5 W

m2

gσ Growth rate of the emission intensity of the economy -0.0152
p Composite good price level 1
pBS Backstop price level 547.22
n Emissions reduction rate 0.03
N Workforce of the economy in billions 4.83
NG Total population in billions 7.35
T Temperature in the atmosphere, biosphere and upper ocean layer 0.85 ° C
T0 Temperature in the deeper ocean layer 0.0068 ° C
Y Gross domestic product (at factor prices) in trillions USD 59.74
λ Employment rate of the economy 0.675
ω Wage share of the economy 0.578

Table 7: Initial values of the model

Parameter value Parameter value
α 0.02 δ 0.04
ηp 0.3 m 1.2
q 0.0274 PN 12
δgσ -0.001 δEland -0.022

CATpind 588 CUPpind 360
CLOpind 1720 F2×CO2 3.6813
φ12 0.024 φ23 0.0013
S 3.1 γ∗ 0.0176
C 49.758 C0 3.52
π1 0 π2 0.00236
π3 0.00000507 ξ3 6.754
θ 2.6 δpBS -.005

Table 8: Parameters of the model
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5.4.1 Benchmark Scenario

In this subsection we present the main results extracted from the model originally
presented in Bovari et al. (2018b). This model assumes a carbon policy scenario
with no subsidy (sA = 0) as described above. Figure 13 and Table 10 present the
trajectories and final values of some variables from 2016 to 2100. The variables
presented are GDP, Y 0, debt-output ratio, d, temperature anomaly, T , and CO2-e
total emissions. We note that in this simulation, GDP maintains a growth over the
years to get a final value of 458.35 in 2100. The debt-output ratio presents a constant
growth on the first 40 years and stabilises over the year 2070 on a level around 1.85;
reaching a value of 1.811 at 2100. The temperature has a constant growth rate over
the years reaching a level of 3.1368 in 2100. Finally, we notice that the total carbon
emissions present an important decay in the first 6 years. From 2020 to 2050, we
observe a slight increase, and from 2060 we see that the emissions drop rapidly to
get a value of 10 GtCO2-e emissions.
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Figure 13: Simulation of the model presented in Bovari et al. (2018b)

Year Y 0 d T E

2100 458.35 1.8811 3.1368 10.547

Table 9: Benchmark scenario: variable values in 2100

5.4.2 No-Policy Scenario

In this subsection, we present a brief description of the main results obtained by
simulating the model presented in Bovari et al. (2018b) with a no carbon tax pol-
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icy. That is, we assume that pC = 0 and the carbon tax, pTF , (defined in (12)) is
zero. As a consequence, n = 0 (see Equation (38)) and no abatement is generated.
In addition, there is no effort in reducing the industrial emissions and Eind has a
decreasing rate according to σ (see Equation (23) and Figure 10) and an increasing
rate according to Y 0. The latter leads to a rapid growth of the temperature which
implies an increase of the total damages.

Figure 14 and Table 10 present the trajectories of GDP Y 0, debt-output ratio, d, tem-
perature anomaly T and CO2-e total emissions. In comparison to the benchmark
scenario the growth on GDP presents a slower trend reaching a level of 338 in 2100
with a downward tendency. The debt remains relatively low until the damages
caused by the increasing temperature start to become too high. The temperature
increases with no restrain since the CO2 emissions increase unbounded as well un-
til the GDP stops growing.
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Figure 14: Simulation of the model presented in Bovari et al. (2018b) assuming no
carbon tax

Year Y 0 d T E

2100 338.94 2.0954 4.3261 90.396

Table 10: No policy scenario: variable values at 2100
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6 Results

6.1 Proposed Modifications to the AFD Model

The AFD Model presented by Bovari, Giraud and McIsaac (2018) make key as-
sumptions on the financing of investments in the productive sector. The variableD
represents total debt and is assumed to be raised via bank loans at an assumed con-
stant rate of r = 0.03. Green bonds are an alternative source of debt that have been
shown to have a lower yield and can be used in constructing hedging portfolios
for climate risk. We therefore investigate the effect of incorporating green bonds
into the model. This is done by splitting total debt, D, into debt from bank loans,
DB , and debt from green bonds, DG. Modifying the model in this way changes the
nominal profit by subtracting a further cost term of rGDG, where rG represents the
yield on green bonds

Π = pY − wL− rDB − rGDG − pTf − pδDK.

These green bonds, by definition, are used for ‘green’ purposes; hence they play a
role in reducing emissions and thus fund some portion of the abatement cost, A.
This portion is given by f ≤ 1. The dynamics of green bonds is then given by

ḊG = f(1− sa)pAY 0 (40)

and the full dynamics of debt is given by

ḊB = pI −Πr − pδDK − ḊG.

We define δG as the interest rate spread between r and rG, i.e.

δG = r − rG. (41)

and use, for now, today’s real spread of 7bps or 0.0007.

6.2 Sensitivity Analysis

6.2.1 Deterministic analysis

In this section, we analyse the sensitivity of the model in terms of changes of some
of the parameters. The parameters to consider are listed in Table 11.

θ Parameter controlling the convexity of the cost (see Equations (5), (37) and (38))
δG Interest rate spread (see Equation (41))
δpBS

Rate of decrease of the backstop technology (see Equations (7) and (39))
sa Subsidy of the abatement cost (see Equation (37))
fK Share of the total damages to the capital K (see Equations (4) and (35))

Table 11: Parameters for sensitivity analysis
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In the subsequent subsections, we calculate the temperature and the debt-output
ratio in 2100 for different values of θ, δG, δpBS , sa and fK . The simulated scenarios
incorporate the modifications presented in Subsection 6.1 with f = 1 (see Equation
(40)), i.e. we assume that debt generated by abatement costs are fully-covered with
green bonds.

6.2.2 Sensitivity to θ

We present in Tables 12 and 13 below the results of varying the value of θ. Recall
from Equations (5), (12), (23), (37) and (38) that θ intervenes in the total amount (a
fraction of the total output) that is spent as a consequence of CO2-e emissions.

Note that both the temperature anomaly and the debt-output ratio decreases when
the value of θ increases in all the simulated scenarios. In the case in which the
value of θ is closer to 1 and there is no subsidy, an increase of damages of capital
imply an increase in the debt-output ratio. In all cases, incorporating a 50% of
subsidy leads to a better temperature anomaly and debt levels. Another important
fact that is worth mentioning is that under the presence of a 50% subsidy, the debt
ratio does not show a significant increase when the damages of capital increases.
These results are consistent with the fact that for large values of θ, we obtain low
abatement costs for fixed level of emission reduction n < 1.

θ ° C fK = 0% fK = 33% fK = 50% d fK = 0% fK = 33% fK = 50%

1.1 4.2751 4.2050 4.1665 3.4066 6.8585 10.7882
2.8 3.0789 3.0680 3.0625 2.0897 2.0638 2.0552
5 2.6239 2.6186 2.6159 1.8651 1.8338 1.8162
20 2.1751 2.1740 2.1734 1.6991 1.6706 1.6549

Table 12: Variation of temperature anomaly and debt-output ratio in 2100 for dif-
ferent values of θ and fK with no subsidy

θ ° C fK = 0% fK = 50% d fK = 0% fK = 50% dpub fK = 0% fK = 50%
1.1 3.3991 3.3797 2.0184 2.0856 0.049 0.048
2.8 2.4307 2.4270 1.7045 1.6506 0.018 0.018
5 2.2368 2.2349 1.6761 1.6279 0.01 0.01
20 2.0730 2.0726 1.6569 1.6139 0.0024 0.0024

Table 13: Variation of temperature anomaly, debt-output ratio and public debt in
2100 for different values of θ and fK with a 50% subsidy
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6.2.3 Sensitivity to δG

Recall that δG is defined as the spread rate between r and rB (see Equation (41)). In
Tables 14 and 15, we analyse the simulation for the temperature anomaly, T , and
the debt-output ratio, d, for different values of δG. The studied values for δG are {1,
7, 20 and 200} bps. Although the preceding value might be an unrealistic compari-
son to reality, it is included since it still provides a good idea of how the model will
react under notable changes in the spread.

We note that in the no-subsidy case, changes in δG do not induce significant changes
in T and d. The extreme case of 200bps presents similar results. For the 50% sub-
sidy case, we draw similar conclusions. This is likely due to the fact that abate-
ment efforts remain a relatively small proportion of the total output Y 0 (see Figure
15). Moreover, similar to before, we realise that the presence of subsidy produces
slightly better results in terms of the temperature anomaly and debt.

δG ° C fK = 0% fK = 33% fK = 50% d fK = 0% fK = 33% fK = 50%

1 BPS 3.0788 3.0680 3.0624 2.0926 2.0674 2.0597
7 BPS 3.0789 3.0680 3.0625 2.0897 2.0638 2.0552
20 BPS 3.0791 3.0682 3.0626 2.0833 2.0561 2.0456
200 BPS 3.0816 3.0707 3.0652 1.9986 1.9546 1.9287

Table 14: Variation of temperature anomaly and debt-output ratio in 2100 for dif-
ferent values of δG and fK with no subsidy

δG ° C fK = 0% fK = 50% d fK = 0% fK = 50% dpub fK = 0% fK = 50
1 BPS 2.4307 2.4270 1.7071 1.6538 0.018 0.018
7 BPS 2.4307 2.4270 1.7045 1.6506 0.018 0.018
20 BPS 2.4308 2.4270 1.6989 1.6438 0.018 0.018
200 BPS 2.4316 2.4278 1.6264 1.5557 0.018 0.018

Table 15: Variation of temperature anomaly, debt-output ration and public debt in
2100 for different values of δG and fK with a 50% subsidy
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Figure 15: Proportion of abatement in the original scenario

6.2.4 Sensitivity to δpBS

Lastly, in this subsection we analyse the sensitivities when we vary the parameter
δpBS . Recall that the parameter δpBS measures the rate in which the price of the
backstop technology decreases (see Equation (39)). That is, for bigger values on
δpBS , the price of the backstop technology will decrease faster to zero over a fixed
period of time. We test different values of δpBS and summarise our findings in Ta-
bles 16 and 17. It is important to remark that assuming a decreasing rate of −10%
and −50% is unrealistic. However, this simulation will be helpful to measure how
efforts to obtain cheaper technologies to achieve zero GHG emissions will help mit-
igate the temperature anomaly and debt.

As intuition indicates, we conclude that with a higher decrease rate of the price
of backstop technology, we obtain a significant decay in the temperature emissions
and the debt ratio. Notice that in the no-subsidy scenario: when δpBS from −.5% to
−1% (i.e. we duplicated the rate), we saw a reduction in the temperature anomaly
of about 6.50%; whereas an increase from −10% to −50% (a 5 times increment) led
to a reduction in temperature of about 5.5%. That drives us to the conclusion that
there is a threshold in which big efforts on the the reduction of the price will result
in a small reduction in temperature. The same conclusions are drawn for the sub-
sidy case.

It is also worth noting that when δpBS goes from −10% to −50% the debt ratio
decreases on a rate less than 1%.
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δpBS ° C fK = 0% fK = 33% fK = 50% d fK = 0% fK = 33% fK = 50%

-0.1 % 3.2212 3.2074 3.2001 2.1974 2.1749 2.2385
-0.5% 3.0809 3.0700 3.0643 2.0911 2.0652 2.0571
-1% 2.8780 2.8708 2.8671 1.9478 1.9189 1.9023
-10% 2.2042 2.2035 2.2032 1.6720 1.6412 1.6243
-50% 2.0815 2.0814 2.0814 1.6557 1.6273 1.6118

Table 16: Variation of temperature anomaly, debt-output ratio and public debt in
2100 for different values of δpBS and fK with no subsidy

δpBS ° C fK = 0% fK = 50% d fK = 0% fK = 50% dpub fK = 0% fK = 50%

-0.1 % 2.5503 2.5445 1.7480 1.6936 0.025 0.025
-0.5% 2.4319 2.4281 1.7048 1.6510 0.018 0.018
-1% 2.3474 2.3448 1.6814 1.6286 0.012 0.012
-10% 2.1130 2.1127 1.6556 1.6101 <0.001 <0.001
-50% 2.0642 2.0641 1.6538 1.6106 <0.001 <0.001

Table 17: Variation of temperature anomaly, debt-output ratio and public debt in
2100 for different values of δpBS and fK with a 50% subsidy

6.3 Scenario Analysis

As in Bovari et al. (2018b), we conduct a scenario analysis on different public policy
scenarios. The first is a scenario with a carbon tax which is used in Bovari et al.
(2018b) and this was calibrated in the same way based on data from the High Level
Commission on Carbon Prices (2017). This also assumes optimistic conditions by
focusing on high carbon prices such as achieving $80. The second adds a subsidy
for backstop technologies in order to deal with the potential obstacles in pricing
carbon, recommended by the Commission (Stiglitz et al., 2017). This implies that
the abatement cost, AY 0, is partially subsidised, given by

A =
σ(1− sa)pBSnθ

θ

Furthermore, we analyse the effect of changes to the parameter fK , which is the
share of total damages allocated to capital. The reason behind this analysis is due
to the potential contagion effect to which Bovari et al. (2018b) refers. Damages to
capital have the potential to affect, radically, many channels within the model such
as investment and debt. As per Bovari et al. (2018b), we explore values of this pa-
rameter for the set {0, 33.3, and 50%}, for consistent comparisons.

It should be noted that Bovari et al. (2018b) tested a baseline scenario of no pol-
icy action. In our analysis, this implies a zero reduction rate, n, which leads to zero
abatement costs and hence, a scenario analysis on its convexity, θ, would not be
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material.

Another scenario is also considered, namely the introduction of a cap-and-trade
policy instead of a carbon tax. Thus, instead of fixing a price and leaving the quan-
tity of emissions uncertain (as is the case in a carbon tax regime), we fix the level
of emissions and allow the market price of emissions to vary. The cap and trade
scenario is presented in a later section.

One concern with the model is the high dimensionality of interactions in the system
(Nordhaus, 2018). This also proves computationally difficult for simulations, how-
ever, by focusing on these three parameters, there is a reduction in dimensionality
which allows for Monte Carlo simulations without approximations. We therefore
present approximate densities for the three parameters: θ, δpBS , δG.

We conducted 10,000 Monte Carlo simulations with joint draws from each of the
three
parameters, and simulated the temperature and debt-to-output trajectories from
2016 to 2100. The model parameters assume the optimistic scenario of using the
polynomial damage function with π3 = 0.00000507.

d fK = 0% fK = 33% fK = 50%

Carbon Tax 2.242299 2.28198 2.339741
Carbon Tax & 50% subsidy 1.7672 1.732044 1.712238

Table 18: Median debt-to-output ratio in 2100

From Table 18, we see that with a carbon tax, the debt-to-output ratio increases, as
the
allocation of damages to capital increases. This can be explained by the increase
in debt that occurs as more finance is required to implement the repair and re-
placement of capital. We also see that the debt can be mitigated through the im-
plementation of subsidies for backstop technologies. This is due to the reduction
in abatement costs by this subsidy, and since we assume all abatement costs are
to be financed by green bonds, we have that the debt burden should also reduce.
Furthermore, adding a subsidy reduces the debt ratio for higher damages to capital
and this is owed to the subsidy, shifting the debt burden more towards public debt.

Table 19 shows that the temperature anomaly declines over increasing allocation
of damages to capital, which is consistent with the trends found in Bovari et al.

41



Temperature fK = 0% fK = 33% fK = 50%

Carbon Tax 3.284138 3.270338 3.262077
Carbon Tax & 50% subsidy 2.601612 2.597607 2.593778

Table 19: Median temperature value in 2100

(2018b). Comparing this with Table 18 on the Carbon Tax regime, we see a trade-
off between increasing debt and lowering temperature. However, with a subsidy,
this trade off does not occur.

It is also worth noting that in this optimistic scenario, the debt-to-output ratio re-
mains below the 2.7 threshold. However, the temperature anomaly remains con-
sistently above the desired 2°C target. This shows that even adding green bonds to
the model results in no significant improvement to attaining the goal, even in the
most optimistic scenario.
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6.4 Cap-and-Trade

For the Cap-and-Trade mechanism, we have to fix the emission function first. We
assume an exponential decay. The industrial emissions then follow

Ėind = EindδEind

with δEind < 0. As in the original model we have that

Eind = Y 0σ(1− n)

and therefore we get

n = 1− Eind
σY 0

.

Note that n is always less than 1, so we can transform

n = min

{(
pC

(1− sa)pBS

) 1
θ−1

, 1

}

to
pC = nθ−1(1− sa)pBS .

This gives us the implied price of carbon necessary to reach the desired emissions.
In Figures 16 and 17, we see plots of both the Cap-and-Trade, and the Carbon Tax
scenarios. In this example, we look at an exponential decay of two percent annually
starting with today’s industrial emissions, and compare it to the AFD model with
a linear pricing function.
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Figure 16: Industrial emissions in GtCO2-e, Carbon Price in $/t CO2-e, temperature
increase in °C, and debt-to-output ratio for Cap-and-Trade with 2% decay

Looking at these graphs, we see that we can stay in the range of 3 °C-warming with-
out many problems as we do not come close to the assumed critical debt-to-output
ratio of 2.7 (Global Default). While it is slightly higher in the beginning of the Cap-
and-Trade model, we see that it is already decreasing, while the Carbon Tax model
seems stationary. On the other hand, the temperature increase is slightly lower in
the Cap-and-Trade than in the Carbon Tax model and the slope appears less steep.
Further calibration could bring these results closer together, but at this point we
are satisfied with the realisation that both approaches lead to similar results.
Now we look at the sensitivity of our model to the reduction rate of emissions.
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Figure 17: Industrial emissions in GtCO2-e, carbon price in $/tCO2-e, temperature
increase in °C, and debt-to-output ratio for Carbon Tax with linear price function
as in the AFD model

Therefore, we look at δEind between 0-5% with steps of 0.5, and see how it affects the
temperature; the debt-to-output ratio; the total inflation; and the price of carbon.
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Figure 18: Temperature, debt-to-output ratio, prices and price of carbon for varying
rates of emission decrease

Unsurprisingly a faster decrease in emissions leads to a lower increase in temper-
ature and a higher price of carbon. We also observe that the debt-to-output ra-
tio is lower for higher emission reductions, which enables to us conclude that the
avoided damages outweigh the mitigation costs. The slope of the price curve is
included to illustrate that we stay within reasonable economical bounds with these
parameters.

