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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial
and Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant
research project, while simultaneously developing links with international students and
academics in the field. An allied purpose is to bring a variety of international researchers
to South Africa to give them a glimpse of the dynamic environment that is developing at
UCT in the African Institute of Financial Markets and Risk Management. The primary goal,
however, is for students to learn to work in diverse teams and to be exposed to a healthy
dose of fair competition.

The Fifth Financial Mathematics Team Challenge was held from the 26th of June to the 6th
of July 2018. The challenge brought together four teams of Masters and PhD students from
France, Germany, China, Ireland, South Africa and the UK to pursue intensive research in
Financial Mathematics. Each team worked on a distinct research problem over the twelve
days. Professional and academic experts from Switzerland, South Africa, and the UK indi-
vidually mentored the teams; fostering teamwork and providing guidance. As they have
in the past, the students applied themselves with remarkable commitment and energy.

This years research included topical projects on (a) South African interest rate dynamics,
(b) commitment scheduling for private equity investments, (c) portfolio optimisation un-
der uncertainty, and on (d) the appropriateness of the LFMM model in South African inter-
est rate markets. These were either proposed directly by our industry partners or chosen
from areas of current relevance to the finance and insurance industry. In order to prepare
the teams, guidance and preliminary reading was given to them a month before the meet-
ing in Cape Town. During the final two days of the challenge, the teams presented their
conclusions and solutions in extended seminar talks. The team whose research findings
were adjudged to be the best was awarded a floating trophy. Each team wrote a report
containing a critical analysis of their research problem and the results that they obtained.
This volume contains these four reports, and will be available to future FMTC participants.
It may also be of use and inspiration to Masters and PhD students in Financial and Insur-
ance Mathematics.

FMTC V was a great success, so 2019 and FMTC VI is already in the pipeline! It is a great
pleasure to see that the FMTC reaches new shores this year. The first edition of the FMTC
Brazil takes place at the Fundação Getulio Vargas (FGV) in Rio de Janeiro, 8-18 August
2018.

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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Chapter 1

Introduction

1 Assertion

This paper reviews current interest rate setting practices and associated derivative
pricing in the South African financial markets. It places a special focus on the be-
haviour of the 3-month Johannesburg Interbank Average Rate (JIBAR) in the lead
up to monetary policy committee (MPC) meeting dates. On these dates, the re-
purchase (Repo) rate is regularly altered by a factor of ±0.25% or ±0.5%. There is
an intricate relationship between JIBAR and the Repo rate, which is illustrated in
Figure 1.1 below. Graph (a) shows an instance where the forward market did not
anticipate a jump in JIBAR, which is evident from the sudden change in both JIBAR
and the forward rates immediately after the 19th July 2012 MPC meeting. By con-
trast, graph (b) shows an instance where the forward market anticipated a jump in
JIBAR, as indicated by the forward rate jumping well before the MPC meeting on
17th July 2014.

The main assertion of this paper is that on dates when the market anticipates that a
Repo rate change will occur, rational market participants should properly account
for this future change in their NCD rates, and thus we should expect a more grad-
ual change in JIBAR as the MPC date approaches. Note this assertion is based off a
number of assumptions about the tradability of NCDs. These assumptions are not
addressed in this paper. We hypothesise that JIBAR has systematic jumps around
the MPC dates. This hypothesis will be tested in detail in later sections. The objec-
tive of this paper is to present a realistic pricing model for interest rate derivatives
that incorporates these irrational jumps.
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(a) May–July 2012 -50BPs (b) May–July 2014 +25BPs

Figure 1.1

The introduction of this paper will analyse the construction of JIBAR and introduce
interest rate derivatives in the South African context. Chapter 2 will present evi-
dence of observed irrationality of JIBAR and a formal argument of how JIBAR and
forward rates should act rationally. Chapter 3 will further analyse the time series
of interest rates and perform a variety of statistical tests to prove our hypothesis.
Chapter 4 will then introduce an alternative method of forward curve construction
and compare it to the market’s current convention. Chapter 5 will then implement
an option pricing model that compensates for the jumps in JIBAR.

2 A review of JIBAR

JIBAR is the central focus as a benchmark rate in the South African money mar-
ket. JIBAR simple yield rates are calculated by the Johannesburg Stock Exchange
(JSE). It is calculated by taking the mid-rate of interbank Negotiable Certificates
of Deposit (NCDs) randomly from the screens of eight different banks in South
Africa. The JSE observes snapshots of the contributors’ NCD bid and offer rates
from a real-time trading screen randomly between 9:15am and 9:45am each day.
The top two and bottom two mid-rates are discarded and an arithmetic mean of
the remaining four are calculated, resulting in the JIBAR rate. The JSE reserve the
right to use any snapshot figure at their discretion, observe the bid and offer rates,
and calculate the mid-rate for each NCD maturity from each bank. NCDs with
maturities of 1, 3, 6, 9 and 12-months are sampled to produce a term structure of
JIBAR rates. This random rate sampling and mid-point averaging helps to achieve
observations of real world trading conditions. See (South African Reserve Bank,
2007), (South African Reserve Bank, 2012) and (South African Reserve Bank, 2018)
for further discussion.

The calculation and publishing of JIBAR rates are overseen by the South African
Reserve Bank (SARB) which enforces a strict code of conduct. JIBAR underpins
R3trn to R4trn worth of transactions in South Africa, with the bulk of these trades
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being completed in the inter-bank interest rate derivative market. This motivates
its importance as a reference rate. JIBAR is driven primarily by the Repo rate in
South Africa which is set by the SARB (Figure 1.2). The Repo rate is the rate at
which the SARB lends to banks. Banks have a choice to fund themselves in the
overnight market at the Repo rate or through non-bank institutional funding with
NCDs. Thus, if these two rates differ greatly, supply and demand forces will ad-
just the rates towards each other. The SARB sets the Repo rate every two months
at monetary policy committee (MPC) meetings in order to control total debt levels
and consequently money supply, in order to achieve inflation, GDP and exchange-
rate targets.

Figure 1.2: Repo VS JIBAR

An international comparative to JIBAR is the London Interbank Offered Rate (LI-
BOR) which is the most widely used reference rate in the world. 150 LIBOR rates
of varying maturities and currencies are determined by the contributions from 15
banks, each estimating the cost of borrowing from other banks. The top and bot-
tom 25% are discarded and the middle rates are then arithmetically averaged to
produce the term structure of LIBOR rates.

Controversy has surrounded the LIBOR where manipulation by banks contribut-
ing to the LIBOR was clearly demonstrated, and heavy fines were imposed on the
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convicted banks. These Banks were convicted of collusion and manipulation of LI-
BOR to profit from their existing interest rate derivative positions. Indeed, 20 banks
were investigated in 2013 for previously manipulating LIBOR rates and were found
guilty and punished with severe monetary fines (The Economist, 2013).

In 2012, the SARB reviewed the JIBAR calculation procedure and conducted an
investigation into potential manipulation of JIBAR from 2003 to 2012. The report
found there were outliers in the rates submitted by contributors for the calculation
of JIBAR, but that these did not provide sufficient evidence of deliberate manipu-
lation (South African Reserve Bank, 2012). Nevertheless, the report recommended
that JIBAR switch to real-time screen rates instead of submitting estimated rates
which are far more susceptible to manipulation via collusion. However, Jager and
Parsons (2013) found evidence of the 3-month JIBAR spreads behaving similarly to
the spreads observed in the LIBOR rate during its period of manipulation. Further-
more, the 1-month JIBAR was found to have abnormal movements that were not
economically justifiable (Jager and Parsons, 2013). This warrants further investiga-
tion into the behaviour of JIBAR and its associated interest rate derivatives. This
paper will only deal with certain anomalies identified in the next chapter.

3 Interest rate derivatives

JIBAR is referred to as a spot rate, since it is an interest rate which applies from to-
day until some future date t. Let the capitalisation factor beC(0, t) = (1+r(0, t) t

365)
which accumulates one unit of currency from current time until time t at rate
r(0, t). Similarly, let the discount factor Z(0, t) = 1

C(0,t) be the value today of re-
ceiving one unit of currency at time t. There exists a relationship between spot
rates and forward rates which apply for a future period from t until T where
t < T . In order to avoid arbitrage, we require C(0, t) × C(t, T ) = C(0, T ) where
C(t, T ) = (1 + F (0; t, T )(T−t365 ) and F (0; t, T ) is the forward rate today applying
over time period t to T (West, 2009). If this relationship does not hold, then one
can profit at maturity with zero initial cost. The forward rate can be rewritten as
F (0; t, T ) = 365

T−t

(
C(0,T )
C(0,t) − 1

)
.

A Forward Rate Agreement (FRA) is a derivative instrument where the long party
pays a pre-agreed fixed rateK and receives a floating rate rate from a counter party
(short party) over a future period from time t to T (West, 2009). Notationally, a FRA
that begins in n months time (near date) and maturity in m months time (far date)
is referred to as a n ×m FRA. The effective period is the period from time n to m
where the underlying rate comes into effect and is deterministic over this period.
Common FRAs in South Africa include 1 × 4, 2 × 5 and 3 × 6. The value of a long
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FRA at any time s ≤ t < T can be represented as

N(F (s; t, T )−K)T−t365 Z(s, T ),

per 1 unit of notional. Time t is referred to as the resettlement date, and the future
rate and strike rate over period t to T are known at this date. Contracts are typi-
cally settled in advance at time t (West, 2009).

FRAs are commonly used to hedge interest rate risk. For example, if an entity
wishes to borrow money at a future date and expects floating rates to rise in the
near future, then they can enter a long FRA where the near and far dates match
the dates of the loan and fix a rate K that will apply to their loan. It is noted that
under the principle of no arbitrage the strike rate of FRA with be the forward rate
associated with the FRA reset and maturity dates. It is concluded that the forward
rates give an expectation of future JIBAR.
The figure below shows a series of 1x4 FRA rates and a series of JIBAR rates. As
can be seen, the FRA rates give reasonable estimate for the future JIBAR rates.

Figure 1.3: JIBAR VS FRA1x4

Caplets and floorlets are options with an interest rate as the underlying asset. A
caplet is a call option which gives the holder (long party) the right but not the
obligation to receive the underlying interest rate and pay the pre-agreed fixed rate
(West, 2007). Similarly, a floorlet is a put option which gives the holder the right
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but not the obligation to pay the underlying interest rate and receive the pre-agreed
fixed rate. The long party only has upside potential and pays a premium for this
optionality. Caplets and floorlets are settled in advance and have payoffs deter-
mined at their respective reset date t. Black (1976) provide an analytic pricing
framework for caplets and floorlets. A cap is a series of adjacent caplets and a
floor is a series of adjacent floorlets.
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Chapter 2

Observed Irrationality

1 Exploratory data analysis

Data of the Repo rate, 3-month JIBAR and 1×4, 2×5 and 3×6 FRA strike rates were
reviewed from 2001 until May 2018. In particular, periods where the Repo rate
changed were investigated to explore the relationship between the market rates
and the Repo rate.