46



7 Conclusions

After giving an overview of the threats of climate change and the methods to limit
it and to mitigate the damages, we looked at means to fund the transition to a
carbon-free economy. There, we looked at the current state of public funding and
green bonds, both means of financing sustainable projects. After that we analysed
ways to hedge against climate risks both in theory and in practice. Then we sum-
marised the Stock-Flow Consistent IAM Model in Bovari et al. (2018b) and gave
two scenarios in which we see the drastically different outcomes between a sce-
nario with carbon tax and one without. Finally we started our own analysis where
we implemented the green bonds as an extension of the model. Furthermore we
analysed how the model’s outcome would change for differences in some param-
eters. We also conducted a Monte-Carlo simulation with various combinations of
some of these parameters to see the effect of subsidies. Finally, we changed the
model from a carbon tax to a cap and trade model to see whether it would result in
different outcomes.

We hence reached the conclusion that, even though green bonds are an attractive
instrument for sustainable investors, they alone will not make a big difference on
the climate. The results obtained from our proposed modifications of the model are
similar to those presented in Bovari et al. (2018b). That is, even with an optimistic
carbon tax curve price, the 2 °C target anomaly set in the Paris Agreement seems
unreachable with high probability. However, is important to mention that adding
a 50% subsidy to investment in the backstop technology increases the probability
of achieving such a goal.

It is important to mention that the sensitivity analysis carried out focused on vari-
ables that are directly linked with abatement of the carbon emissions. We hence
reached two main conclusions on that matter. With the current calibration of the
model, the parameter θ, which controls the convexity of the abatement efforts, and
the decay rate δpBS of the price of the backstop technology were the most sensible
parameters; whereas the spread rate δG does not play an important role in the final
results. So a careful calibration of θ and δpBS is important to obtain results close to
reality. A surprising result is that there is a threshold for which significant efforts
on getting cheaper backstop technology will stop leading to a significant improve-
ment on the temperature anomaly. We estimate that when the decay rate of the
backstop technology is below −20%, the temperature anomaly and the debt ratio
will remain essentially the same.

Lastly, we have seen that, under an exponential decay assumption of the indus-
trial emissions and the current calibration of the model, a cap-and-trade system for
emissions leads to similar results.
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1 Introduction

Interest in the field of artificial intelligence (AI), in particular machine learning
(ML), has been growing significantly over the past decades. Developments in com-
puter hardware have allowed researchers in this area to successfully apply these
models to a wide array of problems in both industry and academia, often where
the problems prove too complex for human beings. Essentially, these models pro-
vide solutions by training a computer to gather knowledge from experience, such
as past data, and use that knowledge to construct and train high dimensional func-
tions that produce optimal outputs, such as the future value of some variable or a
decision. Applications range from speech, image and video recognition, language
generation, learning human habits such as those of a viewer on YouTube or Netflix
to provide recommendations, or forming nonlinear relationships between variables
that may conventionally be modelled by traditional regression techniques. Google
have been key in championing the development and use of machine learning tech-
nologies, such as the free and open source software library TensorFlow, discussed
by Abadi et al. (2016), with these technologies first gaining traction with the Google
Brain project (a deep learning AI research team) in 2011, and the announcement
that they built a neural network that could successfully identify images of cats in
2012. Google engineer, Francois Chollet developed an open-source neural network
library written in Python called Keras, the documentation of which is given by
Chollet et al. (2015). The focus of Keras was to allow for user-friendly experimen-
tation with deep neural networks.

This report focuses on an application of machine learning - deep learning or neural
networks - to quantitative finance through the use of Keras. Financial applica-
tions of deep learning are gaining more traction as people explore ways that these
techniques can bridge the gaps where more traditional financial models fail due
to the complexity, nonlinearity and scale of data-focused problems in the financial
domain. Neural networks have proven to be valuable in pricing or risk manage-
ment problems, predicting market variables such as future asset prices or implied
volatilities, portfolio construction, risk management and high frequency trading.
Referring to and drawing upon the ideas explored by Buehler et al. (2019) through-
out this study, our focus will be ‘deep hedging’, that is implementing a deep learn-
ing algorithm to provide hedging strategies for liquid financial instruments such
as vanilla European call options. Due to the algorithms being model-free, this ap-
proach can be used to overcome the issues associated with real market factors -
such as transaction costs, liquidity constraints, market impact and the risk prefer-
ences and capital constraints of a trading desk - not being taken into consideration
under classical models. Additionally, the feature sets of the neural networks used
to model the hedging strategies can also contain external information such as trad-
ing signals, news events, or past hedging decisions. In other words, these models
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aim to produce hedging strategies that more realistically mirror what traders do
when they trade, that is, as stated by Buehler (Global Head of Analytics, Automa-
tion and Optimisation at JP Morgan Chase, London) in a podcast by Quantcast
(2019), ask the question “What do I need to do in order to minimise my hedging
error in the sense of P&L uncertainty?”.

We train a deep neural network to obtain optimal hedging strategies of European
call options, first in a Black-Scholes setting, to allow for comparison of the results to
the classical delta hedge that is obtained by computing the Greeks, and then extend
this to the Heston stochastic volatility model. All the data we use to train and test
the model will be obtained from Monte Carlo simulation. Initially, we use a custom
loss function that accounts for producing the optimal hedge in terms of P&L uncer-
tainty, and then we choose a loss function to account for risk preferences, captured
through the risk aversion parameter in the exponential utility function. In the sec-
ond of these cases, we also obtain prices for the derivatives we are hedging using
the indifference pricing methodology.

Alternative studies that explore techniques for approximating the value of con-
tracts as well as hedging strategies using deep learning include that by Shin and
Ryu (2012) where artificial neural networks (ANN) are used to enhance the per-
formance of a dynamic option hedging strategy; Aggarwal and Aggarwal (2017),
where deep learning hierarchical decision models are introduced for prediction
analysis in pricing securities and portfolio selection; and Doyle and Groendyke
(2019), where neural networks are used to reduce the computational cost of pric-
ing and hedging variable annuity guarantees, where the problem with using tradi-
tional pricing approaches here lies in the large number of Monte Carlo simulations,
and hence computational time, required for convergence.

We begin by providing an overview to theoretical underpinnings of deep neural
networks, including the backpropogation training method and the stochastic gra-
dient descent method that we will use to update the model parameters in order
to optimize the objective function. In this section, we also give an overview of
the Keras library. Section 3 introduces the idea of deep hedging, making compar-
isons to traditional hedging techniques, and discusses the outline of the problem
including the architectural structure of the network we implemented and the main
challenges faced. The second half of this report is tasked with obtaining indiffer-
ence prices of the financial instruments using deep hedging. Our numerical results
under both the Black-Scholes and Heston models are presented and discussed in
Section 5. Finally, in Section 6 we provide the reader with areas in which this project
may be explored further, and in Section 7 we conclude.
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2 Deep Neural Networks

In this section we introduce artificial neural networks and the theoretical under-
pinnings of deep learning. Throughout, we refer to Higham and Higham (2018)
and Goodfellow et al. (2016). Deep learning is a branch of ML based on ANN, that
is the construction of networks with the intent of modelling an animal brain. The
term ‘deep’ stems from the fact that many layers are stacked upon each other, and
the network feeds learning data from the first layer – the input layer – to the last
layer - the output layer. Each layer is a set of nodes, or neurons, where the nodes
are connected by some nonlinear functions. These connections are called ‘edges’,
where each edge has a set of weights and bias parameters that the algorithm is
trying to optimise over, i.e. these are the parameters that are adjusted as the learn-
ing proceeds. The overall function that maps from the inputs to the outputs, i.e.
the function that the model is trying to optimally estimate, can be viewed as the
composition of these intermediate functions where each application of an interme-
diate function provides a new representation of the input which will be passed to
the next layer, and each intermediate function need not be the same. The network
maps elements component wise, and at each layer, each neuron receives one real
value from every neuron at the previous layer and produces one real value that is
passed to every neuron in the next layer. In other words, assume the network has L
layers where layer l for l ∈ 1, 2, . . . , L has nl ∈ R+ nodes. The layer with l = 1 is the
input layer, the layer with n = L is the output layer, and all intermediate layers are
referred to as hidden layers because the network does not show the desired out-
put for any of these layers. If we denote the function that the network is trying to
model by F ∗, the feedforward network defines a mapping F : Rn1 → RnL that tries
to learn the parameters of F that give the best approximation for F ∗. The training
data is what gives approximate examples of y = F ∗(x), evaluated at each of the
different training points. We refer to a feedforward network throughout, mean-
ing that the information flows forward though the network from the inputs x to
the outputs, however recurrent neural networks where the networks also contain
feedback connections can also be constructed. The model can be summarised by
the following:

• x ∈ Rn1 : a vector of inputs;

• W [l] ∈ Rnl×nl−1 : the matrix of weights at layer l, i.e. those applied to the
outputs of layer l− 1 (inputs to layer l) to produce the outputs of layer l (and
hence the inputs to layer l+1). Element-wise, w[l]

jk is the weight applied to the
value passed from neuron k from layer l − 1 to give the output from neuron
j at layer l;

• b ∈ R[l]: the vector of biases at layer l. Element-wise, b[l]j is the bias used by
neuron j at layer l;
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• σi(x) : Rni → Rni+1 : the nonlinear map that takes the outputs from layer i as
inputs, and produces the outputs of layer i+ 1 for i = 1, 2, . . . , L− 1;

• a[l] = σl−1(W [l]a[l−1] + b[l]) ∈ Rnl : the output from layer l for l = 2, 3, . . . , L.
Element-wise, a[l]

j ∈ R is the output, or activation, from neuron j at layer l.
The output of the network will be

a[L] = F (x)

= σL−1

(
W [L]σL−2

(
W [L−1]σL−3

(
W [l−2] . . . σ1

(
W [2]x+ b[2]

)
+b[3]

)
+ b[4]

)
. . .+ b[L]

)
∈ RnL .

(1)

In order to train the network using the training data x, we must specify a cost, or
objective, function that is minimised to drive F to F ∗. The cost function will be a
function of all the parameters, that is the weights and biases, and the data points are
fixed. If, for example, we were to use the mean squared error (MSE) cost function,
we would look to minimise

C (θ) =
∑
x∈Rnl

(F ∗(x)− F (x,θ))2 , (2)

where θ = (W [2], . . . ,W [L], b[2], . . . , b[L]).

Note that if y = F ∗(x) is a vector of ‘labels’ associated to the inputs that the net-
work is trying to train the model to target, in order to go on to predict outcomes for
unforeseen data, this will be referred to as supervised learning. In the case where the
model is left to work on its own to learn information about or patterns in the data,
without being fed target labels, this is referred to as unsupervised learning. Unsu-
pervised learning allows for more complex processing tasks to be done, however
can also lead to more unpredictable results being produced.
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Figure 1: A network with 4 layers, with n1 = 4, n2 = 6, n3 = 3, n4 = 1. The edge
corresponding to the weight w[3]

63 is highlighted to show the weight that the output
from neuron 6 in layer 2 is weighted by when is is fed into neuron 3 in layer 3.

2.1 Stochastic gradient descent

Whilst a number of optimisation algorithms may be used to train the network, we
will focus on a method that is referred to as the stochastic gradient descent method.
The aim when training the network is to choose values of the parameters that min-
imise the cost function. If we begin by storing the parameters as a single vec-
tor p ∈ Rs where s =

∑L
i=2(dim(W [i]) + dim(b[i])), instead of a set of matrices

and vectors, then the algorithm computes a sequence of vectors iteratively until it
converges to some vector that minimises the cost function C(p). Beginning with
some initial parameter vector p, we want to choose some quantity ∆p such that
C(p+ ∆p) < C(p). Taking a Taylor series expansion, we have

C (p+ ∆p) ≈ C(p) +
s∑
r=1

∂C(p)

∂pr
∆pr + O

(
||∆p||2

)
= C(p) + (OC(p))>∆p,

(3)

where (OC(p))r = ∂C(p)
∂pr

denotes the first partial derivative of the cost function
with respect to the rth parameter. To reduce the cost function as much as possi-
ble with each iteration, it follows from Eq. (3) to make (OC(p))>r ∆p as negative
as possible which, from the Cauchy-Schwarz inequality, will occur when ∆p lies
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in the direction of −OC(p) (whilst also ensuring that ∆p remains small in order
for the Taylor series truncation to remain relevant). This leads to updating p to
p − ηOC(p) at each iteration, where η is the learning rate. Iterating in such a way
until some stopping criterion (or computational capacity limit) is met is called the
steepest descent method. The stochastic gradient descent method draws upon this,
however since the cost function is a sum over all training points {xi}Ni=1, where this
data set may be large, instead of computing

OC(p) =
1

N

N∑
i=1

OCxi(p), (4)

for Cxi(p) being the cost function evaluated at one data point {xi}, a single training
point can be chosen at random, leading to the parameter vector being updated from
p to

p− ηOCxi(p).

The name stochastic gradient descent comes from the fact that the training point used
is chosen at random from the full training set at each iterative step. Note that the
training point {xi} can be sampled with replacement, so that it is possible for the
same training point to be selected again with the same probability of any other
training point being selected, or without replacement. If selected without replace-
ment, after N iterations the algorithm will have cycled through the entire training
set (note, this should be done in a random order), which is referred to as complet-
ing an epoch.

Alternatively, the data may also be organised into k mini-batches of size m, where
k ×m = N , and the parameter vector update from pwill become

p− η 1

m

m∑
i=1

OCxki (p).

It is important in this method to ensure that the learning rate η is chosen appropri-
ately, as too high a learning rate may cause the learning to jump over minima in the
cost function, and too low a learning rate may lead to it taking too long to converge
or getting stuck in a local minima. It is always the case that η < 1, and the ’sgd’
optimizer in the Keras library takes η = 0.01. Alternatively, and often something
that is necessary in practice, the learning rate can be decreased over time in order to
reduce the noise induced from the random sampling from the training data as the
algorithm arrives at a minimum. If we denote the learning rate at iteration k by ηk,
Algorithm 1 shows how we can apply the mini-batch stochastic gradient descent
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method. The conditions
∞∑
k=1

ηk =∞, (5)

∞∑
k=1

η2
k <∞, (6)

are sufficient to guarantee convergence of the SGD method under this setting.

Algorithm 1 The mini-batch SGD parameter update method:

1: Inputs: η1, η2 . . . ,p
2: while stopping condition not met do
3: Sample a minibatch of m samples from the training set {x1, x2, . . . xm}
4: Compute ĝ ← 1

m

∑m
i=1 OCxi(p)

5: p← p− ηkĝ
6: k ← k + 1
7: end while

2.2 Backpropagation

As discussed before, a feedforward NN propagates information from the input
nodes forward through the network to the output layer. In doing so, information
about the error associated to each parameter update is also backpropagated through
the network in order to adjust the parameters accordingly, i.e. in the direction of
‘less error’, where this direction is determined by the SGD method discussed in
the previous section. Firstly, to implement the SGD method to train the network,
we need to compute the partial derivatives of the cost function with respect to the
parameters, that is to obtain OC(p). This technique exploits the fact that the cost
function is a linear combination of terms involving each of the training points, and
hence the individual partial derivatives with respect to each of the parameters will
also be. To obtain expressions for these partial derivatives, it therefore suffices to
consider the cost function at one fixed training point, and then compute the partial
derivatives which will hold true for all other training points. Note that the only
dependence of the cost function on the weight and bias parameters will be in the
term involving the output of the ANN,

a[L] = σL−1(W [L]a[L−1] + b[L]) = σL−1(z[L]), (7)

where we define z[l] := W [l]a[l−1] + b[l] for l = 2, 3, . . . , L. Since the cost function
can only be at a minimum if all partial derivatives are zero, this motivates referring
to the expression given by

δ
[l]
j =

∂C

∂z
[l]
j

, (8)
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for 1 ≤ j ≤ nl and 2 ≤ l ≤ L as the error of the jth neuron at layer l, i.e. the term
we want to target a zero value for. Using the chain rule, we can summarise the
errors and partial derivatives of the cost function with respect to the parameters as
follows:

δ[L] = σ′L−1

(
z[L]

)
◦
(
a[L] − y

)
, (9)

δ[l] = σ′l−1

(
z[l]
)
◦
(
W [l+1]

)>
δ[l+1], 2 ≤ l ≤ L− 1, (10)

∂C

∂b
[l]
j

= δ
[l]
j , 2 ≤ l ≤ L, (11)

∂C

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k , 2 ≤ l ≤ L. (12)

The proof is given by Higham and Higham (2018). The gradients in Eqs. (9)-(12)
are then computed using backpropogation as follows:

1. a[L] is evaluated from a forward pass through the network, i.e. by computing
a[1], z[2],a[2], z[3], . . . ,a[L] in order;

2. δ[L] is then obtained from Eq. (9);

3. δ[L−1], δ[L−2], . . . , δ[2] are then computed from Eq. (10) using a backward pass;

4. The partial derivatives of the cost function with respect to the parameters in
Eqs (11) and (12) follow once we have the δ[i] and a[i] for 1 ≤ i ≤ L− 1.

The pseudocode for this method is given in Algorithm 2.
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Algorithm 2 The backpropagation method to train a neural network:

1: N ← number of iterations
2: for n = 1 to N do
3: Choose k randomly from {1, 2, . . . , N}
4: Draw a data point {xk} from the training data
5:
6: for l = 2 up to L do
7: z[l] −W [l]a[l−1] + b[l]

8: a[l] = σ(z[l])
9: D[l] = diag(σ′(z[l]))

10: end for
11:
12: δ[L] = D[L]

(
a[L] − y(xk)

)
13:
14: for l = L− 1 down to 2 do
15: δ[l] = D[l]

(
W [l+1]

)>
δ[l+1]

16: end for
17:
18: for l = L down to 2 do
19: W [l] ←W [l] − ηδ[l]a[l−1]>

20: b[l]←b[l]−ηδ[l]

21: end for
22:
23: end for

Before concluding this section, we make a note on the fact that when using SGD
and backpropagation, it is not guaranteed that the minimum of the cost function
will be a global minimum, but possibly only a local minimum, due to the non-
convexity of error functions used in neural networks. Whilst this may appear to be
a significant drawback to the technique, it is shown by LeCun et al. (2015) not to be
the case.

2.3 The Keras library

As mentioned previously, Google have been key in developing machine learning
technologies, one of these being the open-source NN library written in Python
called Keras – developed by Chollet et al. (2015). This library is capable of running
over TensorFlow, Theano or PlaidML, and was built with the intent of making deep
learning an accessible area to explore. The idea here was to break down the bar-
riers, that arise due to the complexity of NN and deep learning frameworks, that
may act as a deterrent to researching in this area to some.
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Due to the Keras library, creating deep learning networks that can be applied to a
variety of applications has been made extremely accessible and fast. The library
can be used to construct both convolutional and recurrent networks, as well as
combinations of the two, and can run on CPU and GPU.