(a) June–Aug 2004 -50BPs (b) April–June 2006 +50BPs

(c) May–July 2012 -50BPs (d) Jan–Mar 2010 -50BPs

Graphs (a)–(d) provide visual evidence of the close relationship the FRA rates and
JIBAR have when the Repo rate changes. These graphs include large jumps of the
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rates when the Repo rate changed unexpectedly. These periods contained MPC
dates where the market did not anticipate a Repo rate change. This is evident by
the jumps in JIBAR and FRA rates on the MPC dates. Had the repo rate change
been anticipated, the FRA rates would have jumped prior to the MPC date as they
are an expectation of future JIBAR.

(e) May–July 2015 +25BPs (f) May–July 2014 +25BPs

(g) Nov–Jan 2016 +50BPs (h) Jan–Mar 2018 −25BPs

Graphs (e)–(h) show visual evidence of FRA rates moving when their effective pe-
riods include an expected Repo rate change, but the 3-month JIBAR rate does not
change when it overlaps the same MPC date. This is indicated by the relatively
large gap between the market FRA rates and JIBAR until the MPC announcement
date. The JIBAR rates appear to only jump according to the Repo rate change on the
MPC date. This implies that the market anticipates a repo rate change but JIBAR
itself is not accounting for the jumps prior to the date of the jumps. In (g), the
rate hike is anticipated nearly 2 months in advance by market FRA rates but JIBAR
shows almost no change until the actual announcement. We explore the trades be-
low that could exploit this difference .

2 Theoretical JIBAR behaviour

In a liquid arbitrage-free market one expects that the rates of JIBAR and short-term
FRAs should not differ by too great a margin, since their associated contract pe-
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riods have a significant overlap. However, in the previous section we identified
some irregular behaviour in JIBAR in the lead up to MPC dates. That is, the FRA
rates frequently anticipate a change in the Repo rate, and hence in JIBAR, but JIBAR
itself does not account for this change before it actually occurs, which causes a dis-
crepancy between these two rates. To see why this may be considered irrational,
let us consider the following investment strategy for a bank.

Consider two time periods, T,∆t > 0, measured in number of days, with T ≤ ∆t,
such that an MPC date occurs between the times T and ∆t. To make this more con-
crete one may think of T and ∆t as being 1 month and 3 months respectively. Sup-
pose that at an initial time (let’s say time 0) we observe the ∆t-JIBAR rate J(0,∆t)
and the T × (T + ∆t)-FRA rate F (0, T, T + ∆t).

At time 0 we sell a Negotiable Certificate of Deposit (NCD) with face value N
(ZAR), with interest paid at the time of maturity ∆t. The interest rate is given by
J(0,∆t) (indeed, the rates submitted to the JSE for JIBAR calculation are princi-
pally based on NCDs). We then immediately invest the full amount received in
return for the NCD repeatedly in overnight repurchase agreements (Repo) for the
duration T . Denote the initial Repo rate by r0, so that at time T the return on our
investment is given by N

(
1 + r0

1
365

)T .

When the NCD matures (at time ∆t) we pay back N
(
1 +J(0,∆t) ∆t

365

)
. Considering

the time value of money, this value corresponds to

N
(

1 + J(0,∆t)
∆t

365

)(
1 + r∆t

1

365

)T
at time T + ∆t, where r∆t denotes the Repo rate at time ∆t, which may be different
to r0 since an MPC date occurs before time ∆t.

Also at the initial time, we enter into a short FRA with notional valueN
(
1+r0

1
365

)T ,
contract period between the times T and T +∆t, and with the fixed rate F (0, T, T +
∆t) while simultaneously investing N at the repo rate until time T , at which point
we immediately reinvest these earnings in an NCD from T to ∆t with face value
N
(
1 + r0

1
365

)T . By doing so we effectively lock in an interest rate of F (0, T, T + ∆t)
over the contract period, so that the return at the final time T + ∆t is given by

N
(

1 + r0
1

365

)T(
1 + F (0, T, T + ∆t)

∆t

365

)
.
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In summary, having started with zero capital, our final portfolio is worth

N
(

1 + r0
1

365

)T(
1 + F (0, T, T + ∆t)

∆t

365

)
−N

(
1 + J(0,∆t)

∆t

365

)(
1 + r∆t

1

365

)T
.

Absence of arbitrage then implies that this difference should be equal to zero, so
that

1 + J(0,∆t)
∆t

365
=
(

1 + F (0, T, T + ∆t)
∆t

365

) (1 + r0
1

365

)T(
1 + r∆t

1
365

)T . (2.1)

Of course, the rate r∆t is typically unknown at the initial time since an MPC meet-
ing is scheduled to occur before the terminal time, which may result in a change to
the Repo rate. However, even in this case the Repo rate will typically only change
by 25 or 50 basis points, and such changes are frequently anticipated by the market.
As FRAs are liquidly traded, it is reasonable to assume that the FRA rate is correct.
Thus, we infer from (2.1) bounds on sensible values of the JIBAR rate J(0,∆t).

On the other hand, one can also use (2.1) to provide a rational forecast for JIBAR,
by considering the function T 7→ F (0, T, T + ∆t), which is naturally interpreted as
providing the expected future values of the ∆t-JIBAR. This function is shown in
Figure 2.2 for the case where J(0,∆t) = 7% with ∆t = 3 months and an MPC date
occurs after 50 days.

Figure 2.2: Rational forecast for JIBAR in the lead up to an MPC date
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We conclude that in anticipation of a change in the Repo rate, JIBAR and forecasts
of JIBAR should move gradually in the lead up to this change. In particular, in
cases where such a change in the Repo rate is correctly predicted by the market,
JIBAR should not jump significantly on MPC dates. As we saw in the previous
section, this is consistently in stark contrast with observed behaviour.
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Chapter 3

Data Analysis

The aim of this project is to test the hypothesis that there is a systematic jump
in JIBAR rates, and hence forward rates, around the monetary policy commit-
tee (MPC) meeting dates. It is speculated in previous sections that the forward
rate curve underlying JIBAR movements has discontinuities on the short end. As
was shown in the previous section, knowing a future change in Repo rates should
cause rational market participants to react slowly to the change, and so JIBAR rates
should continuously approach the expected change.

1 Methodology

The alternate hypothesis tested below is that market participants are not reacting
rationally to expectations of future JIBAR movements. The aim of this section is
to use naive statistical tests to determine if there is significant evidence of biases in
these rates. The argument is formalised as follows:

Null hypothesis (H0): There no are systematic jumps in JIBAR movements around
the MPC meeting dates.

Alternate hypothesis (Ha): JIBAR rates experience discontinuous jumps at the time
of anticipated MPC announcements.

A time series of JIBAR, 1×4 FRA, 2×5 FRA and 3×6 FRA rates from 02/01/2001–
17/05/2018 are used for testing. The methods used to test these hypotheses are
summarised as follows:

• First, testing the significance of just a jump variable, jumping on MPC an-
nouncement dates, in explaining all the variability in the rates. That is, writ-
ing R for one of the considered rates, does the existence of the jump term
in
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Rt −Rt−1 = a+ b+It∈{MPC dates}∩{The Jump was positive}

+b−It∈{MPC dates}∩{The Jump was negative},

provide a significant explanation for the variability in the rate?

• Second, testing whether the there is a significant difference in the mean jump
sizes on days with an MPC announcement and days that do not. In other
words, does the mean jump size on MPC dates differ from the mean jump
size on other dates?

E[|Rt −Rt−1|It∈{MPC dates}] 6= E[|Rt −Rt−1|It/∈{MPC dates}].

1.1 Results

The following figures show the results from the first hypothesis test. The following
is a snapshot of the output from R:

(a) Jump Significance in JIBAR Rates (b) Jump Significance in FRA1x4 Rates

(c) Jump Significance in FRA2x5 Rates (d) Jump Significance in FRA3x6 Rates

Figures (a)-(d) show summaries of a linear regression calculated for the model test-
ing the first hypothesis, for the four reference rates. The first observation from these
results is the diminishing significance of the jump term going from JIBAR to 1× 4,
2× 5 and 3× 6 FRA rates. This is in line with our main assertion, as we expect the
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discontinuities to be more prevalent at the shorter end of the yield curve. It is, how-
ever, surprising that neither the 2×5 nor 3×6 FRA rates are significantly explained
by a single jump term. This result suggests that expected Repo rate changes have
a slower reaction the further along the yield curve they are observed.

The second hypothesis test, examines whether there is a significant difference in
the mean jump size in the four reference rates around MPC and non-MPC dates.
The following is a snapshot of the output from R:

(a) Jump Differences in JIBAR (b) Jump Differences in FRA1x4

(c) Jump Differences in FRA2x5 (d) Jump Differences in FRA3x6

These tests conclude (at the 5% significance level) that all but the 3 × 6 FRA rates
show significant jump sizes around the MPC dates compared with the jump sizes
on other dates. This naive test gives further evidence of a systematic jump in mar-
ket rates around the MPC dates. Further, more rigorous tests are needed to finally
conclude that these jumps are present.

2 Time series analysis

In this section we demonstrate that a discrete jump term on an MPC date is neces-
sary when modelling the spot rate (JIBAR) and forward rates (FRA) by using time
series analysis. The jump term exists due to both expected and unexpected Repo
rate movements on MPC dates.

To generate time series models for JIBAR and the various FRA rates, we use data
from January 2001 through to May 2018 obtained from the South African Reserve
Bank. We concentrate on autoregressive integrated moving average (ARIMA) mod-
els and afterwards try to improve them with the addition of a jump term to each
model.

16



2.1 JIBAR
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JIBAR Jan 2001 - May 2018

Figure 3.2: Actual JIBAR Jan 2001 – May 2018

JIBAR over a 17.5 year horizon is plotted in Figure 3.2. A visual inspection of the
series doesn’t show a deterministic, upward or downward pattern, nor any season-
ality effect, consistent with the unpredictability of the monetary market. Accord-
ing to the augmented Dickey Fuller test, the series appears to be non-stationary
and changes are observed discretely, which can also be illustrated by the autocor-
relation function and the partial autocorrelation function. Thus, we infer that it is
reasonable to take a difference of the time series. Furthermore, the series may expe-
rience co-integration, but the rates do not appear to indicate any mean-reversion.

(a) adf test of actual JIBAR

(b) acf, pacf of actual JIBAR

ARIMA model for JIBAR

The information of the fitted ARIMA model is shown in Figure 3.4.
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Figure 3.4: ARIMA model for JIBAR

The points shown in Figure 3.5 give a good approximation of the JIBAR series over
periods of low volatility. However, the model is not well fitted given the outliers
shown. By inspection, one can easily notice that there is a much larger jump than
the actual curve on the date of a repo rate change. Thus, it would make more sense
to add a jump term into the model.
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Figure 3.5: Fitted ARIMA curve for JIBAR

(a) adf test of fitted JIBAR

(b) acf, pacf of JIBAR after first differenc-
ing
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Model improvement

The observations above provide reasonable evidence to include a jump term to the
fitted ARIMA model. We take the average of the actual JIBAR jump sizes on MPC
dates as the parameter of the indicator function term. As can be seen in graph (a)
below, though not perfectly fitted, the mean squared error of each model shows
that the model with the jump term (blue crosses) performs better than that without
jumps (green crosses), and gives a more precise approximation of the actual JIBAR.
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(a) Model Comparison
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(b) MSE of the two models

The better fit of the ARIMA-with-jumps against that of the original ARIMA model
suggests JIBAR is not in fact continuous but rather involves a discrete jump on an
MPC date.