The core data structure in this library is a model which gives the way in which the
layers are stacked, The simplest type of the model is the Sequential model, where the
layers are stacked linearly on top of each other. If one wants to build a model that
does not adhere to this structure, i.e. the architecture is more complex and gives
rise to more flexibility, the Functional API can be used instead of the Sequential one.

We highlight the differences between the Functional API and the Sequential API in
what follows.

Sequential API: model layers are stacked linearly on top of each other, making this
a simple way for a user to construct straightforward neural networks. An ordered
list of the layers is passed to the model, where the user specifies the dimension of
each layer, as well as the activation function used as the data passes through the
nodes at that layer.

Functional API: this allows for more complex models to be built, such as those
that use multi-inputs, multi-outputs or shared layers. Much like layers, a func-
tional model is callable on a tensor (hence why this setting allows for multiple
inputs), and both the architecture and weights and bias parameters are used when
the model is called. As a result, these models can process sequences of inputs (e.g.
an image classification model can be developed to a video classification model), as
well as share layers across different inputs to create a graph-like model.

Once a model and the architecture of its layers has been specified the model must
be compiled. To do so, an optimiser and a loss function need to be chosen and
fed as inputs to the model.compile() line of code. The model is then fitted to the
input data using model.fit(). Testing data can then be input into model.evaluate()
to evaluate the performance of the model on new data that it has not been trained
on.

More detail and examples on these types of models in Keras is given in the exten-
sive Keras library documentation by Chollet et al. (2015).
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3 Deep Hedging

The first problem we address in this project is that of using a NN to obtain optimal
delta hedging strategies. We begin by giving a brief summary of traditional delta
hedging under the Black-Scholes framework, as in this setting we will use these
‘theoretical’ delta hedges as a benchmark for validating the delta hedges obtained
from our NN. Deep hedging was introduced by Buehler et al. (2019) as a way to
hedge derivatives exclusively with deep learning techniques, instead of using clas-
sic replication techniques. One of the main motivations for doing so lies in the fact
that ML technologies can be used as a platform to hedge in incomplete markets (i.e.
in a more realistic setting), which is something that has previously been viewed
as inaccessible to do. Additionally, as traditional hedging techniques were devel-
oped when data was very limited, the vast relative amount of data available today
motivates the exploration into alternative hedging techniques that can exploit the
availability and scope of this data. Buehler (in a podcast by Quantcast (2019)) ex-
plains that under traditional hedging techniques, traders often overwrite or make
modifications to the strategies given to them by these classical models to fix the
small, but relevant, issues that aren’t accounted for - such as transaction costs, ex-
ternal market factors or constraints specific to the trading desk, whether these be
liquidity constraints or risk limits on the book. By implementing a deep hedging
strategy, the machine can figure out these ‘overwrites’ for the trader based off of the
input data, making the hedging process independent of human inputs and hence
more efficient. Additionally, since the process is very data driven, there is no need
to define an underlying model which can allow it to be automated quicker.

Since deep hedging is still in the relatively early stages of being developed and
implemented in industry, however, one of its main limitations is that it can only
effectively be applied to hedge products that are relatively liquid. Additionally,
the amount of instruments trading in the market relative to the amount of times
series data available is large, and as this is a data driven approach, practitioners
implementing these techniques may need to find ways of simulating distributions
that account for the sparsity, whilst also taking tail events into consideration. The
data used to train models must also be clean, as small errors in the data may cause
the machine to become unstable, however also have the ability to signal when there
is an event coming up that might have a big impact on the market, for example,
to ensure that the machine can be controlled to pick up these events and account
for them in the output hedging strategy. Buehler also states that going forward, as
more trading desks begin to adopt this strategy to hedge their positions, the trading
teams must be required to have a minimum level of skill to handle and understand
the machines, instead of just taking the outputs at face value. For instance, if the
machine produces an answer, the trader needs to know roughly how and why it
produced that output and whether they agree with it, and if not how they can alter
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the objective function accordingly to both improve the machine, and ensure that
there is no large financial implication from implementing a ‘disagreeable’ hedging
strategy.

3.1 Classical delta hedging

The well-known Black-Scholes-Merton (BSM) model of Black and Scholes (1973),
that is widely implemented in industry, provides a framework to price and hedge
options using a risk-neutral argument under the assumptions of no arbitrage and
thus market completeness. One of the key ideas in this model is that by buying
and selling the underlying asset continuously over the life of an option in some
predetermined quantity will allow an agent to hedge the option or, in other words,
eliminate risk exposure associated with price movements in the underlying asset.
The delta therefore represents the sensitivity of the value in the option to a unit
change in the market price of the underlying asset. For example, if a trader has a
long position in a European call option with ∆ = 0.5, they must short 0.5 units of
the underlying in order to have a delta neutral position.

Let (Ω,F ,Q, (Ft)t≥0) be a filtered probability space where Q is the martingale mea-
sure and (Wt)t≥0 is a Brownian motion on the probability space. Assume there
exists some asset with price process dynamics (St)t≥0 governed by the SDE

dSt = rStdt+ σStdWt,

for r ∈ R the risk-free rate and σ ∈ R+ the volatility of the asset. Let (Ct)t≥0

denote the price process of a vanilla European option written on the underlying
asset (St) with strike prices K > 0 and maturity 0 < T < ∞. The delta of this
option can be expressed in closed form as δt = Φ(d1) if the option is a call option,
and δt = Φ(d1)− 1 if the option is a put option, where Φ(x) denotes the cumulative
distribution function of the standard normal distribution, and

d1 = (log(St/K) + (r − 0.5σ2)(T − t))/σ
√
T − t.

Although the assumptions in the BSM setting that are required to obtain these delta
hedges are restrictive, and largely what the deep hedging techniques are trying
to overcome, this framework is still widely used in financial institutions (perhaps
due to the lack of alternative, yet still as easily implemented, hedging techniques
available) and so we will use these ‘theoretical’ deltas as a benchmark to compare
our results to in the following sections.

3.2 The problem: part 1

In this section, we outline our approach in tackling the first part of problem that
this report addresses:
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Implement and train a deep neural network to optimally hedge European
options.

As discussed previously, this hedging technique has the advantage of being model-
free, and trained purely using market data. However, since the data we will use
throughout will be synthetic, we begin by simulating data under the BSM frame-
work, and then extend this to the Heston Stochastic Volatility model, in order to
compare our results with those from these classic models. All numerical results are
presented in Section 5.

We consider a European call option with payoff at maturity CT = (ST − K)+,
and want to take observed prices of the underlying over the life of the option,
{S0, S1, . . . , St, . . . ST } as inputs to the neural network to produce outputs that give
us the optimal hedging strategy for the option at each instance in time, that is
{δ0, δ1, . . . , δt, . . . , δT−1} where δi denotes the amount of stock that must be held
at time 0 ≤ i < T to be delta neutral. Referring to Section 2, the aim of a NN is
to optimally estimate some nonlinear function of the input data which here would
be the function fk that gives an optimal hedge δk = fk(Sk, Sk−1, . . . , S0) at time
0 ≤ k < T − 1. However, since we have Markovianity in the BSM setting, we can
consider the more efficient approach of finding the NN that gives the following
delta values as the optimal hedging strategy:

δ0 = f(0, S0) (13)
δ1 = f(1, S1) (14)

... (15)
δT−1 = f(T − 1, ST−1) (16)

i.e. the inputs used to produce the delta hedge at each instance in time include the
time-step that we are at, and the stock price at that time.

Making use of the Keras functional API, discussed in Section 2.3, allows us to con-
struct a multi-input and multi-output model to treat the model as a layer, calling
it on each of the input tensors at each time point in order to obtain the output set
of delta hedges over all times, This ensures that each time we call the model, both
the architecture and its weights are reused, as the function f in Eqs. (13)-(16) is the
same for each of the input tensors {[0, S0], . . . [T − 1, ST−1]}.

Since the idea of deep hedging is to find the optimal hedge accounting for P&L
uncertainty, and the P&L of our position at maturity (sell the option for C0, and
trade in the market to keep a delta neutral position over the life of the option) is
given by

VT + C0 − (ST −K)+ (17)
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where

VT =
T∑
k=1

δk−1 (Sk − Sk−1) , (18)

we use a custom loss function given by

L(x, y) =

(
T∑
k=1

yk−1xk−1 + C0 − (xT −K)+

)2

. (19)

3.2.1 Architectural structure of the network

As mentioned in the above section, our network will not use the more commonly
used Sequential model available in the Keras library, but rather the functional API.
To reiterate, this allows us to maintain the structure, weights and biases applied
to each input tensor [i, Si] to find the optimal f , rather than modelling multiple
functions fi for i = 0, 1, . . . , T − 1, each by a sequential model, to obtain each δi
separately. This approach not only provides more intuitive delta hedges, but also
significantly reduces the number of parameters that the model must estimate, thus
improving the computational speed at which the model will run.

We propose a multi-input model where each input array has dimension 2, namely
the time-step and the price of the underlying at that time. Within the model there
will be 3 hidden layers, each containing 100 neurons. Finally, the last layer will con-
sist of one neuron, which will output the optimal delta hedge for each time period.
The structure is illustrated in Figure 2, however for ease of illustration we have
shown 5 nodes per hidden layer instead of 100. The activation function we chose
at layers 1,2 and 3 is the ‘ReLU’ activation function, and for layer 4 the ‘sigmoid’
activation function – this ensures our output delta will lie between 0 and 1. We
concluded on this network structure after trying a few combinations of number of
layers and nodes per layer and comparing the results, however if time constraints
were not under consideration, we could run a more extensive study into the most
effective structure for the neural network.

Figure 2: The structure of the neural network that we will train to hedge European
call options.
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3.2.2 The main challenges

The main challenges in approaching this problem lie in constructing a non-standard
NN architecture using the Keras functional API instead of the more straightfor-
ward and frequently used Sequential model, as well as the need to code a custom
loss function. Often in deep learning regression problems, built-in loss functions
such as the mean squared error (MSE) loss are used. We also chose to run an un-
supervised learning model where, although we know the theoretical deltas under
the BSM framework, we did not feed these to the model as targets, instead we let
the network learn the optimal deltas only using the input stock data.

We also note that deep hedging is a relatively novel concept, and hence the scope
of available literature that can be used to guide this research, as well as to compare
our results to, is small. Finally, as with any computational project, one must bear
in mind the limits of the computational resources at hand.
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4 Indifference Pricing using Deep Hedging

We now introduce indifference pricing theory in order to address the second half
of the problem this report focuses on – that is, pricing options via deep hedging.
In what follows, we refer to Buehler et al. (2019) throughout, and begin by giving
some definitions that will play a role in defining the indifference price of a financial
instrument.

Definition 4.1. Let X1, X2 ∈ X be asset positions (i.e. −Xi is a liability for i = 1, 2).
Then we define ρ : X → R to be a convex risk measure if it is:

1. Monotone decreasing: if X1 ≤ X2 then ρ(X1) ≥ ρ(X2);

2. Convex: ρ(αX1 + (1− α)X2) ≤ αρ(X1) + (1− α)ρ(X2) for α ∈ [0, 1];

3. Cash-Invariant: ρ(X + c) = ρ(X)− c for c ∈ R.

Intuitively, we can interpret the convex risk measure ρ(X) as the minimum amount
of cash required to be added to taking the asset positionX in order for that position
to be made ‘acceptable’ to an investor.

So the first part of Definition 4.1 implies that the greater the asset position taken by
an investor, the less the amount of capital that must be added to make the position
acceptable will be. Cash-invariance in this setting can be understood as follows: if
an investor has an asset position X , then they will require a greater amount of cap-
ital added to this position for it to be ‘acceptable’ than if they had an asset position
X + c. The difference in the amount of capital required is simply the difference in
the asset positions, c ∈ R.

Assume for some convex risk measure ρ, we define

π(X) := inf
δ∈H

ρ (X + (δ · S)T ) (20)

where δ is a trading strategy in an asset with price process (St)t≥0 and H is the set
of admissible trading strategies. Here, π(X) can be interpreted as the minimum
additional amount of capital required to make the terminal position when taking
an asset position X and adopting a trading strategy δ, i,e, X + (δ · S)T , acceptable
to an investor, i.e. the ‘certainty equivalent’ of that asset position.

To proceed in introducing the idea of an indifference price, consider the following
two scenarios:

1. An agent sells a call option with payoff Z for initial price p0, and has the
position −Z + p0 (assuming interest rates are 0 for simplicity) at maturity of
the option;
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2. The agent does not sell the call, and has no terminal position.

The indifference price of the call option is the value of p0 such that we have π(−Z+
p0) = π(0) where π(x) is given by Eq. (20). Buehler et al. (2019) prove that π(x)
satisfied the cash-invariant property in Definition 4.1, and so it holds that

π(−Z + p0) = π(0)⇒ π(−Z)− p0 = π(0) (21)

and so the indifference price of the option is given by p0 = π(−Z)− π(0).
We now want to incorporate the risk preferences of an agent into our deep hedg-
ing problem, where the option we are hedging has payoff Z, and begin by as-
suming that an agent has utility represented by the exponential utility function
U(x) = −exp(−λx). To obtain the indifference price of this option using Eq. (21),
we need to estimate π(Z) using the NN. The paper demonstrates that under the
assumption of an exponential utility function with risk aversion parameter λ for
the agent trading in this market, the network will approximate π(−Z) by

πM (−Z) =
1

λ
log inf

θ∈Θ
J(θ), (22)

where
J(θ) = E[e−λ(−Z+(δθ·S)T )]. (23)

It is shown that Eq. (22) converges to π(−Z) as we increase the number of layers in
the network.
To solve for the indifference price, we need an expression for π(0).

Proposition 4.2. In the above setting, it holds that π(0) = 0.

Proof. When π(0) = 0, Eq. (23) becomes

J(θ) = E[e−λ((δθ·S)T )]. (24)

The trading strategy (δθ · S)T can be approximated by
∫ T

0 δudSu. Define

XT = −λ
∫ T

0
δudSu, and the underlying asset

dynamics by St = S0 eσWt+(µ−σ
2

2
)t,

then let f(Xt, t) : = exp
(
−λ
∫ t

0
δudSu

)
.

By application of Ito’s Lemma:

d(f(XT , T )) = eXT dXT +
1

2
eXT (dXT )2,

eXT = eX0 +

∫ T

0
eXudXu +

1

2

∫ T

0
eXud〈X〉u
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but

d〈X〉u = λ2δ2
ud〈S〉u,

d〈S〉u = σ2S2
udu,

and hence

eXT = eX0 +

∫ T

0
eXudXu +

1

2

∫ T

0
λ2δ2

uσ
2
uS

2
ueXudu.

However, since XT is a martingale then:

E[

∫ T

0
eXudXu] = 0,

=⇒ E[eXT ] = E[eX0 ] + E[

∫ T

0
eX0dXu] + E[

1

2

∫ T

0
eXuλ2δ2

uσ
2
uS

2
udu],

= 1.

The last term is zero since we are choosing the δ that minimises J , which in this
case is zero. It follows that π(0) = 0.

4.1 The problem: part 2

In this section, we outline the second part of the problem that this report addresses:

Use the indifference pricing framework to obtain prices for European call
options via deep hedging.

The optimisation problem that we want to train the network to solve now becomes
that in Eq. (20), i.e. finding the hedging strategy δ ∈ H that minimizes J(θ) where θ
is the vector of weight and bias parameters in the network. This can again be solved
using the stochastic gradient descent method and backpropagation algorithm, and
we keep the structure of our network the same as in Section 3.2 however change
the loss function so that our network now minimises over J(θ). As mentioned
previously, under the exponential utility setting, this reduces to finding a minimum
of Eq. (23), and so we replace our custom loss function by

L(x, y) = exp

(
−λ

(
− (xT −K)+ +

T∑
k=1

yk−1xk−1

))
(25)

Since we are dealing with the exponential function here, the network does not en-
counter any problems differentiating this loss function, however under alternative
assumptions one must ensure that OJ(θ), i.e. the partial derivatives of J with re-
spect to each of the weight and bias parameters, can be calculated efficiently.
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Once the network solves the optimisation problem and obtains the output hedging
strategy

δ = {[δ0], [δ1], . . . , [δT−1]},

we can calculate the indifference price of the option using Eq. (22) and Proposition
4.2.
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5 Numerical Results

In this section, we present the results obtained from using our deep NN to ap-
proach the problems discussed in Sections 3.2 and 4.1

5.1 Data simulation

In order to train our network we needed a large amount of data. For simplicity,
and as the main challenge was to build and train a neural network with no specific
relevance to financial products trading in some specific market, we decided to use
synthetic data throughout. This also allows us to check the results produced from
our NN with theoretical benchmarks based off this simulated data. We generated
Monte Carlo stock price observations first under the BSM model, and then under
the Heston Stochastic Volatility model. The stochastic differential equations (SDEs)
for these two models are given by

dSt = rStdt + σStdWt (26)

and

dSt = rStdt +
√
VtStdW s

t

dVt = κ(θ − Vt)dt+ ε
√

(Vt)dW v
t ,

(27)

respectively, where (Wt)t≥0, (W
s
t )t≥0 and (W v

t )t≥0 are Brownian motions, with

dW s
t dW v

t = ρdt

for ρ ∈ [−1, 1]. We did not calibrate our models to data as this was not a focus
of the problem, so instead we just chose intuitive values for the parameters. In
further work, how the output of the NN changes for different parameters could
also be explored. The parameters we chose are as follows:

Parameter Meaning Value
r interest rate 0

σ BSM volatility 0.1

κ rate of mean reversion 1.5

θ the long run variance i.e.
mean reversion variance

0.1

ε the ”vol of vol” 0.2

ρ the correlation between the
Brownian motions that drive
the stock process and the
stochastic volatility process

−0.2
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We note that throughout, we simulate the data under the martingale measure to
ensure that the network does not learn the drift trend, that is, calculate the hedging
strategy that trades on this trend. Additionally, since the focus is not on finding
the most efficient discretisation schemes for an SDE, for simplicity we used the
Euler-Maruyama scheme to simulate from the Heston model, instead of a more
complicated higher order scheme, however making use of the ‘truncation scheme’
shown by Bégin et al. (2015) here to ensure that the stochastic volatility process
does not become negative for any 0 ≤ t < T .

To introduce the Euler scheme for an Ito process (Yt) that satisfies the SDE

dYt = µ (t, Yt) dt+ σ (t, Yt) dWt (28)

on some time interval t ∈ [t0, T ] for 0 ≤ t0 < T <∞we refer to Kloeden and Platen
(2013).

Definition 5.1. For a given discretisation t0 = τ0 < τ1 < . . . < τn < . . . < τN = T of
the time interval [0, T ], and some Ito process (Yt) that satisfies the SDE (28), a Euler
approximation is a continuous time stochastic process X = {X(t), t0 ≤ t ≤ T}
satisfying the iterative scheme

Xn+1 = Xn + µ (τn, Xn) (τn+1 − τn) + σ (τn, Xn)
(
Wτn+1 −Wτn

)
, (29)

for n = 0, 1, . . . , N − 1, with initial value X0 = Y0 and where Xn = X(τn) denotes
the value of the approximation at the discretisation time τn.

We refer to the time discrete approximation in Eq. (29) as Xδ where δ =
maxn (τn+1 − τn). Further details of the Euler scheme as well as the conditions for
strong and weak convergence and consistency are discussed in Kloeden and Platen
(2013).
It follows that the Euler scheme for this model is given by

Vn+1 = Vn + κ(θ − Vn) (τn+1 − τn) ε
√
Vn

(
W v
τn+1
−W v

τn

)
,

Sn+1 = rSn (τn+1 − τn) +
√
VnSn

(
W s
τn+1
−W s

τn

)
,

(30)

where the notation follows that given in Definition 5.1. Once the Heston stock
prices are generated with the required parameter inputs, a useful way to check
the simulated values and indeed the correctness of how the algorithm has been
implemented is to generate BSM stock prices under the same parameters, how-
ever taking the variance parameter here to be the long run variance in the second
SDE shown in Eq. (30). Intuitively, we would expect the distribution of simu-
lated stock prices under these two models to be somewhat similar, with the Heston
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stock prices simply having a wider distribution around the mean value of the pro-
cess at any given terminal time. This could be represented by a histogram, and we
would expect the simulated Heston stock prices to show fatter tails and a lower
peak when compared to the BS prices. The intuition here is that the stochastic
volatility element to the Heston model adds further volatility to our stock process
and thus generates a wider dispersion of stock prices at all times when compared
to the BSM stock prices.

5.2 Black-Scholes framework

5.2.1 Deep hedging

To obtain the optimal delta hedging strategy under the BSM framework, we use the
Monte Carlo BSM synthetic stock prices (with the parameters given in Section 5.1)
as input to the neural network discussed in Section 3.2. Since the structure of our
NN (shown in Figure 2) gives 20,601 parameters, we train the model using 100,000
sample paths, that is 100,000 realisations of each input training data array, This is
because if the number of samples in the input data is low relative to the number
of model parameters being estimated, the model runs the risk of overfitting. We
take 100 normalised time-steps of the input stock data, which will produce 100
delta values representing the optimal hedge at each of those times. For the input
layer and hidden layers, we chose ‘ReLU’ (rectified linear units) for the activation
function, which is given by

σ(x) = max(x, 0) (31)

and is seen to be one of the simplest nonlinear activation functions that results in
fast training for larger networks. On the output layer, we chose a sigmoid activa-
tion function, given by

σ(x) =
1

1 + e−x
(32)

so to produce our delta output between 0 and 1.

Since we want to find the optimal delta hedge in terms of P&L uncertainty, we
wrote a custom loss function to account for this – the loss function we used is
shown in Eq. (33). Typically, the loss function will be a function of two inputs,
‘yTrue’ and ‘yPred’, where these will be the ‘targets’ and ‘outputs’ that are driven
to those targets, respectively. If the ‘yTrue’ input to the loss function when training
the model involved a target array of data separate to the input data, this will be an
example of supervised learning, as the model is guided toward the correct values
that it must drive ‘yPred’ to by altering the parameters. In our case, we take the
increments in the input data stock prices as the ‘yTrue’ vector, and hence our model
does not entirely fall under the category of supervised learning as there is no data
besides the input data being used to train it. It is important to note that the loss
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function must be written using the Keras backend tensor manipulation library to
ensure that the model can obtain derivatives of the functions involved, as this loss
function is the function that will be minimised by the model using the SGD and
backpropagation techniques, and the output deltas will be the ones that give this
minimum.

We chose to use the ‘Adam’ optimizer, developed by Kingma and Ba (2014), which
is similar to SGD in the sense that is is an algorithm for gradient-based optimi-
sation of stochastic objective functions, however this method computes adaptive
learning rates for each parameter estimate instead of keeping the learning rate con-
stant throughout and so one of the advantages is that the magnitude of the param-
eter updates at each iteration are invariant to the re-scaling of the gradient. This
can help prevent the changes in parameter estimates as we approach the minimum
of the loss function being large enough to result in the estimate ‘jumping over’ or
missing the minimum. Pseudocode for the algorithm is given in Algorithm 1 in the
paper, and its convergence is discussed by Reddi et al. (2019).

The code used to build and train the network to obtain an optimal delta hedging
strategy in this setting is given in Appendix 8.1. After fitting the network using
the input data in the ‘stockdata’ array, as shown in the code, we simulated 10000
new BSM sample paths using the same parameters and over the same number of
time-steps to test the model, and compared the outputs to the theoretical deltas at
each time-step. We simulated 10000 paths of each stock starting at values ranging
between 10 and 220, in increments of 10, keeping the strike that the option written
on these stocks has at 100, so that we can test how well our model predicts delta
hedging strategies for out-the-money, at-the-money and in-the-money call options.
We monitor the value of the loss function and the mean absolute error (MAE) at
each epoch whilst testing the model, as shown in Figure 3.
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Figure 3: The value of the loss function and the mean absolute error (MAE) metric
at each epoch whilst training the model.

We also compute the theoretical Black-Scholes delta at each time-step and use these
values as a benchmark to assess the performance of our model. Since we are using
synthetic data simulated under the assumptions of the Black-Scholes model, and
have not included external factors such as transaction costs in our set-up, we would
expect the theoretical and model output deltas to be close. This is also due to the
fact that in the BSM framework, as discussed in Section 3.1, the delta is given by
Φ(d1), i.e, the function that the model is trying to learn before including any exter-
nal factors is fairly simple. Figure 4 shows plots of the output delta hedges from the
network against the BSM theoretical delta hedges, which are functions of the stock
price and underlying parameters, at four different time steps t = 0, 0.25, 0.5, 0.99
where maturity is taken as T = 1 and dt = 0.01. We see that the network predicts
the BSM delta hedge very accurately at early time-steps, however as t → T there
is much less agreement between these two delta curves. As the option approaches
maturity, in the BSM setting the delta hedge as a function of the underlying stock
price approaches a step function with the step at the strike price, as shown by the
red curve in Figure 4d. The reason for the NN producing a less agreeable delta
hedge to the theoretical one here may be that as the function the network is try-
ing to learn approaches a discontinuous function, the network is less capable of
extracting this pattern from the input data. Additionally, in Figure 5 we plot the
distribution of the P&L of the trading strategy that uses the delta hedges produced
by the NN against the BSM delta hedges but based on the simulated stock data, i.e.
the Monte Carlo estimates for the delta hedges in this setting. Under the theoretical
BSM framework, the P&L would be a point mass at 0, as the ‘perfect hedge’ would
be implemented. Whilst we see distributions in Figure 5 with a mode at 0 (indicat-
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ing satisfactory performance of the network), we see deviation from a point mass
at 0 largely due to the fact that we are no longer trading continuously, as per one of
the assumptions under the BSM framework. If we reduced the step size dt in our
model, we would expect to see less deviation in the P&L distribution around 0, i.e.
the hedge approaches that in the theoretical setting.

(a) Delta hedges at t = 0 (b) Delta hedges at t = 0.25

(c) Delta hedges at t = 0.5
(d) Delta hedges at t = 0.99 (one time-step
before maturity)

Figure 4: Theoretical BSM delta hedges against the optimal delta hedges obtained
from the NN as a function of stock price at time-steps t = 0, 0.25, 0.5, 0.99 (where
T = 1 and dt = 0.01).
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Figure 5: P&L distribution of the NN strategy vs. the Monte Carlo/sample BSM
hedging strategy.

5.2.2 Indifference pricing

As discussed in Section 4.1, to obtain the indifference price of an option via deep
hedging, we can use the same NN architecture, just changing the loss function
to that given by Eq. (25). The indifference price of the option we are hedging
can then be obtained using Eq. (22). Since we have an analytical, unique (due to
no-arbitrage) price for options under the BSM framework, we use these prices to
validate our indifference prices when training the network on the BSM simulated
data. Table 1 shows the indifference prices relative to the BSM analytical price for
different numbers of simulations, with the risk aversion parameter fixed at λ =
0.025.

Number of simulations 10 000 50 000 100 000
BSM Analytical price 7.96557 7.96557 7.96557

Indifference price 10.750114 8.26364 8.26176

Table 1: Indifference prices with λ = 0.025 vs. the BSM analytical price for the
European call option.

Since trading is only possible at discrete times in our set-up, compared to the BSM
setting where delta-hedging is assumed to be done continuously, the two prices
won’t completely coincide regardless of the number of samples of the underlying
used to train the network. However, we still see that these prices are close, and as
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the number of simulations in the training data set increases, the indifference price
approaches the theoretical BSM price, validating the performance of our NN here.

5.3 Heston stochastic volatility model

5.3.1 Deep hedging

After training our deep hedging NN on data simulated from under the BSM model,
we now repeat this using training data simulated from the Heston model. We used
the same number of simulated paths (100,000) over the same number of normalised
time-steps (100). Since, unlike the BSM model, there is no analytic formula for He-
ston call option values, and by extension no closed form solution for the deltas
of a Heston call option, we have no theoretical benchmark to compare our delta
hedging strategies that are produced by the network. However, if we vary the in-
puts into our Heston model in a way such that the stock price path differs only
slightly from the Black Scholes sample paths, then we may gradually observe how
the deltas our model is computing differs from the Black Scholes deltas as we move
further away from constant volatility and towards stochastic volatility.

We use the loss function in the exponential utility setting and compute the deltas
for varying risk parameters, all representing a risk-averse agent, i.e. λ > 0. The
smaller the λ parameter, the less risk averse the investor. These results are demon-
strated in Figures 6 – 8 for time-steps t ∈ {0, 0.25, 0.5, 1} and λ ∈ {0.025, 0.05, 0.075}.
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(a) Delta hedges at t = 0 (b) Delta hedges at t = 0.25

(c) Delta hedges at t = 0.5
(d) Delta hedges one time-step before matu-
rity

Figure 6: Computed Heston delta hedges obtained from the NN as a function of
stock price at time-steps t = 0, 0.25, 0.5, 1 at a λ = 0.025.
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(a) Delta hedges at t = 0 (b) Delta hedges at t = 0.25

(c) Delta hedges at t = 0.5
(d) Delta hedges one time-step before matu-
rity

Figure 7: Computed Heston delta hedges obtained from the NN as a function of
stock price at time-steps t = 0, 0.25, 0.5, 1 at a λ = 0.05.
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(a) Delta hedges at t = 0 (b) Delta hedges at t = 0.25

(c) Delta hedges at t = 0.5
(d) Delta hedges one time-step before matu-
rity

Figure 8: Computed Heston delta hedges obtained from the NN as a function of
stock price at time-steps t = 0, 0.25, 0.5, 1 at a λ = 0.075.

5.3.2 Indifference pricing

Using the delta hedges produced by our NN for the Heston training data under the
exponential utility setting, we can apply the indifference pricing theory to obtain
prices for the options written on this underlying. We do this similarly to the BSM
setting, however we now compare our prices to the Monte Carlo prices of an option
based off the same 100,000 sample paths that we used to train our network. The
results are presented in Table 2.
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λ MCE Indifference Price Difference:
0.025 12.52437338910 12.612958175370 0.0885847862653

0.05 12.52437338910 12.648655879237 0.124282490131

0.075 12.52437338910 12.713756120590 0.18938273148

Table 2: Indifference prices vs. the Monte Carlo prices for European call options in
the Heston model, for varying risk aversion parameters λ.

As we no longer have a complete market, as we do under the assumptions of the
classical BSM model, the price of the option written on an underlying from the
Heston model will be non-unique. Instead, an agent must specify some criteria,
such as optimising their expected utility for a specified utility function, to define
an acceptable minimum price for taking the position (which, here, is selling the op-
tion and trading in the market to hedge that option) – as discussed previously, this
is the indifference price of the option. Agents with different risk preferences will
accept different prices for the position to become acceptable, which is why we see
discrepancies in the prices in the table as we change λ. Additionally, while we do
not expect the indifference prices to compare exactly with the Monte-Carlo price,
this can still be used as a benchmark when assessing the performance of the net-
work – the closeness in prices show in the table suggests acceptable performance
of the NN in producing the optimal delta hedges here.

Finally, we plot the P&L distribution of the investor with risk aversion parameter
λ ∈ {0.025, 0.05, 0.075} who takes a position in the option and adopts the hedging
strategy indicated by the NN – see Figure 9. Note that a P&L of 0 indicates a
perfectly hedged position in the call option – this would be a desirable strategy for
a largely risk averse investor. Figure 9c confirms this result, as we see the P&L start
to condense around 0 at the higher risk aversion parameter λ = 0.075. If we were
to increase λ further, we may expect this histogram to condense toward, but not
quite reach (due to market incompleteness in the Heston setting), a point mass at
0. The lower the risk aversion parameter, the more desire the investor will have
to see positive profit on their strategy (as they are willing to take on more risk to
compensate for this). We see that when λ = 0.025 in Figure 9a, i.e. the investor
is less risk averse than the other two cases, we observe a P&L distribution that is
shifted to the right, with a higher mode than the other two cases. The result shown
in Figure 9b for λ = 0.05 lies between these two cases as expected.
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(a) P&L at λ = 0.025 (b) P&L at λ = 0.05

(c) P&L at λ = 0.075

Figure 9: P&L distribution of the NN strategy under exponential utility for λ =
0.025, 0.05, 0.075.
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6 Extensions

In this section, we discuss the areas in which the content of this report may be
extended in future work. The scope of the areas to which deep hedging can be ap-
plied to is vast, however we highlight the main 5 areas that would be of particular
interest to us to explore going forward.

Transaction costs: One of the main advantages of deep hedging is that it allows for
the hedge to account for factors that are overwritten by the assumptions of classical
hedging techniques, such as delta hedging under the BSM framework. Something
that plays a large role in the P&L of a traders book is transaction costs. By incorpo-
rating an extra term in our loss function, we can account for these transaction costs,
and see how the optimal hedges produced by the network behave. If, for instance,
we consider proportional transaction costs, that is where the cost is proportional to
how much the hedging position changes between time steps, the change to the loss
function will be as follows:

L(x, y) =

(
T∑
k=1

yk−1xk−1 + C0 − (xT −K)+ +

T∑
k=1

ck−1|yk−1|

)2

, (33)

where ck are now the costs that are dependent on changing the amount of stock
held in each period. This is then the cost that is applied to each incremental abso-
lute change in the delta across each period for k = 1, . . . , T . The reasoning is that
transaction costs are applied to buying or selling units of the underlying, the delta
position, and is represented by the absolute size of the change in that position. It is
this extra term that now allows us to compute an optimal delta strategy for trans-
action costs applied to the delta position. The following are some alternative types
of transaction costs that could also be interesting to consider in further work:

• transaction costs proportional to the change in underlying price, not just size
of the position, i.e. the trader must pay more to hedge when the underlying
has jumped significantly between hedging times;

• transaction costs that depend on the size and liquidity of the market in which
you are trading;

• trading costs that account for external factors such as levels of risk/ uncer-
tainty in the market (perhaps due to upcoming economic events that are
likely to move markets in an unpredictable way as traders are likely to want
to scale back trading activity in times like these).

External market factors: Similar to transaction costs, we can include a variety of
other external market factors that are likely to impact the hedging strategy adopted
by a trader as inputs to the model. Under a classical model, a trader is likely to
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compute the hedge, then make modifications based on how they think it should
change in regards to these factors, whether they be upcoming geopolitical events
that are likely to move markets, liquidity constraints, risk constraints of the trading
desk, or others of this sort. These could be incorporated by introducing Lagrange-
multipliers into the loss function or, as mentioned by Buehler et al. (2019) by the
choice of activation function, for example a non-negative activation function could
be chosen to impose a no short-selling restriction.

Non-zero interest rates: For simplicity throughout our study, we chose interest
rates to be zero. Going forward, it could be explored how introducing interest rate
dynamics, in particular the case where a stochastic interest rate model is consid-
ered, affect the optimal hedging strategies produced by the network. We assume
that this could be incorporated through a new custom loss function, however we
have not explored this in any depth.

Training with real data: Our network was trained on synthetic data, as this al-
lowed us to obtain a benchmark for our results easily and quickly in order to evalu-
ate the performance of the NN. As deep hedging techniques are purely data-driven
and thus have the advantage of being model-free, one of the next steps would be to
train the neural network on real stock data from a liquid market, and then back-test
the model to assess its performance under a model-free setting.

Deep optimal stopping: Finally, the application of deep neural networks to opti-
mal stopping policies is an area that could be explored in any follow-up work from
this report. This could also be brought together with the deep hedging methodol-
ogy to price American options, where results can be compared to analytical results
to assess the performance of the neural network when used to solve problems of
this type.
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7 Conclusion

To conclude, we implemented a deep neural network using the functional API
in the Keras library. We trained this network on data simulated from the Black-
Scholes model and Heston stochastic volatility model, where these models were
chosen so that we had benchmarks to assess the performance of our results, how-
ever deep hedging techniques can be purely model-free. In the Black-Scholes set-
ting we compared our network output delta hedges to the theoretical delta hedges
(which are available in closed form) and saw strong performance of the NN relative
to this benchmark when the option was not approaching maturity. This stems from
the fact that without accounting for external factors (such as transaction costs, liq-
uidity constraints etc.), the function that the network is trying to learn is relatively
simple. Whilst such a clear benchmark is not available for the setting where the
data we simulated was from the Heston model, our results did not show anything
that seemed out of the ordinary.