2.2 Forward rate agreements

Since the FRA rates are the expectation of future JIBAR rates, which depend on the
Repo rates, different term FRAs with same contract period duration have similar
moving tracks, as can be seen in the figures below. Thus we can study these three
curves in the same way.
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ARIMA model for FRAs

As was expected, the ARIMA model for the 1 × 4, 2 × 5 and 3 × 6 FRAs behave
well in estimating the actual FRA rates when the actual rates move smoothly as
the time passes. Nevertheless, as we previously observed for JIBAR, larger-sized
jumps tend to occur on the MPC dates.
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Model improvement

So as to minimize the gap between the estimated and actual FRA rates, an up-
ward/downward jump term is added to the calculation of the rates on the MPC
dates, and the mean of upward/downward jump size is quoted as the parameter
of the indicator term.

Figure 3.8: comparing the two models for FRA 1x4
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Figure 3.9: comparing the two models for FRA 2x5
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Figure 3.10: comparing the two models for FRA 3x6
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Again, although not perfectly fitted, the MSE becomes smaller after the application
of the jump terms.

3 Conclusion

Despite the fact that JIBAR and FRA rates seem to progress smoothly for the ma-
jority of the last 17 years, they can be very unpredictable due to their original com-
position. In forming and executing the proper monetary policy, the SARB inspects
and readjusts the Repo rate, which is the determinant of JIBAR, on MPC dates,
which typically occur every two months.
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The naive tests see the diminishing significance of the jump term as the starting
date of the effective period increases, suggesting that expected Repo rate changes
have a slower reaction the further along the yield curve they are expected. More-
over, a structural jump appears to exist in market rates around the MPC dates.

The time series analysis provides evidence that including a discrete jump term on
an MPC date is necessary when modelling the spot rate and forward rates. By
fitting the historical rates, we come to the conclusion that the jump sizes on each
MPC date are observed to be much larger than on usual days. Therefore, inclusion
of a jump term in the original model gives a more precise approximation.
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Chapter 4

Option Pricing

1 Forward curve construction

Having now provided sufficient evidence to prove the existence of irrational jumps
in JIBAR, the next step is to propose a new pricing framework to incorporate these
jumps. The following section will present an extension of the Black Pricing for-
mula to incorporate the jumps, noting that jump times are known while jump sizes
are not. In order to price short-dated interest rate derivatives, an adaptation of the
conventional forward curve construction techniques should be developed to incor-
porate the observed inconsistencies in JIBAR.

In this section, a simple adaptation of the linear interpolation short-end curve con-
struction technique is applied. Additionally, a rudimentary version of a rational
short-end curve construction based off previous arguments on the natural progres-
sion of JIBAR is implemented.

1.1 Linear vs piecewise interpolation

Forward rate curves and hence zero rate curves are traditionally constructed at
the short-end using linear interpolation. We propose the use of a piecewise linear
interpolation method that interpolates between forward rates, between MPC dates.
This artificially builds a jump in the forward rates on MPC dates.
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Figure 4.1: Piecewise linear interpolation on 28th December 2015
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Figure 4.2: Linear interpolation on 28th December 2015

Figure 4.1 shows an implementation of the piecewise linear interpolation alongside
the standard linear interpolation in Figure 4.2. These curves represent an approx-
imation of the underlying forward rate curve on 28th December 2015. Imposed
on the curves are the actual market 1 × 4, 2 × 5 and 3 × 6 forward rates on the
29th December 2015, this is to gauge the accuracy of the curves at predicting future
forward rates. A change in the Repo rate occurs on 28th of January 2016 so we
therefore expect (and observe) that the 1 × 4 forward rate will have a jump from
28th December to 29th December. By construction, the piecewise linear curve incor-
porates this jump, whereas the standard linear interpolation does not. We propose
that further tests should be conducted to test the accuracy of these two curve con-
struction techniques using the next days observed rates as a proxy for the actual
underlying forward rate curve. It is noted that one can only observe the benefit of
the piecewise interpolation once a month when the effective date of the forward
rates passes over the MPC dates.
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1.2 Rational short-end construction

In accordance with Chapter 2, Section 2, we will now build a rudimentary short-
end curve construction technique given only observed JIBAR, 1×4 FRA, 2×5 FRA
and 3× 6 FRA rates. It is presented as follows:

Let T0 be the date at which the market rates are observed, and let Ti be the date i
months from T0, for i = {1, 2, 3, 4, 5, 6}. Moreover, let {t1, t2, t3} be the MPC meet-
ing dates in the next six months. It is noted that there are at most three MPC dates
in the next six months and as few as no dates.

The rational curve construction technique is based off of a term structure of implied
continuously compounded rates {r1, r2, r3, r4} such that:

1 + JIBAR× T3−T0
365 =

exp

(
r1
t1 − T0

365

)
exp

(
r2

min(T3, t2)− t1
365

)
exp

(
r3 max

(
T3 − t2

365
, 0

))
1 + FRA1x4 × T4−T1

365 =

exp

(
r1 max

(
t1 − T1

365
, 0

))
exp

(
r2
t2 −max(t1, T1)

365

)
exp

(
r3
T4 − t2

365

)
1 + FRA2x5 × T5−T2

365 =

exp

(
r2
t2 − T2

365

)
exp

(
r3

min(t3, T5)− t2
365

)
exp

(
r4 max

(
T5 − t3

365
, 0

))
1 + FRA3x6 × T6−T3

365 =

exp

(
r2 max

(
t2 − T3

365
, 0

))
exp

(
r3
t3 −max(t2, T3)

365

)
exp

(
r4
T6 − t3

365

)

Essentially, this algorithm is solving for a term structure of continuously com-
pounded rates that imply the four observed three month market rates. Where the
term structure has discontinuities at MPC meeting dates. Once this term structure
is found, forward rates applicable on days between T0 and T3 can be approximated
as an accumulation using the term structure between MPC meeting dates. Figure
4.3 shows the solution to the term structure when three MPC dates are occurring
in the next six months.
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Figure 4.3: Term Structure of continuously compounded rates

It is noted that the system of equations required to solve for the term structure
of continuously compounded rates is fully determined when there are three MPC
meeting dates in the next three months. The system is not fully determined when
there are less than three meeting dates. This then requires an optimisation with
respect to some cost function to solve for the four required rates. This is left as an
area of further research and implementation.

Figure 4.4 shows an implementation of the rational curve construction technique
on the following date with the associated market rates:

Table 4.1: Sample of dates used in the illustration of the rational curve construction.

Start Date MPC Date 1 MPC Date 2 MPC Date 2
2016-01-04 2016-01-28 2016-03-29 2016-05-27
JIBAR FRA1x4 FRA2x5 FRA3x6
6.625% 6.97% 7.03% 7.31%

27



Figure 4.4: Rational Curve Construction

Interestingly, we observe a turning point in the curve 3 months prior to an MPC
date. Furthermore, it is noted that irregularities in the smoothness of the curve
appear from business day effects causing irregularities in the compounding of the
term structure.
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2 Gaussian model

Suppose we are working on a filtered probability space (Ω,F ,F,P) where all pro-
cesses considered are adapted to F, furthermore we assume F satisfies the usual
conditions. As we have seen, JIBAR appears to exhibit irrational behaviour in the
lead up to the dates of MPC meetings. Nevertheless, while this behaviour contin-
ues to persist, one would naturally like to be able to price options based on a model
that takes it into account. Thus, the purpose of the following sections is to consider
pricing options with JIBAR as the underlying, using a stochastic model which al-
lows for jumps on MPC dates.

Let us first consider the Gaussian model, where JIBAR is assumed to satisfy

dJs = σ dWs + ηs dNs + dΛs, s ≥ t, (4.1)

where J denotes the ∆t-JIBAR, W is a standard Brownian motion, and σ > 0 is the
constant volatility. Here, η is a process, independent of W , which represents the
size of the jumps at MPC dates, and N is a deterministic counting process, which
jumps up by 1 at MPC dates. The process Λ is deterministic, and is chosen in order
to prescribe the forward condition

E
[
JT − F (t, T, T + ∆t)|Ft

]
= 0.

As usual, here F (t, T, T + ∆t) is the T × (T + ∆t)-FRA rate which, for notational
simplicity, we will sometimes denote by FT instead of F (t, T, T +∆t). The purpose
of the previous section was to allow us to calibrate this function for every T ≥ t.

We anticipate that Λ should take the form

dΛs = −E[ηs] dNs + λs ds.

Substituting this into (4.1) and integrating, we have

JT = Jt + σ(WT −Wt) +

∫ T

t

(
ηs − E[ηs]

)
dNs +

∫ T

t
λs ds (4.2)

Taking an expectation, we obtain

FT = E[JT |Ft] = Jt +

∫ T

t
λs ds,

and substituting this back into (4.2) gives

JT = σ(WT −Wt) +

∫ T

t

(
ηs − E[ηs]

)
dNs + FT .
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Consider a caplet with underlying three-month JIBAR and strike rate K. For sim-
plicity, we make use of the fact that the variance of the discount factor is approxi-
mately of order (∆t)2 where as the variance of the payoff is approximately of order
∆t, this leads to us assuming a deterministic discount factor for short dated deriva-
tives. Furthermore, we use the current three-month JIBAR rate as a proxy for the
appropriate discount rate corresponding to the term of the derivative. That is, we
are interested in computing

1

1 + Jt
T−t
365

E
[
(JT −K)+|Ft

]
,

Let us write Z for an auxiliary random variable with a standard normal distribu-
tion, which is independent of η. We have

E
[
(JT −K)+

∣∣Ft] = E
[
E
[
(JT −K)+

∣∣η]|Ft

]
,

where

E
[
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[(
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1
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∫ T

t
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)
dNs + FT −K

)+]
=

∫
R

1√
2π
e−

x2

2

(
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1
2x+

∫ T

t

(
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)
dNs + FT −K

)+
dx.

Note that the integrand is positive if and only if

x > A := − 1

σ(T − t)
1
2

(∫ T
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)
dNs + FT −K

)
.

Hence,

E
[
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∣∣ η]
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∫ ∞
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1√
2π
e−

x2
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(
σ(T − t)

1
2x+

∫ T
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(
ηs − E[ηs]

)
dNs + FT −K
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dx
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1
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2 (x−A) dx

= σ(T − t)
1
2

(
1√
2π
e−

A2

2 −AΦ(−A)

)
, (4.3)

where Φ denotes the cumulative distribution function of a standard normal distri-
bution.
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Since η corresponds to jumps in the Repo rate, which can only take discrete values,
typically only 50, 25, 0,−25 or −50 basis points, one can simply calculate (4.3) for
each possible value of η, and then weight each such value accordingly. Thus, we
have derived an explicit formula for the caplet price.