We then extended this to hedge derivatives under an exponential utility function
to incorporate the risk preferences of an investor, which can be controlled through
a risk aversion parameter. This also allows us to price options via deep hedging
using the indifference pricing framework. The benchmark used to assess our re-
sults here was the theoretical BSM price of the option for the data simulated from
the Black-Scholes model, and a Monte Carlo estimate of the price when the input
data was simulated from the Heston model. Whilst we do not expect the prices
obtained in these two different ways to be exactly the same, for reasons mentioned
above, the results for the indifference prices of the financial contract did not show
any large deviation from the benchmark prices that would suggest the deep neural
network was producing nonsensical results.

Whilst the deep hedging neural networks discussed in this report have a large
scope for both refinement and extension, they nonetheless illustrate an interesting
starting point to exploring this new area of research in the overlap between mathe-
matical finance and artificial intelligence. Additionally, it is clear the large amount
of potential these concepts have in exploiting the large amounts of financial data
that is readily available today, and continues to grow, to transform and automate
high-dimensional hedging problems.
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8 Appendix

8.1 Deep hedging neural network code

The following is the code we wrote to build and train a deep neural network with
loss function given by Eq. (33). The input data is given by the array ‘stockdata’.

import numpy as np
import numpy . matl ib as npm
import tensorf low as t f
import math
from tensorf low import keras
from keras . l a y e r s import Input , Dense , Concatenate
from keras . models import Model
from keras import backend as bk

# S e t t i n g up a r c h i t e c t u r e o f Neura l Network
m y i n p u t l i s t = [ ]
p r e d i c t i o n d e l t a = [ ]

# s t a c k 4 l a y e r s
# i m p o r t a n t t o have t h i s b e f o r e t h e l o o p as t h i s e n s u r e s
# t h e same w e i g h t s f o r e a c h branch o f Neura l Network
l ay er 1 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 2 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 3 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 4 = Dense ( 1 , a c t i v a t i o n = ’ sigmoid ’ )

for i in range ( nsteps ) :
myinput = Input ( shape = ( 2 , ) )
x = la ye r1 ( myinput )
x = la ye r2 ( x )
x = la ye r3 ( x )
p r e d i c t i o n s =l a ye r4 ( x )
m y i n p u t l i s t . append ( myinput )
p r e d i c t i o n d e l t a . append ( p r e d i c t i o n s )

p r e d i c t i o n d e l t a = Concatenate ( a x i s =−1)( p r e d i c t i o n d e l t a )

model = Model ( inputs=myinput l i s t , outputs= p r e d i c t i o n d e l t a )

# D e f i n i n g custom l o s s f u n c t i o n t o be used in NN
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# ypred= d e l t a p r e d , i n c r e m e n t s = y t r u e

def myloss ( increments , de l ta pred ) :
temp=bk . sum( de l ta pred ∗ increments , a x i s =1)
temp2=(temp+price−bk . maximum( f l o a t ( 0 ) ,

bk . sum( increments , a x i s =1)+S0−K) )∗∗2
# e n s u r e 0 i s a f l o a t
return temp2

# Compi l ing and f i t t i n g t h e model
es=EarlyStopping ( monitor= ’ l o s s ’ , pa t ience =3 , min delta =0 .0001)
model . compile ( l o s s =myloss , opt imizer= ’adam ’ , metr i cs =[ ’mae ’ ] )
model . f i t ( s tockdata , np . d i f f ( S t ) , epochs =5 ,

c a l l b a c k s =[ PlotLossesKeras ( ) ] )

8.2 BSM data simulation code

The following code is used to simulate the sample paths of the underlying stock
under the BSM framework in order to train the neural network.

# P a r a m e t e r s
nsim=100000
nsteps =100

K=100; S0 =100; r =0; sigma = 0 . 2 ; T=1; dt=T/nsteps ;

# S e t t h e s e e d
np . random . seed ( 0 )

# c a l l p r i c e f u n c t i o n
def c a l l o p t i o n p r i c e ( S0 , K, T , r , sigma ) : #T i s t ime t o m a t u r i t y

d1=(np . log ( S0/K)+T∗ ( r +( sigma ∗∗2 ) / 2 ) ) / ( sigma∗np . s q r t ( T ) )
d2=d1−sigma∗np . s q r t ( T )

c a l l p r i c e =S0∗norm . cdf ( d1)−K∗np . exp(− r ∗T)∗norm . cdf ( d2 )
return c a l l p r i c e

# g e n e r a t e BSM p a t h s f u n c t i o n
def s t o c k p r i c e p a t h ( nsim , nsteps , S0 , r , sigma ) :

dt=1/ nsteps
Z=np . random . normal ( 0 , 1 , s i z e =[nsim , nsteps ] )
exponent value=np . exp ( ( r−0.5∗ sigma ∗∗2)∗ dt+sigma∗math . s q r t ( dt )∗Z)
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# c r e a t e s a v e c t o r o f our i n i t a l s t o c k p r i c e s
S 0=S0∗np . ones ( ( nsim , 1 ) )
S=np . hstack ( ( S 0 , exponent value ) )
St=np . cumprod ( S , a x i s =1) # a x i s =1 , means a l o n g e a c h row

return St

St= s t o c k p r i c e p a t h ( nsim , nsteps , S0 , r , sigma )

# Func t i on c r e a t e s a s t o c k p r i c e pa th mat r i x .
#The rows r e p r e s e n t e a c h s i m u l a t i o n .
#The columns r e p r e s e n t s t o c k v a l u e a t e a c h t ime p o i n t
# R e a l i s a t i o n s a r e t a k e n a t n s t e p s t ime s t e p s

# Func t i on f o r d1 where t h e d e l t a o f a c a l l o p t i o n w i l l be
#norm . c d f ( d1 )

def d1 ( s , r , sigma , t , T ,K ) :
d1 = 1/( sigma∗math . s q r t ( T−t ) ) ∗ ( np . log ( s/K)+

( r +0.5∗ sigma ∗∗2 )∗ ( T−t ) )
return d1

# Need t o e n s u r e t h a t t h e i n p u t d a t a i s in c o r r e c t f o r m a t
# b e f o r e f i t t i n g .
# I t s h o u l d be a l i s t o f a r r a y s .
# F i r s t a r r a y in t h e l i s t i s l i k e a column v e c t o r .
# The column a r r a y s h o u l d l o o k l i k e :
# [ [ 0 , S 0 ˆ ( 0 ) ] , [ 0 , S 0 ˆ ( 1 ) ] , . . . [ 0 , S 0 ˆ ( nsim ) ] ]
# The s e c o n d column w i l l be t h e same as above ,
# but t h e f i r s t i t em would 1 and t h e s e c o n d i t em would be
# S 1 ˆ ( 0 ) , S 1 ˆ ( 1 ) , . . , S 1 ˆ ( nsim )
# and so on . . .

def c r e a t e s t o c k d a t a ( nsteps , nsim , St ) :
s tockdata = [ ]
for i in range ( 0 , nsteps ) :

a0 = np . array ( [ i , 0 ] )
a0a = npm. repmat ( a0 , nsim , 1 )

for j in range ( 0 , len ( a0a ) ) :
a0a [ j ] [ 1 ] = St [ j ] [ i ]
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s tockdata . append ( a0a )

return s tockdata

s tockdata= c r e a t e s t o c k d a t a ( nsteps , nsim , St )

8.3 Heston data simulation code

The following code is used to simulate the sample paths of the underlying stock
under the Heston Stochastic volatility framework,

import numpy as np
import numpy . matl ib as npm
import math
from sc ipy . s t a t s import norm
import m a t p l o t l i b . pyplot as p l t
from l i v e l o s s p l o t import PlotLossesKeras
from sc ipy . l i n a l g import cholesky

# P a r a m e t e r s
nsim=100000 # i n c r e a s e t o 1000000
nsteps =100

K=100; S0 =100; r =0; sigma = 0 . 1 ; T=1; dt=T/nsteps # t r y sigma 0 . 2
lambda val =0.025 #any v a l u e a b o v e 1 w i l l r e s u l t in nan

# Heston s p e c i f i c p a r a m e t e r s
kappa = 1 . 5 # r a t e o f mean r e v e r s i o n
t h e t a = 0 . 1 #mean r e v e r s i o n , l ong run v a r i a n c e
eps i lon = 0 . 2 # v o l o f v o l
rho = −0.2

# S e t t h e s e e d
np . random . seed ( 0 )

# F u n c t i o n s used t o c a l c u l a t e
def c a l l o p t i o n p r i c e ( S0 , K, T , r , sigma ) : #T i s t ime t o m a t u r i t y

d1=(np . log ( S0/K)+T∗ ( r +( sigma ∗∗2 ) / 2 ) ) / ( sigma∗np . s q r t ( T ) )
d2=d1−sigma∗np . s q r t ( T )

c a l l p r i c e =S0∗norm . cdf ( d1)−K∗np . exp(− r ∗T)∗norm . cdf ( d2 )
return c a l l p r i c e
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def heston ( nsim , nsteps , S0 , r , sigma , rho , kappa , theta , eps i lon ) :
# nsim = 1000
# n s t e p s =100
corr = np . array ( [ [ 1 , rho ] , [ rho , 1 ] ] )
L = cholesky ( corr , lower=True )
# n o t e : d e f a u l t i s an upper c h o l e s k y d e c o m o p o s i t i o n
# we need a l o w e r one

dt=T/nsteps
S a r r = [ ]
for i in range ( 0 , nsim ) :

Z = np . random . normal ( 0 , 1 , s i z e =[2 , nsteps ] )
# g e n e r a t e s b o t h t h e s t o c k rv and t h e v a r i a n c e rv
X = np . matmul ( L , Z)
# i m p o s e s t h e c o r r e l a t i o n s t r u c t u r e on t h e rv
#Zv = np . random . normal ( 0 , 1 , s i z e =[ nsim , n s t e p s ] )
Xs = X [ 0 , : ]
Xv = X [ 1 , : ]

S = np . zeros ( nsteps +1)
V = np . zeros ( nsteps +1)

#we now want t o c a l c u l a t e our sample p a t h s us ing t h e
# E u l e r d i s c r e t i s a t i o n scheme
for j in range ( 0 , nsteps + 1 ) :

i f j ==0:
S [ j ] = S0 # s e t t i n g our i n i t i a l s t o c k v a l u e
V[ j ] = sigma # s e t t i n g our i n i t i a l v a r i a n c e

e lse :
V[ j ] = V[ j −1] + kappa ∗ ( theta−max ( 0 ,V[ j −1] ) )∗ dt

+eps i lon ∗math . s q r t (max ( 0 ,V[ j −1] ) )∗Xv[ j −1]
∗math . s q r t ( dt )

S [ j ] = S [ j −1] + r ∗S [ j −1]∗dt
+ math . s q r t (max ( 0 ,V[ j −1] ) )
∗S [ j −1]∗Xs [ j −1]∗math . s q r t ( dt )

S a r r . append ( S )

return np . array ( S a r r )

# F u n c t i o n s c r e a t e s a s t o c k p r i c e pa th ma t r i x .
#The rows r e p r e s e n t e a c h s i m u l a t i o n .
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#The columns r e p r e s e n t s t o c k v a l u e a t e a c h t ime p o i n t
# Assume t h a t we a r e c r e a t i n g many r e a l i s a t i o n s o f s t o c k
# be tween t ime 0 and 1 ( n s t e p s many r e a l i s a t i o n s )
# Note t h a t t h e number o f columns i s n s t e p s +1

# I t i s w i s e t o c r e a t e a f u n c t i o n f o r d1 s i n c e t h e
# d e l t a o f a c a l l o p t i o n w i l l be norm . c d f ( d1 )

def d1 ( s , r , sigma , t , T ,K ) :
d1 = 1/( sigma∗math . s q r t ( T−t ) ) ∗ ( np . log ( s/K) + ( r +0.5∗ sigma ∗∗2 )∗ ( T−t ) )
return d1

def mce ca l l ( S , nsim , K, r ) :
#S h e r e i s a s t o c k p r i c e pa th
#we need t o a v e r a g e o v e r t h e t e r m i n a l v a l u e s

payoff = S [ : , nsteps ]−K

d i s c p a y o f f = [ ]
for i in range ( len ( payoff ) ) :

# p r i n t ( i )
i f payoff [ i ] <= 0 :

payoff [ i ] = 0
d i s c p a y o f f = payoff ∗math . exp(− r ∗T )
#now t h e d i s c o u n t i s b a c k t o t h e c u r r e n t t ime t

c mce = np . mean( d i s c p a y o f f )
return c mce

St=heston ( nsim , nsteps , S0 , r , sigma , rho , kappa , theta , eps i lon )
# Monte c a r l o p r i c e
p r i c e =mce ca l l ( St , nsim , K, 0 )

8.4 Deep hedging neural network and indifference pricing

The following is the code we wrote to build and train a deep neural network with
loss function given by Eq. (25), so to incorporate risk preferences into the optimisa-
tion problem via the exponential utility function. In this code, we use the optimal
hedging strategy obtained from the network to price the option via the indifference
pricing framework. The input data is given by the array ‘stockdata’.

import numpy as np
import numpy . matl ib as npm
import tensorf low as t f
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import math
from tensorf low import keras
from keras . l a y e r s import Input , Dense , Concatenate
from keras . models import Model
from keras import backend as bk
from sc ipy . s t a t s import norm
import m a t p l o t l i b . pyplot as p l t
from l i v e l o s s p l o t import PlotLossesKeras
from keras . c a l l b a c k s import History , EarlyStopping

# S e t t i n g up a r c h i t e c t u r e o f Neura l Network
m y i n p u t l i s t = [ ]
p r e d i c t i o n d e l t a = [ ]

# s t a c k 4 l a y e r s
l ay er 1 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 2 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 3 = Dense ( 1 0 0 , a c t i v a t i o n = ’ r e l u ’ )
l ay er 4 = Dense ( 1 , a c t i v a t i o n = ’ sigmoid ’ )

for i in range ( nsteps ) :
myinput = Input ( shape = ( 2 , ) )
x = la ye r1 ( myinput )
x = la ye r2 ( x )
x = la ye r3 ( x )
p r e d i c t i o n s =l a ye r4 ( x )
m y i n p u t l i s t . append ( myinput )
p r e d i c t i o n d e l t a . append ( p r e d i c t i o n s )

p r e d i c t i o n d e l t a = Concatenate ( a x i s =−1)( p r e d i c t i o n d e l t a )

model = Model ( inputs=myinput l i s t , outputs= p r e d i c t i o n d e l t a )

print ( model . summary ( ) )

# D e f i n i n g custom l o s s f u n c t i o n t o be used in NN
def myloss ( increments , de l ta pred ) :
# ypred= d e l t a p r e d , i n c r e m e n t s = y t r u e

temp=bk . sum( de l ta pred ∗ increments , a x i s =1)
c o s t =bk . sum( bk . abs ( de l ta pred [ : , 1 : nsteps −1]

−del ta pred [ : , 0 : nsteps −2] ) , a x i s =1)
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temp2=temp−bk . maximum( f l o a t ( 0 ) , bk . sum( increments , a x i s =1)
+S0−K)−0.1∗ c o s t

temp3=bk . exp(− lambda val∗temp2 )

return temp3

# Compi l ing and f i t t i n g t h e model
es=EarlyStopping ( monitor= ’ l o s s ’ , pa t ience =3 , min delta =0 .0001)
model . compile ( l o s s =myloss , opt imizer= ’ sgd ’ , metr i cs =[ ’mae ’ ] )
model . f i t ( s tockdata , np . d i f f ( S t ) , epochs =6 ,

c a l l b a c k s =[ PlotLossesKeras ( ) , es ] )

# Adam o p t i m i s e r w i l l a l s o work .
#SGD works a b o u t t h e same .
#Nadam seems t o not do as w e l l a s t h e o t h e r .

l o s s e s =model . h i s t o r y . h i s t o r y [ ’ l o s s ’ ]

i n d i f f p r i c e =(1/ lambda val )∗np . log ( l o s s e s [−1])
−(1/lambda val )∗np . log ( 1 )

# in most c a s e s , t h e l o s s when p a y o f f i s z e r o i s one .

# We now aim t o compute t h e P r o f i t & Los s d i s t r i b u t i o n

# F i r s t g e n e r a t e sample p a t h s
nsim2=10000
S t 2 = s t o c k p r i c e p a t h ( nsim2 , nsteps , S0 , r , sigma )
s to ck d at a 2= c r e a t e s t o c k d a t a ( nsteps , nsim2 , S t 2 )

# C a l c u l a t e t h e t r a d i n g p r o f i t
p r e d i c t e d d e l t a =model . p r e d i c t ( s to ck da t a 2 )
s tock increments=np . d i f f ( S t 2 )

mart ingale t ransform=np . sum( p r e d i c t e d d e l t a ∗ s tock increments ,
a x i s =1)

# C a l c u l a t e t h e p a y o f f f o r e a c h p a y o f f
Z T = [ ]
for i in range ( 0 , nsim2 ) :

Z T . append (max ( S t 2 [ i , nsteps ]−K, 0 ) )
Z T = np . array ( Z T ) # Th i s i s t h e p a y o f f a t t h e end
# Z T . s h a p e
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# C a l c u l a t e t h e P&L f o r e a c h sample pa th
PnL=mart ingale transform−Z T+ i n d i f f p r i c e
np . mean( PnL )
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Chapter 1

Introduction

Collateral posted against financial derivative transactions accrues interest at an
overnight rate, it is therefore integral that in the presence of roll-over risk, these
derivative contracts are discounted at the overnight rate rather than the market
benchmark rate. The purpose of this report is to infer a term structure of overnight
index swap (OIS) discount rates from the South African interest rate market. In
this market there are no basis swaps or Overnight Index swaps and therefore a
term structure of OIS discount factors cannot be bootstrapped from the available
market prices. Using a JIBAR/OIS spread, one could infer the term structure of OIS
discount factors with the term structure of benchmark rates, however in the South
African market where no JIBAR/OIS spread is observable this is not possible.
Näively one could use the term-structure of discount rates bootstrapped from South
African data to discount collateralised derivatives, however the reason that a basis
spread occurs is due to roll-over risk. Therefore in order to infer a term-structure of
OIS discount rates we shall assign a degree of structure to the roll-over risk in the
form of a stochastic model for the dynamics of the over night interest rate and the
components which effect roll-over risk. We shall then estimate this model in the
South African interest rate market in order to infer a term structure of OIS discount
rates.