The discounted payoff of a caplet, priced according to the formula derived above,
is shown in Figures 4.5 and 4.6 as a function of its maturity time (and strike). The
forward rates and the distribution of η here were calibrated according to data from
4th January 2016. In particular, the forward rates were calculated according to the
curve construction exhibited in the previous section. MPC meetings occurred on
24 and then on 85 days after this date and, as one would expect, we observe jumps
in the price at these dates.

Figure 4.5: Theoretical caplet price under the Gaussian model
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Figure 4.6: Theoretical caplet price against strike and maturity date

3 Log-normal model

Caplets and floorlets have been priced under a log-normal model in a standard
setting in Gumbo (2012), where a closed form pricing formula was derived. In
the current setting it is not clear that such an explicit formula is attainable. Nev-
ertheless, we shall now investigate a log-normal model for JIBAR from which the
distribution at any given time may be obtained from repeated simulations, and we
will then use this to price caplets.

Using the same notation as above, let us suppose that JIBAR satisfies

dJs = Jsσ dWs + η dNs + dΛs, s ≥ t, (4.4)

where for simplicity we consider only one MPC date with jump given by the ran-
dom variable η. As before we take Λ to be of the form

dΛs = −E[η] dNs + λs ds,

so that
dJs = Jsσ dWs +

(
η − E[η]

)
dNs + λs ds. (4.5)
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In the following we shall denote by E(X) the stochastic exponential of a given pro-
cess X , i.e. E(X)T = exp(XT − 1

2〈X〉T ).

The solution of the SDE (4.5), up until the first MPC date, is given by

JT = E(σ(W· −Wt))T

(
Jt +

∫ T

t
λsE(σ(W· −Wt))

−1
s ds

)
, T < MPC.

At the MPC date there is a jump, so that the solution at the MPC date is given by

JMPC = E(σ(W· −Wt))MPC

(
Jt +

∫ MPC

t
λsE(σ(W· −Wt))

−1
s ds

)
+ η − E[η].

Solving the equation after the MPC date, using JMPC as the new initial condition,
we obtain

JT = E(σ(W· −WMPC))T

(
JMPC +

∫ T

MPC
λsE(σ(W· −WMPC))−1

s ds

)
, T > MPC.

Taking expectations in the above we deduce, as in the Gaussian model above, that

FT = E[JT |Ft] = Jt +

∫ T

t
λs ds,

for all T ≥ t (both before and after the MPC date). In particular dFs = λs ds, so we
can actually eliminate λ by rewriting the solution as

JT = E(σ(W· −Wt))T

(
Jt +

∫ T

t
E(σ(W· −Wt))

−1
s dFs

)
, T < MPC,

JMPC = E(σ(W· −Wt))MPC

(
Jt +

∫ MPC

t
E(σ(W· −Wt))

−1
s dFs

)
+ η − E[η].

JT = E(σ(W· −WMPC))T

(
JMPC +

∫ T

MPC
E(σ(W· −WMPC))−1

s dFs

)
, T > MPC.

To visualise this solution, below we present two histograms resulting from simula-
tions of JIBAR according to the above model. The forward rates used are the same
as those in the previous section, which were constructed from the observed rates
on 4th January 2016. Figure 4.7 shows the solution the day before the MPC date
which occurred 24 days after the initial date, and Figure 4.8 shows the solution on
the day after this MPC date. Here we have supposed that η takes the values 0, 25
and 50 basis points, with probabilities 0.5, 0.3 and 0.2 respectively.
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Figure 4.7: Simulations of JIBAR the day before the MPC date

Figure 4.8: Simulations of JIBAR the day after the MPC date

We can also use simulations of the log-normal model to price caplets. In Figure 4.9
we show the discounted payoff of a caplet over the same time period as above
(with an MPC date occurring after 24 days), based on simulations of JIBAR.
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Figure 4.9: Theoretical caplet price under the log-normal model
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Chapter 5

Conclusion and Further Research

We asserted that, historically, JIBAR exhibited inconsistencies on monetary policy
committee meeting dates when it was clear that the forward market had antici-
pated a change in Repo. We showed that a rational market participant would price
these anticipated changes into JIBAR prior to the Repo change. We used statistical
tests to provide evidence that JIBAR and its forward rates were exhibiting these
jumps around MPC dates.

Having provided sufficient evidence to support our assertion, we changed our fo-
cus to how these jumps can implemented in an interest rate derivative setting. We
implemented a curve stripping and option pricing framework consistent with the
observed jumps in JIBAR and show that around Repo rate changes, the option
prices will themselves change. The option pricing model implemented in this re-
port extends the standard Gaussian and log normal spot rate model to include
jumps at MPC dates. This then allows a jump in caplet prices when their maturity
crosses over an MPC date, which is not predicted by classical methods.

Further research should be conducted into the accuracy of the curve stripping tech-
niques. On any particular day, the next day’s market rates were used to determine
the accuracy of today’s predicted forward rate curve. This, as mentioned, is not
ideal as the effectiveness of the piecewise linear interpolation can only be observed
once a month. A better measure of the accuracy of the predicted forward rate curve
should be derived.
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1 Introduction

The majority of equity and debt trading is conducted in the public market. Pub-
lic companies (PC’s) have to endure external scrutiny, comply with governmental
regulations and have to make their financial transactions and compensation of its
officers publicly available. When an agent purchases a single share of a PC (that
has a listed price), she owns part of the company and this entitles her to certain
rights as a shareholder. She has equity which can be sold in a liquid market at any
given time for a known price.

What does she own if she invests money in private equity instead? How much
is it worth? Who would buy it? Given that private equity is – as the word im-
plies – private, these questions prove quite intricate. Nevertheless investing in
private companies is a daily occurrence that has ancient roots. Venture capitalism
is undoubtedly a familiar term and is generally understood to be a form of private
equity investing in emerging companies with high growth potential. The fact that
the company is unproven, the illiquid nature of the equity you own in it and the
difficulty in valuing it, all contribute to the risk and associated higher returns of
venture capitalism. In this introduction we aim to give an overview of the world
of private equity, learn the vocabulary and understand its operating principles.

We begin with the definition of a private equity fund (PEF). It is a legal entity
that arises from a contractual agreement between the investors in the fund, re-
ferred to as the limited partners or LPs, and the fund manager, referred to as the
general partner or GP. A clear distinction must be established between the fund
and the fund manager with a single fund manager potentially raising many funds
throughout its existence. The companies that require the private equity funding
have various courses of action they can pursue in order to come into contact with
the fund managers. Often, the fund managers host events where potential candi-
dates can pitch their companies. These candidates are then interrogated by a team
of corporate experts that work alongside the fund manager and will inevitably be
responsible for the management of the companies that the fund manager decides
to purchase.

Should you, as a private investor, wish to acquire interests in private companies,
you have three options based on the level of involvement you wish to have in the
running of the company and the amount of work you are prepared to carry out:

• You can acquire ownership in a company without the use of intermediaries.
This is known as a direct investment. Your capital contribution is then ex-
changed for a stake in the company in the form of equity, debt or some hybrid
variation of the two. This contribution is a tangible contribution, with other
intangible contributions being your time and effort in ensuring the success
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of the company and, by extension, a desirable return on your initial capital
contribution. The upside of this form of ownership is the satisfaction of see-
ing your time, money, expertise and effort grow into a tangible return when
it is realised by selling your stake in the company. The downside is that you
could lose your entire initial investment along with all of your effort being
for none.

• You can obtain ownership in a private company with no managerial respon-
sibilities. This is where an investor will make use of the PEF. These funds
are established for a fixed term during which investors commit money to the
fund that is then invested on their behalf by the manager of the fund enabling
you to own part of the company without the added responsibility of manag-
ing the company. Thus your risk is reduced in exchange for fees charged by
the fund for investing on your behalf which translates to a reduced return on
your investment. In this report, this approach to investing in private equity
will be our primary focus.

• Finally, should you not have the means to invest directly in a fund (most
funds have a minimum capital contribution requirement), you could invest
in a private equity fund of funds. The contributions are then pooled and
invested on your behalf by a fund manager. On an operational level there are
no differences between funds of funds and PEFs.

Venture capitalist funding of private enterprises usually occurs after the so called
seed funding round. Seed funding is the early stage of funding provided to com-
panies that are not yet able to generate significant cash flows. The seed money pro-
vides financing for the company until it generates enough cash flows or is ready
for another round of investment. This funding is usually in the form of money
from friends and family, ”angel” funding and crowdfunding. Angel investors are
wealthy, unrelated individuals who provide funding in exchange for a stake in the
company. Crowdfunding has become increasingly significant with the advent of
the internet and pooled investment platforms such as Kickstarter. After the seed
funding round, which can be seen as an initial viability screening stage, venture
capitalists start to invest in the company in a series of rounds until the company is
ready to go public and the funding gains can be realised.

In addition to the obvious financial incentives that align the interests of the fund
manager and the LP’s, the agency risk for the LP is further reduced if the GP per-
sonally invests in the fund. A general rule of thumb prevalent in the private equity
world suggests that the ratio of capital provided by LPs to the ratio provided GPs
should be approximately 99:1. When the GP personally has money invested in the
fund it is referred to as having skin in the game.
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Figure 1.1: Typical financing procedure for startups

We see from Figure 1.1, a startup company is provided with capital in discrete in-
crements that are referred to as rounds of financing. The first round of financing
is referred to as Series A, the second round as Series B, and so on. A pre-financing
event valuation of the company and a post-financing valuation is associated with
each series. This adds the capital provided by the investors to the pre-financing
event valuation. A regular occurrence is an inside round of funding that only in-
volves existing investors. The valuation of the company at these subsequent fi-
nancing events is clearly of vital importance for the GP of the fund. A down round
describes a lower pre-financing valuation of a company compared with the previ-
ous post-financing valuation of the company. In an ideal situation each subsequent
pre-financing valuation is higher than the previous post-financing valuation of the
company. With each round of funding the ownership of the company becomes in-
creasingly diluted.

The LPs of a PEF are provided with quarterly written reports that detail any signif-
icant events such as new investments, milestones being reached that were outlined
in previous reports, new products being launched as well as information on com-
panies that either feature in the portfolio or that the GP hopes to feature in the
portfolio in future. The report contains the current valuation of all companies in
the portfolio as well as their respective carry costs and possibly the proceeds from
the LPs investments. Companies that repeatedly show down rounds should be
written down in value or written off entirely. These investments are notorious for
draining the already thinly-stretched time and energy of the GP and are referred to
in the industry as the “living dead”.
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In order to gain investors, a fund will need to sell its vision. This is done by using
a so-called private placement memorandum (PPM), in which the strategy of the
fund is laid out. A major selling point for the fund is the proprietary deals that
they allege to have already secured this is either through the GP having exclusive
knowledge of a specific company or through deals in which the GP will supply
funding to companies.

To be successful, a fund needs to distribute the PPM to as many potential in-
vestors as possible and to subsequently meet with them. The closing or signing
of a partnership agreement is the clear sign that a fund is in operation. Despite
being called the closing, this does not mean that the fund is closed to new in-
vestors. In fact a fund will most likely have several closings throughout its life-
time. Thus the total fund size and number of investors are not known until well
into the funds operations. The relationship between investors and fund managers
is diverse in itself. In particular, older, established firms with impressive reputa-
tions (and lower management fees) commonly attract investment without the need
of any self-promotion.

Venture capital funds have been our primary focus thus far as this is the origi-
nal form of the PEF. The most common form of private equity investing, however,
is buyout funds, with venture capitalism being the next most common. In con-
trast to venture capitalists that invest in emerging companies, the incentivised goal
for the GP of a buyout fund is to take established, potentially struggling, compa-
nies private in order to economise them, improve efficiency or target a new market
segment with the hope of increasing the revenue so they can be sold at a profit.
Buyout funds will often purchase all the equity of a company ensuring complete
control. The fund manager can then institute any changes to improve the financial
benchmarks of the company without any consultation. In contrast, venture capital
funds will mostly purchase a non-controlling interest in a company, thus enabling
the venture capitalist to diversify risk as much as possible by being able to invest
in many companies.
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Figure 1.2: Cash flows of a typical private equity fund

Buyout funds and venture capital funds occupy the vast majority of the PEFs in
practice. It would, however, be misleading not to state the other types of funds in
existence. Other popular PEF strategies are described in Cumming (2009) and here:

• Mezzanine funds: These funds primarily invest in emerging companies in
the later stages of their development. They offer a hybrid form of funding,
i.e. provide funding in form of debt that can be converted into equity in the
case that a company should default on its debt. This procedure makes it an
interesting field of study in itself as a company that is unable to satisfy its
creditors will more likely have high volatility in its share price. Therefore the
contractual agreement on the receivable equity is an intricate task.

• Secondary purchase funds: These focus on the purchase of existing invest-
ments in PEFs and are a particularly labour and due diligence intensive style
of PEF due to the difficulties that arise in the valuation of private equity and
the illiquid nature thereof. When an investor sells her existing stake in pri-
vate equity she sells not only the investments in companies, but also the total
undrawn commitments.

• Direct Investment funds: Also known as foreign direct investment funds.
These provide funding to foreign companies in exchange for equity in the
company. In addition to the list of risks PEFs face, direct investment funds
also face the added risk of adverse movements in the exchange rate. The
fund will also have additional expenses in the form of foreign taxes, but it
can minimize risk by diversifying across multiple countries and industries.
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A buyout fund operates in much the same fashion as a venture capital fund: LPs
commit capital to the fund that is then invested by the GP on their behalf. The total
capital committed to the fund is the fund size, which is the maximum amount the
GP can draw down for management fees and invest in private equity which yield
performance incentives for the GP.

The management fee is usually around 2% of the total fund size. For larger funds
with well-established reputations, this figure could drop to 1.5%, with emerging
smaller funds charging up to 2.5% according to Kocis et al. (2009). In most funds
the management fee will drop as the fund matures and gains are realised. The
performance incentive is known as the ”carry” and derives its name from an old
nautical term for a captains compensation. The carry cannot start until a certain
percentage return on the LPs investment is realised, known as the hurdle rate.
Once this minimum return is met, most of the gains are returned to the GP un-
til a contractually agreed upon ratio of 20%−30% is achieved for the profit-sharing
(Kocis et al., 2009). Nevertheless the GP is still incentivised to achieve the best re-
turn: If a fund performs poorly, the carry previously received by the GP has to be
returned to the LP through a process known as ”clawback”.

The GP draws the capital over the investment period of the fund, typically around
5 years according to de Malherbe (2004). The ”starting year” of a fund is most com-
monly referred to as the vintage of a fund. Interestingly, most funds that started in
2006 were fully invested within two years. When the global financial crisis struck
and markets experienced a recession, these funds were sitting with deals struck at
a far higher price than 2009 valuations. Thus investors were left with holdings in
private equity for a significant period of time until market conditions stabilised and
a reasonable return could be achieved through the sale of the equity. In other vin-
tages, the investment happens more gradually with a few companies being bought
each year. In the aftermath of the recent recession, investors become more cautious
and fund managers draw capital at a much slower rate.

Potential investors who lack the knowledge and resources to invest in a PEF di-
rectly, can invest in a fund of funds. A fund of funds operates almost identically
to a fund, except that a fund of funds invests primarily in PEFs as opposed to
companies. Furthermore it may add an additional layer of management fees and
performance incentives, but has many advantages such as the diversification of an
investors portfolio across location, asset class, strategy and industry, all for a sin-
gle commitment. It is uniquely situated as the bridge between LPs and GPs. Like
an LP, the fund of funds does a due diligence on the managers of the funds, as-
sesses potential investments and invests according to specified strategies. Most of
the capital used by a fund of funds is sourced from third parties in events almost
identical to those hosted by GPs of PEFs. The fund of funds also receives manage-
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ment fees and performance incentives from the PEFs in which they have primarily
invested.

PEF

Fund of funds

Company

Figure 1.3: Structure of private equity market

In conclusion, investment in private equity can have many different facets. No mat-
ter if individual fund or a funds of funds, these entities all perform due diligence
on potential investments in the hope of making a profit. Examples of investors
include endowments, private foundations and pension funds.
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Figure 1.4: Any entity can take on the role of an investor

Private equity has become an increasingly significant portion of institutional in-
vestors’ portfolios owing to the attractive returns of PEFs in recent decades. Upon
committing to a PEF the LP and GP contractually agree upon (among other el-
ements) the total amount committed, the investment period and the legal matu-
rity of the fund. During the investment period, the committed funds can be fully
drawn, but often this does not occur with capital being drawn sporadically. The
timing and size of the distributions are also unknown, but must occur before the
legal maturity of the fund. The potentially erratic timing and size of the draw-
downs and distributions coupled with the unforeseeable changes in the value of
the fund’s investments make it difficult to model the future value of the fund’s in-
terests.

Despite the high level of uncertainty, investors target a percentage allocation to pri-
vate equity which translates into an asset value and therefore some form of model
must be employed. The model should furthermore attempt to take future capital
commitments as well as future distributions into account in order to provide liq-
uidity to investors. Due to the growing allocation of funds to private equity, the
inability of simple rules of thumb previously employed becomes apparent. The
amount of capital that is involved gives a strong incentive for more sophisticated
models. In the remainder of this report we set out in detail what such a model
might look like.
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2 Deterministic Modelling

2.1 The Yale Model

Takahashi and Alexander (2002) propose a deterministic model for the dynamics
of private equity funds. It was originally developed in response to Yale Univer-
sity’s need to model the impact of investing in private equity and more specifically
in many different vintages and various types of funds in its overall portfolio. The
model has become the industry standard, in this report we often refer to it as the
Yale Model and use it as a benchmark for our more sophisticated stochastic model
developed in Section 3

Private equity funds have very different fund dynamics compared with other funds
like mutual or hedge funds, which invest in public markets. When an investor com-
mits an amount of capital to the fund, this capital is not immediately drawn. This
only happens when the GP calls for a contribution, which is usually the case when
a suitable company has been found to invest in, and will often be less than the ini-
tial capital commitment. Similarly, once an investment in a company has paid off,
the GP will distribute the return back to the investors. Over the lifetime of a fund
there are usually multiple such contribution calls and distributions.

Importantly, the contributions and distributions happen at random times. Any
capital that has been committed to a fund, but has not been called upon does not
contribute to the portfolio’s private equity exposure. Consequently the dynamics
of these contribution calls and distributions must be modelled, if an investor wants
to assess the performance of a fund and its future cash flows.

Takahashi and Alexander (2002) create a model that is fairly simple and general.
It primarily models the dynamics of contributions c, distributions d, and net asset
value of a fund nav. Changing the inputs, it is then possible to assess the impact on
these three quantities. Furthermore the model can be easily updated to correspond
to actual capital commitment and asset values.

For most funds the contributions are concentrated in the early parts of the funds
life, as the GP searches for opportunities to invest the LPs’ commitments. After an
initial flurry of activity, the contribution rate slows down in subsequent years as
the fund begins to shift toward managing and selling the investments. The contri-
bution at time ti is given by

c(ti) = rc(ti)

Commitment−
i−1∑
j=0

c(tj)

 , (1)

where rc(ti) is the so-called contribution rate, which determines how much of the
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remaining committed funds are called upon at time ti. A standard rate of contribu-
tion schedule would be: 25% at time t1, 33.3% at time t2, and 50% for all subsequent
times. We employ this simple schedule in Subsection 2.4.

The distribution and net asset value (nav) of the fund are interlinked in the model.
For a standard fund, the distributions tend to be more heavily weighted towards
the end of the fund’s life, as investments come to maturity and capital is returned
to investors. The distribution at time ti is modeled by

d(ti) = rd(ti)(nav(ti−1)(1 + gyale)), (2)

where gyale is the growth rate of the fund. The rate of distributions rd is given by

rd(ti) = max(y, (ti/L)b). (3)
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Figure 2.1: The impact of varying bow factor on the rate of distribution

This equation contains three constants, namely the yield y, the lifetime of the fund
L and the bow factor b. The yield constant y is only applicable in income generating
funds, such as real estate. For buyout funds, which we primarily study in this
report, the yield is normally set to zero. The bow factor controls the speed at which
the distribution rate changes over time. Figure 2.1 shows how varying bow factors
change the rate of distribution. We note that if the lifetime of the fund is reached
(i.e. ti = L), rd(L) is equal to one, so all the remaining assets of the fund are
distributed to the LPs.
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Finally, the net asset value is calculated via

nav(ti) = [nav(ti−1)(1 + gyale)] + c(ti)− d(ti). (4)

These equations together with the six inputs rc, Commitment, L, b, gyale, y deter-
ministically model the dynamics of the contributions, distributions and net asset
values. A sample plot for the corresponding dynamics is shown in Figure 2.2
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Figure 2.2: Dynamics of the contributions, distributions and net asset values for an
example fund using the Yale model. The parameters used are: L = 14, b = 2.5,
gyale = 0.13, y = 0.

Let us highlight some key features of the dynamics in Figure 2.2: The contribu-
tions are heavily concentrated in the early years of the fund, while distributions
primarily occur towards the end of life of the fund. The peak of the net asset value
is slightly above the initial commitment value due to the growth factor gyale. Fur-
thermore the sum of capital contributions in this model usually never equals the
capital commitment. This is quite realistic as we have discussed in Section 1, since
many funds are unable to draw down all the capital due to the illiquid nature of
the underlying investments.

Given actual fund data the input parameters of this model can then be calibrated,
which makes predictions of future dynamics possible. We elaborate on this proce-
dure in Section 2.7.
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2.2 The deterministic optimisation problem

Suppose an investor presently holds a portfolio of value p0 that consists of one type
of asset, called the public asset, that grows at a constant rate g > 0. If no external
funds are inserted or withdrawn, and no investments in other assets are made, the
portfolio value at time t, p(t) is given by p(t) = p0e

gt.
As she observes higher returns in private equity (PE), the investor wishes to shift
part of the portfolio into this market. On the grounds of risk management and in-
vestment objectives she desires to hold a constant target ratio π ∈ (0, 1) of her total
exposure in PE. She thus has to find an optimal commitment schedule {a(tj)}, such
that the amount v(ti) invested in PE quickly approaches πp(ti) and stabilizes about
it, where p(ti) is the total fund value at time ti.