The concept of roll-over risk has become particularly relevant since the Global Fi-
nancial Crisis, where refinancing at the prevailing market benchmark rate is now
no longer considered guaranteed. This challenges fundamental principles of finan-
cial mathematics as one would expect the presence of a basis premium to introduce
an arbitrage strategy, indeed one could borrow at the shorter maturity and lend at
the longer maturity and realise what would have been considered a “risk-free”
profit. This classical arbitrage strategy, however; does not account for the possibil-
ity of not being able to refinance ones investment at the market benchmark rate,
the so called “roll-over” risk. The presence of roll-over risk means that the entire
term-structure of interest rates can no longer be modelled as one process evaluated
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at different maturities (eg. the Vasicek Model). This has led to a need for every
term structure associated with a different tenor to be modelled separately, the so
called “multi-curve” modelling technique. We have outlined a motivation for the
need to consider roll-over risk from a financial and mathematical point of view in
the following section.

In the presence of roll-over risk, one would pay a premium to borrow for longer
tenors compared with shorter tenors. This is because borrowing at longer tenors re-
sults in the borrower avoiding the roll-over risk associated with the shorter tenors.
This luxury is then priced as a premium applied to longer tenor borrowing rates.
This is observed in the market as a basis spread, that is, a spread applied to a ba-
sis swap which exchanges floating legs of two different tenors. In particular, the
LIBOR/OIS spread. The OIS rate implies a discount factor, this discount factor im-
plies a yield, the LIBOR/OIS spread is the difference between this yield and LIBOR.

1 Motivation

Consider a market benchmark rate, calculated as an average of all panel members’
cost of borrowing. For the sake of exposition, let the benchmark rate under consid-
eration be the London Interbank Offered Rate (LIBOR). For simplicity, assume the
panel member can borrow at LIBOR today and there is a possibility that the mem-
ber can get downgraded in the near future. Furthermore, there is a possibility that
the uncertainty in the market may cause other panel members to not lend at LIBOR
but instead at a higher rate in the future. Therefore if the panel member planned on
borrowing today and “rolling-over” their loan (i.e. refinancing their loan) at some
future time point then they would be exposed to roll-over risk, that is the risk of
not being able to refinance their loan at the prevailing benchmark rate in the future.

To illustrate the concept more concretely, we will present a simple example:
Consider a panel of banks making up the LIBOR panel. Now suppose Bank A be-
longs to this group. Now by definition of LIBOR, it is the average rate at which any
bank can get funding from other panel members. Assume that Bank A can bor-
row from the panel at LIBOR. Now suppose that Bank A can borrow either for six
months at LIBOR (option A) or it can borrow for three months at LIBOR, roll-over
their investment for another three months and simultaneously enter a forward rate
agreement (see section 2.2) to hedge their interest rate risk and essentially “lock”
in a fixed rate from three months to six months (option B). The forward rate agree-
ment, by definition, will swap the quoted three month LIBOR rate in three months
time, regardless of whether Bank A is able to access funding at LIBOR in three
months time or not with a fixed rate. Because Bank A may not be able to refi-
nance their loan at LIBOR, Bank A is exposed to roll-over risk if it chooses option
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B. Therefore Bank A should be willing to pay a premium for option A to avoid
roll-over risk. Näively the premium that Bank A pays should result in an arbitrage
opportunity as they are fully hedged from interest rate risk and we are assuming
there are no other market risks that Bank A faces. However; due to the possibility
of Bank A being unable to refinance their borrowing at LIBOR in three months,
this premium is the price of avoiding this possibility. It is by this reasoning that a
further investigation in to the structure of the roll-over risk needs to be done. Fur-
thermore, in a market where no basis spread is observable such as South Africa,
it will be useful to infer a basis spread from the observable market data and an
estimated model.

2 Background

The concept of a basis spread was first considered in a foreign exchange setup in
Boenkost and Schmidt (2004) whereby it was observed that cross-currency basis
swaps had a liquidity-premium being charged on top of the floating rate of one leg
of the basis swap. The authors justify the spread as a result of cross-currency basis
swaps being of high demand, they also acknowledge the challenge of this spread to
traditional arbitrage opportunities. The paper derives a cross-currency basis swap
valuation procedure taking in to account this spread. Using this methodology, Ki-
jima et al. (2009) apply an FX analogy to the single currency basis swaps. This was
the first consideration of the “multi-curve” modelling approach.

It has become well understood since the Global Financial Crisis that a basis spread
should be present, however; from a practical perspective, consistent and financially
justifiable models have yet to appear in industry. Practitioners typically model ba-
sis spreads in an ad-hoc fashion, modelling them deterministically or stochastically
but without any economic justification for the presence of the spreads.

The literature that concerns itself with modelling the basis spread in a economically
justifiable manner, typically entails decomposing the roll-over risk into a credit and
liquidity component. The justification being that firstly, roll-over risk emerges from
the risk of a member in the benchmark rate panel being downgraded, the member
is now forced to pay a higher cost of borrowing and therefore unable to refinance
their investment at the benchmark rate. Secondly roll-over risk manifests from a
panel member being unable to refinance their borrowing at the benchmark rate be-
cause of a liquidity premium being added to the benchmark rate during times of
market distress.

Alfeus et al. (2017) develop a consistent model for fitting all observed tenors in a
cross-sectional manner. Here the authors make the observation that modelling the
term structure for each tenor is superfluous as one could model each tenor by sim-

6



ply one term structure for all tenors and the roll-risk on their own. This way, each
term structure can be adjusted by the roll-over risk appropriate to its tenor.

An important aspect of the roll-over risk discussion is that typically, swap contracts
are collaterised, i.e. each party to the contract is required to post daily margin to
a margin account on a mark-to-market basis. This margin account accrues inter-
est at an overnight rate. In the absence of roll-over risk, a simple arbitrage argu-
ment would imply that the value of the collaterised swap can be derived by using
the term-structure of benchmark discount rates. However, in the presence of roll-
over risk, it is necessary that we discount with respect to the overnight discount
rate. Therefore, knowing the term-structure of benchmark discount rates is not ad-
equate.

A significant contribution to the modelling of roll-over risk is from Filipović and
Trolle (2013), it was here that the authors define their so called “Interbank risk”
as the risk of direct or indirect loss resulting from lending in the inter-bank money mar-
ket. Here, the authors decompose the LIBOR/OIS spread in to a default and non-
default component. They model the probability of a representative entity of the
LIBOR panel being removed due to their credit deterioration with a jump diffusion
process. Using this model they are able to price a variety of collateralised swap
contracts including credit default swaps. Using their pricing formulae for each
instrument and credit default swap data, they estimate the risk-neutral dynamics
of the credit spread process, leaving the non-default component as a “residual”
spread, unexplained by the credit spread. Looking forward to the model of Back-
well et al. (2019) (see section 2), the non-default component can be considered a
liquidity spread. Backwell et al. (2019) explicitly take the view that the LIBOR/OIS
spread is fully explained by a credit and funding spread, giving dynamics to both.
Explicitly estimating the dynamics of the liquidity spread is typically not possible
as there are no market instruments which price an individual members’ liquidity
risk premium, hence just as in Filipović and Trolle (2013), the order of estimation
is to first estimate the dynamics of the credit spread with credit default swap data
and then to estimate the entire dynamics of the model knowing the dynamics of
the credit spread process.

Risk-neutral expectations of future LIBOR/OIS spreads are priced in to the
overnight index swaps. Our report focuses on a market where there are no traded
overnight index or basis swaps. We can therefore infer a term-structure of overnight
index swap rates by modelling the market’s risk-neutral dynamics of roll-over risk
and applying the implied spreads to the observed market deposit rates. We shall
follow the methodology of Backwell et al. (2019) and attempt to estimate their
model to South African interest rate data. In this market, there are no traded basis
swaps or overnight index swaps, therefore provided the South African data allows
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for adequate estimation, we can infer a term-structure of OIS discount rates. This
will entail developing the appropriate pricing formulae applicable to the South
African interest rate market, estimating the risk-neutral dynamics of the various
processes using the pricing formulae and an appropriate set of data and then com-
puting the implied term-structure of overnight discount rates.

The report is structured as follows; section 2 explains the model of Backwell et al.
(2019) as well as giving the South African interpretation of their pricing formulae
as well as an overview of the data that is used for estimation. Section 3 explains the
technique used to estimate the dynamics of the model using the pricing formulae
of section 2 and a South African data set. Section 4 presents the results of the es-
timation as well as the model-implied term-structure of overnight discount rates.
Section 5 then concludes the report with a discussion on the implementation of the
model and the results.

3 Setup

We work on probability space (Ω,F ,Q) equipped with a filtration F satisfying the
usual conditions of right-continuity and Q - completeness representing the infor-
mation available to the market. We assume that all processes under consideration
in this report are adapted to F. Denote by EQ[·] the expectation with respect to Q.
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Chapter 2

Model

1 Model Dynamics

The instantaneous rate at which a bank can borrow is influenced by the idiosyn-
cratic roll over risk of that bank. Let k = 1, . . . , n denote the kth LIBOR panel
member. We define the instantaneous borrowing rate for member k as

rkt = rOIS
t + φkt + λkt , (2.1)

where (φkt ) denotes the idiosyncratic funding spread and (λkt ) is the idiosyncratic
credit spread associated with member k, and rOIS

t is the instantaneous Overnight
Indexed Swap (OIS) rate. The OIS rate can be decomposed as rOIS

t = rt + ct where
(rt) is the risk free rate associated with the price PtT at time t ≥ 0 of a zero-coupon
bond with maturity T > t. The process (ct) is a market wide credit spread that
reflects the overall credit quality of the financial market. We model the dynamics
of (φkt ) and (λkt ) as jump diffusions with stochastic intensity as follows:

dφkt = −κφφtdt+ dJφt , φ0 = 0. (2.2)

κφ is the mean reversion rate of (φkt ) and is assumed constant, (Jφt ) is a pure jump
process of finite variation, having only positive jumps, with stochastic intensity
(ξφt ), having dynamics

dξφt = αφ(θφ − ξφt )dt+ σφ
√
ξφt dW

φ
t . (2.3)

ξφ0 > 0, αφ ∈ R, θ ≥ 0 and σφ > 0 are constants and (W φ
t ) is a Q - Brownian

motion. The jump sizes are independent and identically exponentially distributed
with mean (µφ)−1 i.e.

Jφt =

Nφ(t)∑
t=1

Xφ
t , X ∼ Exp(µφ), Nφ(t)|ξφt ∼ Pois(ξφt ).
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Similarly for (λkt ),
dλkt = −κλλtdu+ dJλt , φ0 = 0. (2.4)

κλ is a mean reversion rate of (λkt ) and is assumed constant, (Jλt ) is a pure jump
process of finite variation, having only positive jumps, with stochastic intensity
(ξλt )

dξλt = αλ(θλ − ξλt )dt+ σλ
√
ξλt dW

λ
t . (2.5)

ξλ0 > 0,αλ ∈ R, θ ≥ 0 and σλ > 0 are constants and (W λ
t ) is a Q - Brownian motion.

We will assume that the jump sizes are independent and identically exponentially
distributed with mean (µλ)−1 i.e.

Jλt =

Nλ(t)∑
t=1

Xλ
t , X ∼ Exp(µλ), Nλ(t)|ξλt ∼ Pois(ξλt ).

Denote by AktT the pre-default roll-over account associated with panel member k,
that is, the discounted deposit account with panel member k which accumulates at
(rkt ) and is discounted at (rt) assuming zero recovery in the event of default. Let
τk denote the default time of entity k, note that by assumption this default time
will be affected by entity k’s idiosyncratic credit spread (λkt ) and the market-wide
credit spread (ct).

AtT := EQ

[
exp

(
−
∫ T

t
rudu

)
exp

(∫ T

t
rkudu

)
I{τk>T}

∣∣∣∣∣Ft
]
,

= EQ

[
exp

(
−
∫ T

t
rudu

)
exp

(∫ T

t
(rku)du

)
exp

(
−
∫ T

t
cu + λkudu

) ∣∣∣∣∣Ft
]
,

= EQ

[
exp

(∫ T

t
ru + φku

) ∣∣∣∣∣Ft
]
.

(2.6)

The second equality follows from the projection property of conditional expecta-
tions, see Lando (2009) for a more detailed proof. The third equality follows from
equation (2.1).
Now denote by (QktT ) the pre-default value of a zero-coupon bond issued by entity
k, that is

QktT := EQ

[
exp

(
−
∫ T

t
rudu

)
I{τk>T}

∣∣∣∣∣Ft
]
,

= EQ

[
exp

(
−
∫ T

t
(ru + cu + λku)du

) ∣∣∣∣∣Ft
]
,

= EQ

[
exp

(
−
∫ T

t
(rOIS
u + λku)du

) ∣∣∣∣∣Ft
]
.

(2.7)
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Individual panel members are exposed to a term structure of unsecured discrete
borrowing rates, all of which will be aggregated to form the market benchmark
rate. We can imply such borrowing rates by considering a forward rate agreement
(FRA) with reset at time t and maturity at time T entered in to by entity k. This
contract will have the following payoff at maturity

V k
T =

(
exp

(∫ T

t
rkt du

)
− (1 + δK)

)
1{τk>T}. (2.8)

Note that the above payoff is contingent on entity k having not defaulted by time
T . The price of the FRA at time t is

V k
t = EQ

[
V k
T |Ft

]
= AktT − (1 + δK)QktT . (2.9)

By setting V k
t = 0, for all t ≤ T , the fair rate K ≡ Rk(t, T ) is

Rk(t, T ) =
1

δ

(
Ak(t, T )

QktT
− 1

)
, 0 ≤ t ≤ T. (2.10)

Let the indices of the panel member banks at time t be {k1(t), k2(t), . . . , km(t)} =
{k ∈ (1, . . . ,m)|φkt = 0}. The panel average fair rate, i.e. the market benchmark
rate is then defined as,

L(t, T ) := Υ(Rkt(1)(t, T ), . . . , Rkt(m)(t, T )). (2.11)

The function Υ(·) is market specific and is known a priori but the input observa-
tions are not observable. Modelling the benchmark rate in such way would be
cumbersome as one would need to know the specific dynamics of each member
of the panel which is subject to change when the panel changes. A more tractable
approach would be to model the dynamics of the panel as a whole and infer the
market benchmark rate as above from these dynamics. That is,

L(t, T ) =
1

δ

(
ALtT
QLtT

− 1

)
. (2.12)

where

ALtT = EQ

[
exp

(∫ T

t
φudu

) ∣∣∣∣∣Ft, φt = 0

]
(2.13)

QLtT = EQ

[
exp

(
−
∫ T

t
rOIS
u + λudu

) ∣∣∣∣∣Ft
]
. (2.14)
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In this setup the instantaneous roll-over risk at time t is zero, that is, at time t by
virtue of being in the panel an entity is free of roll-over risk immediately, their
funding and credit quality is modelled to deteriorate from time t onwards. Given
the above argument we now assign a model to (rOIS

t ) as

drOIS
t = (αOIS(θOIS− rOIS

t ) +αOIS,φ(θφ− ξφt ) +αOIS,λ(θλ− ξλt ))dt+σOIS
√
rOIS
t dWOIS

t .
(2.15)

αOIS, αOIS,φ, αOIS,λ ∈ R, θOIS > 0 and σOIS > 0 are constants and (WOIS
t ) is a Q-

Brownian motion. The process (φt) denotes the instantaneous funding spread and
will have the same dynamics stated in (2.2). Furthermore at the time when the
panel is updated, we will assume that there is no instantaneous roll-over risk, i.e.
φt = 0. Qualitatively the process (φt) models the sudden liquidity shocks and will
decay at the rate κφ with mean jump size µφ arriving at intensity (ξφt ). The process
(λt) will have the same dynamics as (2.4). It will decay at rate κλ with mean jump
size µλ and arriving at intensity (ξλt ). Note that in this setup {(W φ

t ), (W λ
t ), (WOIS

t )}
are independent Q - Brownian Motions.

2 Pricing

In order to price SAFEX, JIBAR, Forward Rate Agreements (FRA) and Interest Rate
Swaps (IRS) we will first need to define the zero coupon bond and discounted float-
ing rate. The reason for these definitions will become apparent in later sections. The
price of a zero coupon bond discounted using (rOIS

t ) under the risk neutral measure
Q is

POIS
tT := EQ

[
exp

(
−
∫ T

t
rOIS
u du

) ∣∣∣∣∣Ft
]

(2.16)

and the discounted floating rate is

Ls(t, T ) := EQ

[
exp

(
−
∫ T

s
rOIS
u du

)
L(t, T )

∣∣∣∣∣Fs
]
. (2.17)

But then

L(t, T ) =
1

T − t

(
ALtT
QLtT

− 1

)
,

with

ALtT = EQ

[
exp

(∫ T

t
φudu

) ∣∣∣∣∣Ft, φt = 0

]
,

QLtT = EQ

[
exp

(
−
∫ T

t
rOIS
u φu

)
du

∣∣∣∣∣Ft, λt = 0

]
.
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Therefore

Ls(t, T ) =
1

T − tEQ

exp(−∫ T

s

rOIS
u du

) EQ

[
exp

(∫ T
t
φudu

)
|Ft, φt = 0

]
EQ

[
exp

(
−
∫ T
t
(rOIS
u + λu)du

)
|Ft, λt = 0

] − 1

∣∣∣∣∣Fs
 ,

=
1

T − tEQ

[
exp

(
−
∫ t

s

rOIS
u du

) EQ

[
exp

(∫ T
t
φudu

)
|Ft, φt = 0

]
EQ

[
exp

(
−
∫ T
t
(rOIS
u + λu)du

)
|Ft, λt = 0

] − 1


exp

(
−
∫ T

t

rOIS
u du

) ∣∣∣∣∣Fs
]
,

=
1

T − tEQ

[
exp

(
−
∫ t

s

rOIS
u du

) EQ

[
exp

(∫ T
t
φudu

)
|Ft, φt = 0

]
EQ

[
exp

(
−
∫ T
t
(rOIS
u + λu)du

)
|Ft, λt = 0

] − 1


EQ

[
exp

(
−
∫ T

t

rOIS
u du

) ∣∣∣∣∣Ft
] ∣∣∣∣∣Fs

]
.

(2.18)

2.1 SAFEX and JIBAR

The South African Futures Rate (SAFEX) is the weighted average daily rate on
overnight deposits. Let ∆ = 1

365 , then the overnight rate can be calculated as

L(t, t+ ∆) =
1

∆

(
AL∆
QL∆
− 1

)
. (2.19)

where

AL∆ = EQ

[
exp

(∫ t+∆

t
φudu

) ∣∣∣∣∣Ft, φt = 0

]
,

QL∆ = EQ

[
exp

(
−
∫ t+∆

t
rOIS
u + λudu

) ∣∣∣∣∣Ft, λt = 0

]
.

The Johannesburg Interbank Agreed Rate (JIBAR) is traded for tenors of 1, 3, 6, 9
and 12. The market benchmark rate is then defined as,

L(t, T ) =
1

T − t

(
ALtT
QLtT

− 1

)
. (2.20)

where

ALtT = EQ

[
exp

(∫ T

t
φudu

) ∣∣∣∣∣Ft, φt = 0

]
,

QLtT = EQ

[
exp

(
−
∫ T

t
rOISu + λudu

) ∣∣∣∣∣Ft, λt = 0

]
.
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2.2 Forward Rate Agreements

A Forward Rate Agreement (FRA) is an over the counter agreement to exchange
a floating payment for a fixed payment according to the benchmark rate at some
future date. For T0 < Ti−1 < Ti the floating leg of a FRA with reset date Ti−1 pays
L(Ti−1, Ti)δ at time Ti. The fixed leg pays f(T0;Ti−1, Ti)δ, where f(T0;Ti−1, Ti) is
the fair FRA rate, agreed upon at time Ti−1. The fair FRA rate is calculated by equat-
ing the expected discounted value of the fixed leg with the expected discounted
value of the floating leg, that is

EQ

[
exp

(
−
∫ Ti

T0

rOIS
u du

)
f(T0;Ti−1, Ti)δ

∣∣∣∣∣FT0
]

=EQ

[
exp

(
−
∫ Ti

T0

rOIS
u du

)
L(Ti−1, Ti)δ

∣∣∣∣∣FT0
]

which implies that

δf(T0, Ti−1, Ti)δP
OIS
T0,Ti

= δLT0(Ti−1, Ti).

Therefore

f(T0, Ti−1, Ti) =
LT0(Ti−1, Ti)

POIS
T0,Ti

. (2.21)

2.3 Interest Rate Swaps

Interest rate swaps are contracts between two parties to exchange a stream of fixed-
rate payments for a stream of floating-rate payments indexed to JIBAR of a partic-
ular maturity. Consider the discrete tenor structure:

t = T0 < T1 < · · · < TN = T,

and let δ = Ti − Ti−1 denote the length of the tenor dates. Then for some initiation
time T0, define

Ti = T0 + iδ,

for i = 1, 2, . . . , n, where n is the number of interest payments. Let the fair swap
rate be denoted by S(T0, n). The fair rate must ensure that the present value of the
floating payments is equal to the present value of the fixed payments. This can be
expressed as

EQ

n/δ∑
i=1

exp

(
−
∫ Ti

T0

rOIS
u du

)
δL(Ti−1, Ti)

∣∣∣∣∣FT0


=EQ

n/δ∑
i=1

exp

(
−
∫ Ti

T0

rOIS
u du

)
δS(T0, n)

∣∣∣∣∣FT0
 .
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Thus

δ

n/δ∑
i=1

EQ

[
exp

(
−
∫ Ti

T0

rOIS
u du

)
L(Ti−1, Ti)

∣∣∣∣∣FT0
]

=δS(T0, n)

n/δ∑
i=1

EQ

[
exp

(
−
∫ Ti

T0

rOIS
u du

) ∣∣∣∣∣FT0
]
,

which implies that

S(T0, n) =

∑n/δ
i=1 LT0(Ti−1, Ti)∑n/δ

i=1 P
OIS
Ti−1,Ti

. (2.22)

3 Affine Transformation

The aim of this report is to estimate the above model using South African data.
Ideally one would have access to data pertaining to the individual JIBAR panel
members credit spread. This would allow one to estimate the dynamics of (λt) and
then using those dynamics, estimate the dynamics of the entire model. This is not
possible in the South African market as we do not have access to South African
credit default swap data. This implies that we are not able to disentangle the ef-
fects of (φt) and (λt) on the pricing formulae above. In order to get around this
problem, we shall set λt ≡ 0 for all t ≥ 0. This implies that instead of modelling
the JIBAR/OIS spread as two components, it is modelled as one component.

In order to solve the conditional expectations (2.16) and (2.18), we use the method-
ology of Duffie et al. (2000). This is formalised as follows:
Define the state vector process (Xt), as

Xt =

 rOIS
t

φt
ξφt

 . (2.23)

The SDE for (Xt) is then

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt (2.24)

where µ(Xt) ∈ R3, σ(Xt) ∈ R3 × R3 and Wt is a 3-dimensional Q - Brownian
Motion.

Jt =

N(t)∑
k=1

Zk
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is a 3-dimensional jump process, where {Z1, Z2, ...} are independent exponential
random variables and N(t) is a counting process with intensity λ(Xt) ∈ R3. Using
equations (2.2), (2.3) and (2.15) we can write this SDE in affine form. That is,

µ(x) = K0 +K1x, σ(x)σ(x)> = H0 +H1x and λ(Xt) = L0 + L1Xt.

(See appendix A for more detail).
It then follows for ρ0 ∈ R3, ρ1 ∈ R3 × R3, a ∈ R3 and ω ∈ R3 × R3 that

EQ

[
e−

∫ T
t (ρ0+ρ1·X(u))duea+w·XT |Ft

]
= eϕ(t,T )+ψ(t,T )·Xt (2.25)

where, for each fixed t, the functions ϕ(·, t) and ψ(·, t) solve generalised Riccatti
equations

−∂ψs(s, t)
∂s

:= ψ(s, t) ·K1 +
1

2
ϕ(s, t)>H1ϕ(s, t) + `1EQ

[
eψ(s,t)·Zt − 1

]
− ρ1,

−∂ϕs(s, t)
∂s

:= ψ(s, t) ·K0 +
1

2
ϕ(s, t)>H0ϕ(s, t) + `0EQ

[
eψ(s,t)·Zt − 1

]
− ρ0,

(2.26)

with the boundary conditions ϕ(t, t) = a and ψ(t, t) = w.

4 Implementation on South African Data

We have derived pricing formulae in section 2 for various South African market
instruments and in appendix B we will give the exact specifications of the market
instruments we are using. The time period of data available to us is daily data from
4 January 2004 to 18 October 2018 with all instruments having full data available
from 2005. In this section we qualitatively analyse these instruments. Figure 2.1
shows the evolution of the JIBAR 3-month rate over the period January 2005 to
October 2019.
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Figure 2.1: 3-month JIBAR from January 2005 to October 2019.

The increase in JIBAR around the time of the Global Financial Crisis shows the im-
pact of the event on the South African market. Thereafter, the rates seem to stabilise
around 5-7.5% and this is in part a function of the South African Reserve Bank’s tar-
get to control inflation and stabilise the currency.

The following cross section of the market on 18 October 2018, shows each of the in-
struments plotted according to their term structure (shown as multiples of a year).
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Figure 2.2: Cross-sectional look at the South African Interest Rate market on 18
October 2018.
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From figure 2.2, we can see that all rates are increasing as a function of their ma-
turity, except for the quoted swap rates which seem to decline after 20 years. The
quoted forward rates are increasing as a function of the term and hence we would
expect the quoted swap rates to increase as well. The long end decline of the swap
rates could be a function of demand for these types of swaps as well as a less liquid
market using derivative instruments that have this long a maturity.

If we look at the market quoted prices over the entire history of the dataset we
find some anomalies. During the month of February 2005 the quoted market prices
for a 10,12 and 15-year IRS were around 7.7% while the 11,13 and 14-year quotes
were around 9.5%. There are various other market anomalies but nothing as severe
as the disparate quotes for the IRS during 2005. Following the JIBAR curve, any
inference or models that are to be fit longitudinally are better fit to the period after
2010 where rates are more stable.
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Chapter 3

Estimation

1 Unscented Kalman Filter

We wish to estimate the parameters used in our model dynamics. Since we are not
just working with cross-sectional data, but rather a time-series of instrument prices,
it becomes necessary to use a filter. We follow the approach of Filipović and Trolle
(2013) and use an unscented Kalman filter together with maximum likelihood es-
timation. For a given parameter set, we want to compute the likelihood of seeing
our observed prices if those were the correct parameters. This value will then be
fed to an optimiser to calculate the next estimate of the parameter set.

1.1 Market Price of Risk

When we price instruments for a given parameter set, we are working in the risk-
neutral world under the measure Q. When we simulate the state transition of the
latent vector, we need to know its dynamics under the equivalent real world mea-
sure P. These measures are equivalent, but may be different. It is necessary to
model the market price of risk to allow for this when changing measures. We ad-
just the approach used in Filipović and Trolle (2013) to our model by assuming that
the market price of risk process is given by

Γ(t) =

(
Γr

√
rOIS(t),Γφ,Γλ,Γξφ

√
ξφ(t),Γξλ

√
ξλ(t)

)T
. (3.1)

Γφ and Γλ are set to zero as by the definition of the model, the credit and funding
deterioration processes ((λt) and (φt)) are measures of the entity-specific credit and
funding deterioration. These processes therefore model an idiosyncratic risk and
should not have an associated market risk premium.
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The Brownian motions under P are as follows:

dWOIS′
t = dWOIS

t + Γr

√
rOIS(t)dt,

dW φ′
t = dW φ

t + Γξφ

√
ξφ(t)dt, and

dW λ′
t = dW λ

t + Γξλ

√
ξλ(t)dt,

where dWOIS
t , dW φ

t and dW λ
t are the Brownian motions under Q introduced in 1.

The new dynamics are then given by

drOIS
t =(αOIS(θOIS − rOIS

t ) + αOIS,φ(θφ − ξφt ) + αOIS,λ(θλ − ξλt ) + Γrσ
OISrOISt )dt

+ σOIS
√
rOIS
t dWOIS

t .

dξφt =(αφ(θφ − ξφt ) + Γξφσ
φξφt )dt+ σφ

√
ξφt dW

φ
t .

dξλt =(αλ(θλ − ξλt ) + Γξλσ
λξλt )dt+ σλ

√
ξλt dW

λ
t .

1.2 Algorithm Overview

A Kalman filter takes two processes - a hidden process (xt) we call the latent state,
and an observed process (yt) whose value at each time step is known. We also
supply functions f and h that model how (xt) evolves in time and how (xt) and (yt)
are related. In our simplified model we cannot distinguish between downgrade
risk and liquidity risk, and it follows that (xt) = [rOISt , ξφt ]T and each yt is the
vector of prices of the thirty-two instruments1 in our data-set at time t. We have
f : R+

2 × R+
2 7−→ R+

2 such that

xt+1 = f(xt, wt),

where (wt) is a non-additive noise process corresponding to the Brownian motion
in (2.15). Similarly, h : R+

2 7−→ R+
32 such that

yt = h(xt) + vt,

where vt is an additive measurement noise term. h maps xt to the prices calculated
in 2. We are then required to provide covariance matrices R and Q for the mea-
surement and process noise respectively. A regular Kalman filter uses a linear h
and an extended Kalman filter uses a first order linearization of a non-linear h. The
unscented Kalman filter maintains the full non-linearity of h, and instead approxi-
mates the distribution by generating a set of “sigma points” spread about xt. The
full algorithm is specified in Appendix C.

1We are only estimating using the FRAs and IRSs. Looking at the bottom right of figure 2.2 it
seems plausible that the market for deposits is out of sync of that for the other instruments. We use
this as justification to drop the deposits from our estimation data set.
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2 Optimisation

Parameter estimation involves finding a parameter set Θ̂ such that the
log-likelihood, L(Θ), is maximised, i.e:

Θ̂ = arg max
Θ

L(Θ).

The approach taken with the unscented Kalman Filter implies that the density func-
tion of our observed variables (Yt) is approximated by a Normal distribution and
hence the above estimation procedure is known as a quasi-maximum likelihood
estimation procedure.
In our setup, the parameter set we aim to estimate is defined as

Θ = {αOIS, αφ, αOIS,φ, κφ,ΓOIS,Γφ, µφ, σOIS, σφ, θOIS, θφ}.

In the optimisation routine, certain model restrictions are placed on the parameter
set (eg. the Feller condition: 2αOISθOIS > (σOIS)2). In the South African market,
interest rates have historically and currently been above the 7% threshold, and as
such we do not allow models where the interest rates can go to zero or be negative.
Assessing the quality of our parameter estimates is done by considering their stan-
dard errors. This is done by inverting the information matrix

Var(Θ) = I(Θ)−1, (3.2)

where
I(Θ) = −E[H(Θ)],

and H(Θ) is the Hessian matrix defined as

H(Θ) =
∂2L(Θ)

∂ΘΘT
.

In essence, taking the square root of the diagonal entries in (3.2) gives us the stan-
dard errors associated with each of the estimated parameters. From there we can
construct confidence intervals and perform hypothesis tests to determine the sig-
nificance of each estimated parameter. An assumption we make is that the expec-
tation E[H(Θ)] is just equal to H(Θ) and this should not be a problem as our data
set is not small (i.e. no small sample problems).
We will also consider first-order optimality conditions when assessing the output.
Essentially if the value of this quantity is less than 10−7 then we can be sure that the
gradient of the (negative) log-likelihood function is close to zero at the evaluation
points.
Further practical implementation details are given in appendix D.
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Chapter 4

Results

In this chapter we will present the results from the estimation procedure of section
3. Due to time constraints, the results below were run on a limited set of data. The
model was estimated using data for 23 August 2018 to 31 October 2018. While we
acknowledge that this limits the intepretability of our results quite significantly,
the parameters in the model are not time dependent and so due to ever changing
market conditions, one shouldn’t estimate on too big a data set. It is for this reason
that our results still hold some validity and allow for meaningful interpretation.

1 Implied OIS Discount Curve from Cross-Section Estima-
tion

The following results show two sample cross-section estimations. Given the com-
plexity of the model and the nature of the cross-section estimation, it is expected
that the output of these estimations will lack robustness or intepretability. The aim
of this step was to get a set of reasonable starting parameters to feed in to the lon-
gitudinal estimation. The dates used were 1st May 2008 and 18th September 2018.
Table 4.1 shows the estimated parameters for the two estimations. Figures 4.1 and
4.2 show the estimated overnight, deposit, FRA and swap rates for the given esti-
mation.
Figures 4.3, 4.4, show the OIS discount curves from these two estimations.
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Parameter 1 May 2008 18 September 2018
αOIS 1.70 0.32
θOIS 0.15 0.09
αOIS,φ 4.18 6.08
σOIS 0.48 0.02
κφ 5.41 7.59
αφ 8.17 7.81
θφ 5.63 7.64
σφ 2.61 3.88
µφ 4.94 7.24

Table 4.1: Parameters for cross-sectional estimations
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Figure 4.1: Cross-sectional estimation for the 18th September 2018 showing deposit
rates (top left), FRA rates (top right), IRS rates (bottom left) and combined rates
(bottom right)
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Figure 4.2: Cross-sectional estimation for the 1st May 2008 showing deposit rates
(top left), FRA rates (top right), IRS rates (bottom left) and combined rates (bottom
right)
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Figure 4.3: Cross-sectional JIBAR and OIS curves for 18th September 2018
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Figure 4.4: Cross-sectional JIBAR and OIS curves for 1st May 2008
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2 Implied OIS Discount Curve from Longitudinal Estima-
tion

The aim of this report is to fit the model of Backwell et al. (2019) to South African
data in order to infer a term-structure of overnight index swap rates. The esti-
mation procedure of section 3 was used to produce a point estimate of the model
parameters from section 2. Below is a table of model parameter values:

Parameter Estimate
αOIS 9.62
αφ 3.73
αOIS,φ 0.01
κφ 10.00
σOIS 0.01
σφ 0.001
θOIS 0.00
θφ 1.86
Γr 0.13
Γφ 0.04
µφ 0.50

Using these model parameter values, we test the goodness-of-fit from a cross-
sectional point of view. That is we can use the model to price the deposit, FRA
and swaps that are observable in our data. We can then compare this output with
the actual prices observed. Figure 4.5 give this comparison on 31 October 2018.
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Figure 4.5: Cross-sectional look at model fit on 31 October 2018 showing deposit
rates (top left), FRA rates (top right), IRS rates (bottom left) and combined rates
(bottom right)

From figure 4.5 we can see that the model does not fit the South Africa data well
on this day. This could be due to several reasons. Firstly, due to time constraints,
the optimisation process was only able to run on a limited set of data, this meant
that parameter estimation would be based on a small sample size and thus inaccu-
rate. Secondly, from figure 4.5 we observed that the deposit rates, FRA rates and
IRS rates have large inconsistencies. By assumption, the model we have estimated
bases its pricing methodology on a market which prices these instruments in a con-
sistent manner. The model estimation procedure then cannot distinguish between
model error or inconsistencies in the data. Thirdly, because of the inconsistencies
in the data through time, the Unscented Kalman Filter was unable to accurately
estimate the state process, this meant that the likelihood calculation was unstable
and unable to infer the correct parameter estimates.
Figure 4.6 shows the actual JIBAR observed rate for 31 October 2018 and the model
implied OIS rate for that date.
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Figure 4.6: JIBAR and OIS curve on 31 October 2018.
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Chapter 5

Conclusion and Further Research

The aim of this report was to use the roll-over risk model of Backwell et al. (2019)
estimated on South African data to infer an overnight index swap discount curve.
In this market there are no traded basis or overnight index swaps, we therefore
model the JIBAR/OIS spread using roll-over risk, inferring a term structure of OIS
rates from the observed JIBAR rates. The purpose of the exercise is to be able to
price collateralised derivative contracts. These contracts have collateral posted to
a margin account on a daily mark-to-market basis, therefore in order to price these
instruments, it is required to discount at the appropriate OIS discount factor. Esti-
mation on a South African data set required us to develop the appropriate pricing
formulae for each South African instrument that we could observe. Using these
pricing formulae we were able to estimate the dynamics of the roll-over risk model.
This estimation was done using an Unscented Kalman Filter coupled with a like-
lihood maximisation routine. The results are consistent with our assertions that
JIBAR should charge a premium over and above the OIS rate to avoid roll-over
risk.