In order to model the problem of finding the optimal commitment schedule a(tj)j∈N
we make the following simplifying assumptions:

• The portfolio is self-financing: no external funds are inserted or withdrawn.
The equations for the portfolio dynamics below reflect this assumption.

• For every tj there is exactly one PE fund starting at time tj (vintage), and
a(tj) is the amount committed to the fund at this time. In total there are
m ∈ N different PE funds.

• The commitment schedule {a(tj)}j=1,...,m is deterministic.

Furthermore we establish the following notation:

• nav(s, t) denotes the net asset value of the fund of vintage s at time t. This
implies that nav(s, t) = 0 for all t ≤ s.

• c(s, t) and d(s, t) are the contributions and distributions at time t, which are
transferred to/paid out of the fund of vintage s. In particular c(s, t) = d(s, t) =
0 for t ≤ s.

• R(s, t) is the rate of return over [t − ∆t, t) on the assets held by the fund of
vintage s.

We express all of the above quantities per committed dollar. For clarity we often
use vector/matrix notation in the rest of this report. For example we write

nav = (navj,i)
i=1,...,n
j=1,...m = nav(tj , ti)

i=1,...,n
j=1,...m ∈ Rm×n

on the following pages. Furthermore the matrix product of A ∈ Rn×m and B ∈
Rm×k is denoted by A · B. If not explicitly stated otherwise we assume that all
vectors v are row vectors, i.e. v ∈ Rn = R1×n.
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Under the above simplifying assumptions the net asset value (per committed dol-
lar) of the private equity fund of vintage tj evolves as

nav(tj , ti) = nav(tj , ti−1)eR(tj ,ti)∆t + c(tj , ti)− d(tj , ti)

=

i−j∑
k=1

eR(tj ,tj+k+1)···R(tj ,ti)∆t(c(tj , tj+k)− d(tj , tj+k)), ti ≥ tj .

Given a commitment schedule (a(tj))j∈{1,...m} the resulting PE investment is

v(ti) =
i∑

j=1

a(tj)nav(tj , ti) = a · nav.

Similarly the total net cash flow at time ti from the fund investments is given by

ncf(ti) =
i∑

j=1

a(tj)(d(tj , ti)− c(tj , ti)) = a · (d− c).

Given the fund investment v(ti) the holding in the public asset is p(ti)−v(ti) which
grows at rate g. Due to the self financing condition the net cash flows are trans-
ferred to the investor’s holdings in the public asset at every point in time. This
evolves as

p(ti)− v(ti) = (p(ti−1)− v(ti−1))eg∆t + ncf(ti)

Our objective is to minimize the distance between πp and v over time. Choosing
the `2-distance, our task is thus to solve the optimization problem

minimise: (v − πp)T · (v − πp) =

n∑
i=1

(v(ti)− πp(ti))2 (5)

such that aj ≥ 0 for all j = 1, . . .m.

In order to find an expression for the vector p in terms of a we define the following
expressions: We write

E :=


1 eg∆t . . . eng∆t

0 1 . . . e(n−1)g∆t

...
...

...
0 0 . . . 1

 ∈ Rn×n,

k := (eg∆t, e2g∆t, · · · , eng∆t) ∈ Rn

and
C := nav + (d− c) · E ∈ Rm×n.
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Lemma 2.1. We can rewrite p as

p = a · nav + (p(t0)− v(t0)) · k + a · (d− c) · E
= a · C + (p(t0)− v(t0)) · k.

Proof. Define h(ti) := p(ti)− v(ti). Then

h(ti) = h(ti−1)eg∆t + ncf(ti)

and in particular

h(tn) = h(tn−1)eg∆t + ncf(tn)

= [h(tn−2)eg∆t + ncf(tn−1)]eg∆t + ncf(tn)

= h(t0)eng∆t +
n∑
i=1

e(n−i)g∆tncf(ti).

Thus

p(tn) = v(tn) + (p(t0)− v(t0))eng∆t +
n∑
i=1

e(n−i)g∆t(a · (d− c))i

and the claim follows.

Proposition 2.2. The minimization problem (5) can be written as a quadratic pro-
gramming problem

minimize:
1

2
a ·H · aT + a · f + const.

such that: aj ≥ 0 for all j ∈ {1, . . .m},

where

H := 2(nav · navT + 2πnav · CT − π2C · CT ),

f := 2π(p(t0)− v(t0))kT + π2(p(t0)− v(t0))C · kT .

Proof. Note that

2πa · nav · pT = 2πa · (nav · CT · aT + (p(t0)− v(t0))kT ),

π2p · pT = π2(a · C · CT · aT + 2(p(t0)− v(t0))a · C · kT

+ (p(t0)− v(t0))2k · kT ).

Thus

(v − πp)T · (v − πp) = a · nav · navT · aT − 2πa · nav · pT + π2p · pT

= a · (nav · navT + 2πnav · CT − π2C · CT ) · aT

+ a · (2π(p(t0)− v(t0))kT + π2(p(t0)− v(t0))C · kT )

+ π2(p(t0)− v(t0))2k · kT ,

which concludes the proof.
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2.3 Commitment schedule variance penalty

The solution a(tj) to the optimization problem (5) yields a commitment schedule
that varies greatly as a function of time. To reduce the fluctuation of a(tj) and pro-
vide the fund manager with a commitment schedule, which is easier to implement,
we introduce a variance penalty on the second differences of a(tj). This produces a
smoothed and regular commitment schedule as a function of time and is achieved
by modifying the matrix H as follows: Let us introduce the difference matrix

D =


−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

... · · ·
...

0 0 0 · · · 0


We now add an additional penalisation term in the optimisation problem (5): In-
deed, we add the product of a parameter β and the empirical estimator of the vari-
ance of the second differences of a given by

V̂ar(aD2) :=
1

m− 2

m−2∑
i=1

(aD2)i −
1

(m− 2)2

m−2∑
i=1

m−2∑
j=1

(aD2)i(D
2a)j

to obtain a smoother commitment schedule a(tj). This yields the optimization
problem

minimize:
1

2
a ·H∗ · aT + a · f + const.

such that: aj ≥ 0 for all j ∈ {1, . . .m},

where the penalty factor β is non-negative,

H∗ := 2(nav · navT + 2πnav · CT − π2C · CT + βD2MD2T )

and

M :=


1

m−2 −
1

(m−2)2
− 1

(m−2)2
. . . − 1

(m−2)2

− 1
(m−2)2

1
m−2 −

1
(m−2)2

. . . − 1
(m−2)2

...
...

...
− 1

(m−2)2
− 1

(m−2)2
. . . 1

m−2 −
1

(m−2)2

 .
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Figure 2.3: Dynamics of varying the weighting between correct exposure to PEF
and variance reduction for the commitment schedule.

Figure 2.3 shows how the difference between actual and target PEF, and commit-
ment schedule a changes as the weighting between these factors in the optimiser is
varied. A higher weight indicates more bias towards variance reduction. This can
be seen in both graphs, as the weight increases, the variance of the commitment
schedule is reduced, while the difference in the actual and target exposure takes
longer to converge.

2.4 Implementation

We implement the deterministic Yale model specified in Subsection 2.2 in MAT-
LAB and use the Optimization Toolbox “Quadprog” to solve (5). As a proof of
concept we set m = n = 100 and generate shift-invariant contributions and distri-
butions of the different funds according to the Yale model with parameters b = 2.5,
gyale = 0.13, y = 0, L = 48, p(t0) = 1, rc(t1) = 0.25, rc(t2) = 1/3, rc(ti) = 0.5 for all
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j ∈ {3, . . . , n}. We then optimize under the assumption that g = 0.01 and π = 0.1.
Figure 2.4 shows the solution of the optimisation problem in terms of optimal ex-
posure to PEF given by πp(ti) and actual exposure to PEF given by a(ti)v(ti). After
a short ramp period of under 10 quarters, the actual exposure converges quickly
to the target exposure. This rapid convergence is mostly due to the homogeneous
structure of the underlying funds. Figure 2.5 shows the corresponding optimal
commitment schedule a(ti).
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Figure 2.4: Target exposure vs Actual exposure to PEF in the Yale model for 100
funds with parameters b = 2.5, gyale = 0.13, y = 0, L = 48, p(t0) = 1, rc(t1) = 0.25,
rc(t2) = 1/3, rc(ti) = 0.5 for all j ∈ {3, . . . , n}. Growth of the public asset is plotted
as a comparison.
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Figure 2.5: Optimal commitment schedule in the Yale model for 100 funds with
parameters b = 2.5, gyale = 0.13, y = 0, L = 48, p(t0) = 1, rc(t1) = 0.25, rc(t2) = 1/3,
rc(ti) = 0.5 for all j ∈ {3, . . . , n}.

2.5 Steady state analysis

In this section we investigate the longterm behaviour of the portfolio value p(ti)
given the optimal commitment schedule a(tj)j∈N. Instead of formally arguing by
use of limits we opt for the more intuitive approach of equating quantities for large
ti. In particular we assume that a steady state will be reached in which p(ti), the
total portfolio at time ti, will grow at a fixed rate r∗ so that p(ti+1)=p(ti)e

r∗∆t for
large ti. Furthermore we make the following simplifying assumptions:

• PE has a constant rate of return R(tj , ti)=r
PE .

• The deterministic contributions and distributions are stationary, i.e., they de-
pend only on the elapsed time since the fund has started: c(tj , ti) = c(ti − tj)
and d(tj , ti) = d(ti − tj).

The public portion of the portfolio will grow at constant rate g > 0, i.e., (1 −
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π)p(ti+1) = (1 − π)p(ti)e
g∆t. The private portion of the portfolio will grow at con-

stant rate rPE > 0. Setting

[c(ti−k − tj)− d(ti−k − tj)] =: κ(ti−k − tj)

we have:

vti+1 =

i+1∑
j=1

a(tj)nav(tj , ti) =

i+1∑
j=1

a(tj)[nav(tj , ti)e
rPE∆t + κ(ti+1 − tj)]

=
∑

j≤(i+1)

a(tj)

(i+1)−j∑
k=0

er
PEk∆tκ(t(i+1)−k − tj)

=
∑

j≤(i+1)

a(tj)

(i+1)−j∑
k=1

er
PEk∆tκ(t(i+1)−k − tj) + κ(ti+1 − tj)


=
∑
j≤i

a(tj)e
rPE∆t

[
i−j∑
k=0

er
PEk∆tκ(ti−k − tj) + κ(ti+1 − tj)] + a(ti+1)[κ(ti+1 − tj)

]
= er

PE∆tv(ti) +
∑

j≤(i+1)

a(tj)κ(ti+1 − tj).