Further research could be done into a robustness study of our estimation proce-
dure. This could be done by excluding instruments or observations from our data
set and observing the effects of these exclusions on our OIS discount curve. It
would also be beneficial to test the output of our estimation procedure on out-
of-sample data. That is, perform the estimation on a certain set of data and then
test the goodness-of-fit on a separate set of data. The estimation procedure de-
veloped in this report produces a point estimate of the model parameters and the
OIS discount curve, it would be beneficial to use a particle filter in the parameter
estimation step in order to output a posterior distribution of each model parame-
ter. This would allow us to derive a confidence interval for the OIS discount curve
which would be useful from a practical standpoint as it gives an indication of the
uncertainty in the model parameters.
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As stated in the results section, the data used to estimate the model had inconsis-
tencies between the deposit, FRA and IRS rates, this is stated as a reason for the
poor model fit of our model in section 2. Further research could be done to coerce
the data in such a way to limit the effect that these inconsistencies have on the fit
of the model.
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Appendix A

Riccati Equations

In this section we develop pricing formula for each of the risk neutral expectations
used in the pricing equations for the various interest rate derivatives. We give
a theoretical overview of the techniques required to construct the relevant Ricatti
Equations and then we proceed to give the relevant formulas for all the expecta-
tions.

1 Background

We consider a general jump-diffusion model, Xt, on D = Rm × Rn specified by:

dXt = µ (Xt) dt+ σ (Xt) dWt + dJt

where

1. µ : D → Rd, σ : D → Rd×d

2. Wt is a Brownian motion in Rd

3. Jt is a right-continuous jump process, with jumps sizes following some distri-
bution law ν (dx) with jump intensity given by the process λ(Xt−), for some
λ : D → [0, ∞)

4. We assume that the Brownian motion W , the jump sizes of Z and the jump
times are all independent.

In order to develop a tractable model we require that drift, diffusion and jump
intensity all be affine functions of Xt, i.e. we require that:

µ (x) = b+ β1x1 + · · ·+ bdxd

σ (x)σ(x)ᵀ = a+ α1x1 + · · ·+ αdxd
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λ (x) = m+ µ1x1 + · · ·+ µdxd

where b, βi ∈ Rd; a, αi ∈ Rd×d and m, µi ∈ [0, ∞).
We are now able to specify the exponential affine form of the following expectation
used to calculate the characteristic function of Xt:

E
[
eu·XT

∣∣ Ft] = exp (φ (T − t, u) +Xtψ (T − t, u)) , 0 ≤ t ≤ T

and φ & ψ solve the following system of Riccati equations:

φ (t, u) = F (ψ (t, u)) , φ (0, u) = 0

ψ (t, u) = R (ψ (t, u)) , ψ (0, u) = u

with the function F & R being defined by the following system of equations:

F (u) = bᵀu+
1

2
uᵀa u+mk (u)

R1 (u) = βᵀ1u+
1

2
uᵀα1u+ µ1κ (u)

...
...

...
...

Rd (u) = βᵀdu+
1

2
uᵀαdu+ µdκ (u)

Here κ (u) =
∫
Rd (eu·x − 1) ν (dx). We note that if ν (dx) follows an exponential

distribution with parameter ϑ then elementary calculus gives κ (u) = u
ϑ−u .

As a simple example of the above, consider the following diffusion process:

dXt = −λ (Xt − θ) dt+ σ
√
XtdWt + dJt

where Jt is a pure jump process with constant intensity ε and jumps sizes expo-
nentially distributed with parameter α. Consequently the functions F and R can
be specified to construct the given Riccati equations:

F (u) = λθu+
εu

α− u
, R (u) = −λu+

u2

2
σ2

2 Implementation Methodology: Riccati Equation

The general time-inhomogeneous Riccati equation in Duffie (2008), page 29 im-
plementation in Matlab requires the use of Matlab’s ode23tb function . The given
function can solve any (well specified) system of ODE’s given a set of initial condi-
tions. In our implementation we only consider terminal boundary value conditions
and hence we have to solve the differential equations backwards in time, i.e. our
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terminal conditions essentially become initial conditions and we move backwards
in time until we get our solution at time s.
The coded solution is split into two parts: The initialisation of all the parameters
together the wrapper around ode23tband the output and the helper function bvpfcn
containing a definition of the actual system of ODE’s.
A problem in the implementation is that the given Riccati Equation are given in
a Matrix form while ode23tb can only handle vector constraints. To this end we
allow the computer to compute a single column vector of values and then these
are passed to the helper functions. This input is reshaped into a matrix (of the
appropriate dimensions) and calculations continue using this matrix form. At the
end of the helper function the final matrix is then again converted into a single
column by stacking all the columns underneath each other. This effectively allows
us to solve the Matrix equations with relative ease.
A technical aspect of the Riccati equations involves the expectation:
E
[
eψ(s, t)Zi − 1

]
= k (ψ (s, t)). This expectation is implemented on the assumption

that the jump sizes under the jump process follow an i.i.d exponential distribution
with some parameter µ. We can explicitly then calculate this expectation:

k (s) =

∫ ∞
0

(esx − 1)ue−µxdx =
s

µ− s

Since the equations involving ψ (s, t) are matrix valued, we take the quotient to
mean element-wise division. In cases where we encounter any 0

0 division we set the
corresponding values in output matrix (which will contain NaNs (not-a-number
value)) to zero since by definition if s = 0 in the above integral then the integral
evaluates to 0.
Lastly, since the Riccati equations are matrix and vector valued, we allow the user
to obtain an appropriate slice of these variables corresponding to the type of ex-
pectation they are trying to take. In essence we are computing the solution to 5
expectations simultaneously, 3 of which are only needed in all our pricing formu-
lae and hence we can take any appropriate slice to work out the correct value for
that expectation.

3 Process Evaluation

For the process

Xt =

 rOIS
t

φt
ξφt

 , (A.1)

with SDE
dXt = µ(Xt)dt+ σ(Xt)dWt + dJt (A.2)
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where Wt is a 5-dimensional Wiener process and

Jt =

N(t)∑
t=1

Xt,

where X1, X2, . . . are independent identically distributed random variables in Rd
which are independent of W and N is a counting process with intensity. Using the
method outlined in Duffie et al. (2000) we have the following:

µ(x) = K0 +K1x

=

 αθ
0

αφθφ

+

 −αOIS 0 −αOIS,φ

0 −κφ 0
0 0 −αφ

 , (A.3)

where αθ = αOISθOIS + αOIS,φθOIS,φ.

σ(x)σ(x)> = H0 +H1x

=

 0
0
0

+

 (σOIS)2 0 0
0 0 0
0 0 (σφ)2

 , (A.4)

with stochastic intensity of jumps given by

Λ(j)(x) = `0 + `1 · x

=

 0
0
0

+

 0 0 0
0 0 1
0 0 0

 , (A.5)
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Appendix B

Data

The following instruments (daily timeseries), with Bloomberg codes, were avail-
able to us to use from 4 January 2000 until 31 October 2018. DEP refers to a market
reference rate indexed to JIBAR, FRA refers to a Forward Rate Agreement indexed
to 3-month JIBAR with the quoted tenor indicating the start and end dates to which
the quoted rate should apply, i.e. “1mx4m would indicate a FRA applying in one
months time for the next 3 months. “IRS indicates an interest rate swap linked to
3-month JIBAR with both floating and fix legs having a 3-month frequency.
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Instrument Tenor Unadj
Term

BBG Code Data Availability

DEP 1d 0,00 RAONON 4 January 2000
DEP 1m 0,08 JIBA1M 4 January 2000
DEP 3m 0,25 JIBA3M 4 January 2000
FRA 1mx4m 0,33 SAFR0AD 4 January 2000
FRA 2mx5m 0,42 SAFR0BE 4 January 2000
DEP 6m 0,50 JIBA6M 4 January 2000
FRA 3mx6m 0,50 SAFR0CF 4 January 2000
FRA 4mx7m 0,58 SAFR0DG 4 January 2000
FRA 5mx8m 0,67 SAFR0EH 4 January 2000
DEP 9m 0,75 JIBA9M 28 February 2005
FRA 6mx9m 0,75 SAFR0FI 4 January 2000
FRA 7mx10m 0,83 SAFR0GJ 4 January 2000
FRA 8mx11m 0,92 SAFR0HK 4 January 2000
DEP 12m 1,00 JIBA12M 4 January 2000
FRA 9mx12m 1,00 SAFR0I1 4 January 2000
IRS 1y 1,00 SASW1 4 January 2000
FRA 12mx15m 1,25 SAFR011C 1 March 2001
FRA 15mx18m 1,50 SAFR1C1F 2 May 2005
FRA 18mx21m 1,75 SAFR1F1I 2 May 2005
FRA 21mx24m 2,00 SAFR1I2 2 May 2005
IRS 2y 2,00 SASW2 4 January 2000
IRS 3y 3,00 SASW3 4 January 2000
IRS 4y 4,00 SASW4 4 January 2000
IRS 5y 5,00 SASW5 4 January 2000
IRS 6y 6,00 SASW6 4 January 2000
IRS 7y 7,00 SASW7 4 January 2000
IRS 8y 8,00 SASW8 4 January 2000
IRS 9y 9,00 SASW9 4 January 2000
IRS 10y 10,00 SASW10 4 January 2000
IRS 11y 11,00 SASW11 18 February 2003
IRS 12y 12,00 SASW12 1 February 2001
IRS 13y 13,00 SASW13 18 February 2003
IRS 14y 14,00 SASW14 18 February 2003
IRS 15y 15,00 SASW15 4 January 2000
IRS 20y 20,00 SASW20 4 January 2000
IRS 25y 25,00 SASW25 21 August 2000
IRS 30y 30,00 SASW30 21 August 2000
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Appendix C

Unscented Kalman Filter

1 Algorithm

Here we present the algorithm used in the implementation below. The full docu-
mentation is available at MathWorks (2016b). Let (xk) be the latent state process we
wish to estimate, and (yk) the observed process we have access to. The algorithm
demands the following inputs:

• f , which describes the dynamics of (xk),

• h, which relates the underlying xk to the observed yk,

• Q, the covariance of the process noise error,

• R, the covariance of the measurement noise error and

• x[0| − 1], the initial estimate of x[0].

• P [0| − 1], the initial state covariance. A higher value should be used if one is
not sure of x[0| − 1].

• α, β and κ which are scaling parameters.

These are used to model the state transition and measurement functions which are
given by

x[k + 1] = f(x[k], w[k]) or f(x[k]) + w[k],

y[k] = h(x[k], v[k]) or h(x[k]) + v[k],

w[k] ∼ N (0, Q),

v[k] ∼ N (0, R),

where we call f (and similarly, h) additive if x[k + 1] = f(x[k]) + w[k]. In what
follows we will assume that f is non-additive and h is additive. The parameters α
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and κ control the spread of the sigma points about the mean. This spread is directly
proportional to α and

√
κ. Typically κ is set to 0 and the spread is controlled solely

by α. β can be used if you know something about the distribution of (xk), but
defaults to 2 which is optimal for Gaussian distributions.
For each time step k, we will alternate between correction and prediction steps.
For correction we update the estimates of the mean x[k|k] and covariance P [k|k] of
the latent state, given prior estimates x[k|k − 1] and P [k|k − 1] by comparing the
measure estimate ŷ[k] to the observed y[k]. For prediction we compute the next
time step’s prior estimates x[k + 1|k] and P [k + 1|k].

1.1 Correction

First we choose a set of 2M + 1 sigma points, where M is the size of the covariance
matrix P [k|k − 1] and the number of states. These are distributed about the mean
x[k] by adding and subtracting columns of the matrix square root of the scaled
covariance matrix.

ˆx(0)[k|k − 1] = x̂[k|k − 1],

ˆx(i)[k|k − 1] = x̂[k|k − 1] + ∆x(i) i = 1, 2, . . . , 2M,

∆x(i) = (
√
cP [k|k − 1])i i = 1, 2, . . . ,M,

∆x(M+i) = −(
√
cP [k|k − 1])i i = 1, 2, . . . ,M.

Here c = α2(M + κ) is a scaling factor and
√
cP is the matrix square root such that√

cP
√
cP

T
= cP .

Each sigma point is then passed through the measurement function h to compute
a predicted measurement,

ˆy(i)[k|k − 1] = h( ˆx(i)[k|k − 1]) i = 1, 2, . . . ,M.

These measurement are then combined to yield a predicted measurement ŷ[k] for
time k. We define a set of measurement weights W i

M as

W 0
M = 1− M

α2(M + κ)
,

W i
M =

1

2α2(M + κ)
i = 1, 2, . . . ,M.

ŷ[k] =
2M∑
i=0

W i
M

ˆy(i)[k|k − 1]

Note that all the non-central sigma points are weighted equally. With a slightly
different set of weights W i

c (differing only in the central weight W 0
c ) we estimate
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the covariance of the predicted measurement as

W 0
c = (2− α2 + β)− M

α2(M + κ)
,

W i
c =

1

2α2(M + κ)
i = 1, 2, . . . ,M.

Py =

2M∑
i=0

W i
c(

ˆy(i)[k|k − 1]− ŷ[k])( ˆy(i)[k|k − 1]− ŷ[k])T +R

These values for Py and ŷ[k] can then be used in the maximum likelihood calcula-
tion. We then estimate the cross-covariance between x̂[k|k − 1] and ŷ[k] as

Pxy =
1

2α2(M + κ)

2M∑
i=1

W i
c(

ˆx(i)[k|k − 1]− x̂[k|k − 1])( ˆy(i)[k|k − 1]− ŷ[k])T

We can start the summation at 1, since the zeroth sigma point ˆx(0)[k|k − 1] is just
x̂[k|k− 1] itself. We are now ready to calculate the Kalman gain K = PxyPy−1 and
finish updating the state and state error covariance estimates as

x̂[k|k] = x̂[k|k − 1] +K(y[k]− ŷ[k])

P [k|k] = P [k|k − 1]−KPyKT

1.2 Prediction

We now predict the state and state error covariance at the next time step. We start
by propagating sigma points. This time, since we have a non-additive noise for f
we will additionally compute 2L sigma points ŵ[k|k] for the error terms about the
mean of zero using the error covariance Q with size L. this time about x̂[k|k] using
the covariance matrix P [k|k]. That is

ˆx(0)[k|k] = x̂[k|k],

ˆx(i)[k|k] = x̂[k|k] + ∆x(i) i = 1, 2, . . . , 2M,

∆x(i) = (
√
cP [k|k])i i = 1, 2, . . . ,M,

∆x(M+i) = −(
√
cP [k|k])i i = 1, 2, . . . ,M.

ŵ(i)[k|k] = (
√
cQ[k|k])i i = 1, 2, . . . , L,

ŵ(M+i)[k|k] = −(
√
cQ[k|k])i i = 1, 2, . . . , L.

Each sigma point is then passed through the state transition function. The 2L + 1
sigma points for x[k|k] are passed in with zero error component. The 2M sigma
points for w[k|k] are passed in as the error argument alongside the original mean
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x[k|k] used to generate the x[k|k] sigma points. The whole set of 2(L+M)+1 points
are then combined with the same Wm weights as before to get x̂[k + 1|k].

x̂(i)[k + 1|k] = f(x̂(i)[k|k], 0) i = 0, 1, 2, . . . , 2M,

x̂(1+2M+i)[k + 1|k] = f(x̂(0)[k|k], ŵ(i)[k|k]) i = 1, 2, . . . , 2L,

W 0
M = 1− M

α2(M + κ)
,

W i
M =

1

2α2(M + κ)
i = 1, 2, . . . , 2(M + L).

x̂[k + 1|k] =

2(M+L)∑
i=0

W i
M

ˆx(i)[k + 1|k]

The covariance is propagated in similar fashion, as

W 0
c = (2− α2 + β)− M

α2(M + κ)
,

W i
c =

1

2α2(M + κ)
i = 1, 2, . . . ,M.

Px[k + 1|k] =

2(M+L)∑
i=0

W i
c(

ˆx(i)[k + 1|k]− x̂[k + 1|k])( ˆx(i)[k + 1|k]− x̂[k + 1|k])T

Note we do not add Q here as we did with Py and R, because the effect of the noise
has already been incorporated by the additional sigma points.

2 Implementation

We use a Matlab’s ‘Control System Toolbox’ and ‘Signal Processing Toolbox’ to im-
plement the unscented Kalman filter specified in MathWorks (2016a). We need to
provide it with f, h,Q,R, x[0 : −1], P [0| − 1] as defined in the previous subsection.
Following the dynamics of our simplified model, we specify f : R2

+ × R2
+ −→ R2

+
as

f

([
r̂OISk

ξ̂k

]
,

[
w1

w2

])
=

[
r̂OISk

ξ̂k

]
+

[
+αOIS(θOIS − r̂OISk ) + αOIS,φ(θφ − ξ̂k) + Γrσ

OIS r̂OISk

αφ(θφ − ξ̂k) + Γξσ
φξ̂k

]
dt

+

w1σ
OIS

√
r̂OISk

w2σ
φ

√
ξ̂k

√dt
Our measurement function h maps each pair x̂k = (r̂OISk , ξ̂k) to the price vector
ŷk ∈ R32

+ made up of the prices of the FRAs and IRSs outlined in the Data section
B. Pricing formula are as in 2. The remaining inputs and parameters are specified
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as follows:

Q =

[
1 0
0 1

]
R = 0.01

x[0| − 1] = [0.07, 0.1]T

P [0| − 1] =

[
σois
√

0.07 0

0 σφ
√

0.1

]
∆t

α = 0.9

κ = 0

β = 2

where ∆t = 1/365
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Appendix D

Optimisation

The estimation methodology uses a local nonlinear minimiser in Matlab, fmincon,
to do the estimation where the optimisation is given in Matlab’s solver form. The
optimisation requires us to define a set of optimisation variables that are then fed
into the objective function (which returns the negative log-likelihood function) and
then an iterative process occurs. This iterative process can be broken down as fol-
lows:

1. Evaluate the objective function at the given set of parameters.

2. Take each parameter in turn and add a small value to it and evaluate the
objective function. For N parameters in our parameters set, this involves N
new objective function evaluations.

3. Depending on the results of step 2, work out the appropriate update rule to
change all the parameters and evaluate the objective function again. Hope-
fully the objective function is smaller otherwise the update rule is revised.

4. Repeat steps 1− 3 until the norm of the change in the parameters in step 2 is
less than 10−10 or until the first order optimality condition is less that 10−7.

After step 4, the parameters obtained are considered our estimated model param-
eters.
In the estimation process we do limit the upper and lower bounds of each of the
parameters as follows:
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Lower Bound Upper Bound
αOIS 0 10
αφ 0 10
αOIS,φ 0 10
κφ 0 10
ΓOIS 0 1
Γφ 0 1
µφ 0 10
σOIS 0 30
σφ 0 10
θOIS 0 10
θφ 0 10

Table D.1: Upper and Lower bounds for Θ.

Finally, since the optimisation process in solver form does not give the Hessian
matirx, we need to approximate it numerically. This is done by numerically cal-
culating the second order derivatives.
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