We can therefore express the total portfolio value at time ti+1 as

p(ti+1) = p(ti)e
r∗∆t = (1− π)p(ti)e

g∆t + πp(ti)e
rPE∆t +

∑
j≤(i+1)

a(tj)κ(ti+1 − tj),

from which it follows that

r∗ =
1

∆t
log

(1− π)eg∆t + πer
PE∆t +

∑
j≤(i+1)

a(tj)

p(ti)
κ(ti+1 − tj)


=

1

∆t
log

(1− π)eg∆t + πer
PE∆t +

∑
j≤(i+2)

a(tj)

p(ti+1)
κ(ti+2 − tj)

 .
We can conclude the relationship∑

j≤(i+1)

a(tj)

p(ti)
κ(ti+1 − tj)] =

∑
j≤(i+2)

a(tj)

p(ti+1)
κ(ti+2 − tj). (6)
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To simplify the above expression, let us impose the condition κ(ti+1 − tj) = 0 ∀ j <
(i+ 1)− L for some common L ∈ N. As funds have finite lifespan and κ(ti+1 − tj)
is shift-invariant, this is not restrictive for large ti+1. Then (6) can be restated as

K :=
∑

(i+1)−L≤j≤(i+1)

a(tj)

p(ti)
κ(ti+1 − tj) =

∑
(i+2)−L≤j≤(i+2)

a(tj)

p(ti+1)
κ(ti+2 − tj).

The long-term growth rate of the entire portfolio r∗ is clearly dependent on the
long-term behaviour of the above quantity K. We now distinguish three cases
regarding the behavior of K for large ti: Should K tend zero, we have er

∗∆t =

(1 − π)eg∆t + πer
PE∆t, which clearly has a unique solution r∗ and expresses the

growth of the portfolio simply as the exponentially convex combination of the
growth in the proportion holding of public equity and the growth of the proportion
holding of private equity. This is what we expect given the long-term behaviour of
K.
Secondly, it is unrealistic that K grows at a rate higher than the growth of the port-
folio p(ti) as this quickly leads to the entire portfolio being committed to private
equity contradicting our assumptions. This leaves us with the case

K = c(r∗) 6= 0.

Then by shift-invariance

K =
∑

0≤j≤L

a(tj)

p(tL−1)
κ(tL − tj)] = c(r∗)

and

er
∗∆t = (1− π)eg∆t + πer

PE∆t + c(r∗),

which again has a unique solution given

c(0) ≥ 0 and c(∞) < 1− (1− π)eg∆t + πer
PE∆t. (7)

As the terms κ(tL − tj) are independent of r∗ our assumptions further imply that
a(tj) = a(t0)er

∗tj for all 0 ≤ j ≤ L. Then (7) is satisfied as soon as∑
0≤j≤L

κ(tL − tj) > 0 and κ(t1) < 1− (1− π)eg∆t + πer
PE∆t. (8)

Conditions (8) are usually fulfilled, as they simply mean that a fund has higher dis-
tributions than contributions and there are fewer distributions than contributions
at time t1.
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As a proof of concept we fit an exponential function of a0e
0.25r∗∆t to the target ex-

posure and optimal commitment schedule for the Yale model computed in Section
2.4. We obtain the results 5.808% for the target exposure and 5.616% for the optimal
commitment. Using a first order approximation for the formula (1− π)p(ti)e

g∆t +

πp(ti)e
rPE∆t yields a theoretical value of 5.8%.

0 20 40 60 80 100

Time (Quarters)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Actual Exposure to PEF
Target Exposure to PEF
data
fitted curve

(a)

0 20 40 60 80 100

Time (Quarters)

0

0.02

0.04

0.06

0.08

0.1

0.12

data
fitted curve

(b)

Figure 2.6: (a): Exponential fitting to the growth rate of private equity. (b): Expo-
nential fitting to the growth rate of commitments

2.6 Sensitivity analysis

In order to gain an understanding of the interrelationship between model inputs
and outputs we undertake a sensitivity analysis for the Yale model. Our basic
approach is as follows: We fix all parameters in the Yale model apart from one
and then compute the different actual exposures to private equity given by the
optimal solution of (2). In this section, we vary the bow rate, number of funds,
life time of funds, growth rate of private equity and target exposure to private
equity. Furthermore we examine how the random removal of funds influences the
performance of the optimal commitment schedule.
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Figure 2.7: Impact of varying bow factor on actual exposure to private equity. The
following model parameters were used: Private Equity Growth = 13%, Public Mar-
ket Growth = 1%, Target Exposure = 1%, Number of Funds = 100, Fund Lifetime =
12 Years

Figure 2.7 shows the impact of varying the bow rate on the actual exposure to pri-
vate equity. For a visual reference on how the bow factor changes the Yale model
see Figure 2.1. A higher bow factor changes the distribution rate so it is more heav-
ily concentrated in the later years of the fund.

In Figure 2.7 one can see that a higher bow factor increases the time amplitude
of the oscillations before the steady state is reached. This can be attributed to two
things; The greater time shift between contributions and distributions as bow rate
is increased, and the distributions being paid out in larger sums meaning large
amounts of private equity are converted to cash without immediate contributions
to balance this out.
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Figure 2.8: Impact of varying the number of funds on actual exposure to private
equity. The following model parameters were used: Private Equity Growth = 13%,
Public Market Growth = 1%, Target Exposure = 1%, Bow Factor = 2.5, Fund Life-
time = 12 Years

Figure 2.8 shows the impact of varying the number of funds on the actual exposure
to PEF. In the simulated data a new fund is opened every quarter, so the number of
funds is directly linked to the investment horizon of the investor. For a relatively
small number of funds (less than 15) a steady state, in which the contributions
and distributions remain constant over time, is not reached. This is why the initial
tests do not reach the optimal line. For a higher number funds the steady state is
reached, so all actual exposures to PEF follow the same path.

An important lesson from this graph is that the investment horizon of the investor
plays a critical role for the choice of asset class. For private equity, an investment
horizon of more than 5 years is required in order to reach and maintain a target
exposure.
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Figure 2.9: (a): Impact of varying fund life on actual exposure to private equity.
The following model parameters were used: Private Equity Growth = 13%, Public
Market Growth = 1%, Target Exposure = 1%, Number of Funds = 100, Bow Factor =
2.5. The initial portfolio size is 1. (b): Comparison of distribution rate for different
fund life lengths.

Figure 2.9(a) shows the impact of varying fund life on actual exposure to private eq-
uity. Varying the fund life mainly impacts the distribution rate in the Yale model, as
described in equations (2) and (3). A longer fund life increases the time until most
contributions are paid out and decreases the peak distribution, as shown in Fig-
ure 2.9(b). This combination of changes in distributions accounts for the increased
ramp speed but higher overshoot in the funds with shorter life span. Once the tar-
get exposure to PEF has been reached (post overshoot), all of the tests follow the
same path.
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Figure 2.10: Impact of varying private equity growth on actual exposure to private
equity. The following model parameters were used: Public Market Growth = 1%,
Target Exposure = 1%, Number of Funds = 100, Fund Lifetime = 12 Years, Bow
Factor = 2.5

Figure 2.10 shows the actual exposure to PEF as the private equity growth rate is
varied between 1% and 20%. A higher growth rate obviously leads to a higher
amount of raw exposure needed to private equity, which is most visible at the end
of the graph. The growth rate also affects the ramp and overshoot dynamics, with a
higher growth rate leading to a longer ramp period until the steady state is period
is reached.
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Figure 2.11: Impact of varying target exposure to private equity on actual expo-
sure to private equity. The following model parameters were used: Private Equity
Growth = 13%, Public Market Growth = 1%, Number of Funds = 100, Fund Lifetime
= 12 Years, Bow Factor = 2.5

Figure 2.11 shows the dynamics of actual exposure to PEF as the target exposure
to PEF is varied from 1% to 90%. This test behaved as expected, with higher target
exposure leading to higher actual exposure. The ramp period for higher propor-
tions is shorter than lower proportions. This difference in time can be explained as
follows: to reach a higher proportion exposure, a larger initial commitment is re-
quired. Once the peak of the overshoot is reached, the target exposure is growing
quicker from below for higher target exposure compared with lower target expo-
sure. This means that the convergence from peak of overshoot to steady state is
faster in these cases.
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Figure 2.12: Impact of removing funds from certain quarters on actual exposure
to private equity, using pre and post removal optimisation. The following model
parameters were used: Private Equity Growth = 13%, Public Market Growth = 1%,
Number of Funds = 100, Fund Lifetime = 12 Years, Bow Factor = 2.5

Figure 2.12 shows the impact of removing certain funds from the universe of funds.
Normally in the model, a new fund is opened every quarter, allowing for a contin-
uous stream of investments to be made if required. In this test, random funds are
removed, so in certain quarters no investment can be made.

Two optimisations are run on Figure 2.12. In the first ”remove then optimise”,
the funds are removed from the universe, then the optimisation is run for this new
universe to produce the corresponding commitment schedule. There are minor de-
viations from the target PEF but overall the scheme performs quite well.

In the second optimisation shown in Figure 2.12, ”optimise then remove”, the op-
timistation is run first on the full universe, where a fund opens every quarter to
obtain a commitment schedule. After this, the same funds are removed as in the
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first optimisation. Finally the commitment schedule is applied to the modified uni-
verse. This scheme performs extremely poorly, with huge deviations from target.
The ramp matches target quite well as the intial commitment is always large, fol-
lowed by a period of low commitments while the target is reached. This means
there is little effect from removing funds in this period. Once the ramp is complete
however, larger deviations occur every time a fund is removed.

Overall these plots show that the actual exposure to PEF, is somewhat obviously,
very sensitive to the dataset inputted. There could be extensions into the ”opti-
mise then remove” algorithm, potentially shifting missed commitments to the next
available quarter.

2.7 Calibration

In this section we calibrate the deterministic model to the parameters derived from
the data provided. We then backtest it in order to see how well the simulated
contributions, distributions and net asset value curves fit the real data. Finally we
compare the optimised commitment schedule to see how the actual exposure varies
for the simulated and real data set. To be methodologically consistent, we use two
thirds of the provided data as a training set while we backtest the performance of
our strategies on the remaining third.

The data provided consists of contributions, distributions and net asset value for
1500 buyout funds. These funds are evenly spread over 100 vintage quarters,
meaning that there are 15 funds per vintage quarter available. For each fund 100
quarters of contributions, distributions and net asset value data are provided.

To calibrate the (deterministic) Yale model, we first use least squares optimisation
and the MATLAB function fminbd to find the rate of contributions rc, growth rate
of private equity gyale, and bow factor b. We train the model on the average of con-
tributions, distributions and net asset value for each vintage year, as each vintage
year was specified to have different dynamics.

For the rate of contribution, it is assumed that similar to Takahashi and Alexander
(2002), the returns on capital in the first two years are independent of the subse-
quent years, which we set to be identical. Using equation (1) the first two equations
used for return on capital are

rc(t1) =
c(t1)

Commitment
,

and

rc(t2) =
c(t2)

Commitment (1− rc(t1))
,
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where as before c(ti), and rc(ti) are the contributions and rate of contributions at
time ti.

The minimisation problem for the rest of the (identical) return on commitments
is,

n∑
i=3

[
rc(t3:n) Commitment (1− rc(t1)) (1− rc(t2)) (1− rc(t3:n))i−3 − c(ti)

]2
,

where rc(t3:n) is a scalar value representing the return on capital on all years after
year 2, and n is the number of timesteps (in quarters).

To find the growth rate we use the same method. According to equation (4) the
minimisation problem is

n∑
i=2

[
nav(ti−1)eg∆ + c(ti)− d(ti)

]2
,

where n and c(ti) are defined as before. g is the growth rate, ∆ is the time step, and
d(ti) is the distribution at time ti.

Finally, to find the bow factor we employ equations (2) and (3) with y = 0. Thus
the minimisation problem is

n∑
i=2

[( ti
L

)b
nav(ti−1)eg∆ − d(ti)

]2
.

Recall that L is the lifetime of the fund, and b is the bow factor.

Performing a hyperparameter search on the data provided shows the goodness
of fit cannot be substantially increased by introducing a higher number of modeled
rates of contributions.

Once the parameters rc(ti), g and b are found, the Yale model is used to simu-
late dynamics of the contributions, distributions and net asset value. These are
compared to the actual data below.
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Figure 2.13: (a): Raw contributions for the average of a vintage year from the data,
and the correspondingly calibrated Yale model. (b): Cumulative contributions for
the average of a vintage year from the data, and the correspondingly calibrated
Yale model.

0 20 40 60 80 100

Time (Quarters)

0

2

4

6

8

10

Actual Data
Yale Model Simulated

(a)

0 20 40 60 80

Time (Quarters)

20

40

60

80

100

120

140

160

180

Actual Data
Yale Model Simulated

(b)

Figure 2.14: (a): Raw distribution for the average of a vintage year from the data,
and the correspondingly calibrated Yale model. (b): Cumulative distribution for
the average of a vintage year from the data, and the correspondingly calibrated
Yale model.

Figure 2.13 shows the plots for the contributions from the average of a single vin-
tage year in the data against the correspondingly calibrated Yale model. In Figure
2.13(a) the raw actual data varies greatly around the simulated Yale model. This
is due to the fragmented nature of the actual data, which is a simulation of real
private equity contributions.

Figure 2.13(b) is a plot of the cumulative contributions, which shows how well
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the Yale model fits the supplied data. In this plot it is visible that the total contri-
butions from the actual data are lower than those from the Yale model. This is due
to the nature of the Yale model, which assumes that 100% of the commitment is
drawn down by the GP, whereas in the real data an average of 96% of the initial
commitment is drawn.

Figure 2.14 shows similar plots to Figure 2.13 for the distributions. Again, the
choppiness of the raw actual data in comparison to the Yale model is apparent,
but the cumulative distributions show a much better comparison as before.
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Figure 2.15: Raw net asset value for the average of a vintage year from the data,
and the correspondingly calibrated Yale model.

Figure 2.15 shows the raw net asset value for the actual data in comparison to
the calibrated Yale model. Similarly to the contribution and distribution plots, the
main difference between the actual and simulated data is the fragmented nature
of the actual data. In this graph the difference in peak values is also visible. This
difference can mostly be accounted for by the way the data values were calibrated,
i.e. by minimising the squared value between the two curves and the fact that the
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net asset value in the Yale model is unimodal.

We now test the commitment scheduling optimiser for the raw data and calibrated
Yale model.
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Figure 2.16: Actual exposure to PEF for the mean of the data, with commitment
schedule optimised on the data. The upper (90%) and lower (10%) quartiles are
also plotted for the data

Figure 2.16 shows the actual exposure to PEF for the mean of the data. The mean
of the data is the average contributions, distributions and returns for each vintage
year. The optimal commitment schedule is obtained from this and then used to plot
the mean exposure to PEF. It is apparent that even the mean of the data produces a
much higher variance of exposure than the Yale model examples shown earlier.

Figure 2.16 also shows the 10% and 90% quartiles of the data. These are computed
by taking random combinations of funds from each quarter to create a universe of
one fund per quarter, then applying the commitment schedule obtained from the
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mean of all funds to each of these sample universes. The quantiles are then com-
puted from these sample universes.

The range of the quantiles varies greatly, with the greatest amount in roughly the
first 40 quarters of the data. This can be attributed to the difference between contri-
butions and distributions at each time step, as more funds are opening each quarter.
Once 40 quarters have passed, the number of funds opening and closing remains
constant, producing a ”steady state” of contributions and distributions, which al-
lows for the confidence intervals to reduce in size.
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Figure 2.17: Actual exposure to PEF for the mean of the data with commitment
schedule optimised on the calibrated Yale model. The upper (90%) and lower (10%)
quartiles are also plotted for the data

Figure 2.17 shows the mean exposure to PEF using the commitment schedule opti-
mised on the calibrated Yale model. This commitment schedule is then applied to
the fund net asset values from the real data. It is apparent that while initially the
commitment schedule reaches and loosely matches the target exposure, it has very
high variance and wide confidence intervals. As time progresses the calibrated
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model matches the real data less closely leading to a large deviation between target
and actual exposure to PEF. We conjecture that the reason for this is the finite life
time of funds assumed for the Yale model, which does not seem to be reflected in
the data.
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Figure 2.18: Optimal commitment schedule for the mean of the data and corre-
spondingly calibrated Yale model. The growth rate for each vintage quarter is also
plotted.

Figure 2.18 shows the optimal commitment schedule for the mean of the data and
the correspondingly calibrated Yale model. The optimiser on the data has a large
smoothing factor as described in Section 2.3, as without it the optimal commitment
schedule is extremely rough. It is clear that even with the smoothing factor, the op-
timiser for the data produces much larger and less frequent commitments than the
Yale model. This is again due to the rough nature of the real data, compared with
the Yale model which produces smooth outputs for contributions and distributions.

In Figure 2.18 it is also evident that the optimiser tends to increase the size and
frequency of commitments when the growth rate of the vintage quarters declines.
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While this produces more optimal actual exposure to PEF, it may not be applicable
as the optimiser is essentially anticipating future returns of each vintage quarter.
This is explored in more detail in Figure 2.19, which plots the anticipative and non-
anticipate exposure to PEF for the mean of the data. The anticipative line shows the
exposure to PEF if the optimiser is able to know the return of each vintage year at
the beginning of that vintage. The non-anticipative line assumes each vintage year
follows the mean dynamics of all the funds, across vintages. As expected, the opti-
mal schedule for anticipative data produces better actual exposure to PEF, with less
variance from the target line than the corresponding non-anticipative schedule.
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Figure 2.19: The anticipative and non-anticipate exposure to PEF for the mean of
the data.

3 Continuous-Time Stochastic Modelling

In this section we detail the stochastic modelling of private equity funds (PEFs),
and follow the approach taken by de Malherbe (2004), in which a three stage model
is discussed: the rate of contributions and distributions are respectively modeled
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by a squared Bessel process, while the net asset value (NAV) is modeled as a log-
normal process. We retain some of the notation used in (de Malherbe, 2004) to
avoid possible confusion with the deterministic model (see Section 2).

We begin with the simple case of modelling a single PEF, and later generalise this
model to a collateralised fund obligation (CFO) of PEFs of the same type (e.g. PEFs
in the same sector etc.). Derivations of the results below may be found in (de Mal-
herbe, 2004).

3.1 The de Malherbe Model

We assume a probability space (Ω,F ,P) large enough to support all stochastic pro-
cesses defined in this section, and define the natural filtration satisfying the usual
conditions. The fund in question has a contribution period T∗, maturity T and cur-
rent time t. It has contributions and distributions payable continuously at rates δt
and ρt, respectively, with immediate investment of available funds. Due to the pe-
culiar nature of PEFs, in addition to the distribution rate ρt, the contribution rate δt
will be decided by the fund manager.
Without loss of generality we consider initial commitments equal to one with zero
initial contributions. Cumulative contributions up to t are denoted byCt. Through-
out the contribution period, contributions are payable at rate δt on the undrawn
commitment amount 1− Ct so that

dCt = δt(1− Ct)1{t≤T∗}dt.

This is an ordinary differential equation which can be solved to yield

Ct = 1− e−
∫ t∧T∗
0 δsds.

For a finite T∗, the functional form of C implies that CT∗ < 1 (i.e. a portion of the
committed amount is not drawn by the manager), which is not a problem since a
large contribution period or a large contribution rate yields CT∗ ≈ 1.
Similar to the above, we denote cumulative distributions up to t byDt. Throughout
the life of the fund, distributions are payable at rate ρt on the net asset value Vt so
that

Rt =

∫ t

0
ρsVsds+ VT 1{t=T}.

The indicator term allows for a final distribution of the assets in the fund at matu-
rity, which leads to a possible jump in the process.
Changes in the portfolio net asset value are given by the return earned on the pri-
vate equity investment, inflow of contributions into the fund, and outflow of dis-
tributions from the fund. Hence for t < T , we model the portfolio NAV as

dVt = µtVtdt+ σtVtdW
V
t + dCt − dDt.
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Upon using the dynamics of contributions and distributions above, a closed-form
expression for Vt can be obtained by solving a linear SDE. We refer again to (de Mal-
herbe, 2004) for technical details.
To model the uncertainty in contributions and distributions, we utilize two inde-
pendent standard Bessel processes with the following dynamics:

dδt = (c1 + c2δt)dt+ c3

√
δtdW

δ
t ,

dρt = (q1 + q2ρt)dt+ q3
√
ρtdW

ρ
t .

where c1, c3, q1, q3 are positive constants. To ensure that the rates δt and ρt remain
positive, we impose the Feller condition on these parameter constants so that c1 >
c2

3/2 and q1 > q2
3/2. This will prove important for the discretisation schemes we

use later.
Below we plot the first moments over time of the random variables defined in Sec-
tions 3.1.1-3.1.3 above.
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Figure 3.1: Expected net asset value over time under the stochastic model with
parameters δ0 = 0.2, c = (0.4,−0.1, 0.4), ρ0 = 0.2, q = (0.1,−0.1, 0.15), µ = 0.15,
σ = 0.25
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Figure 3.2: Expected contributions and distributions over time under the stochastic
model with parameters δ0 = 0.2, c = (0.4,−0.1, 0.4), ρ0 = 0.2, q = (0.1,−0.1, 0.15),
µ = 0.15, σ = 0.25

The shape of the NAV plot in Figure 3.1 is typical for PEFs because the earlier years
are associated to the contribution period, and later years with the distribution pe-
riod. Figure 3.2 illustrates this situation more clearly where contributions exceed
distributions in the first three years, and the reverse holds in the later years. The
net effect is a negative cashflow within the first three years, and a positive cashflow
out of the fund in later years.

We now generalise the above setting to the case of a portfolio of PEFs of the same
type, namely buyout funds and make the following additional assumptions:

• The contribution and distribution rates of all funds are subject to a systemic
random component together with a specific random component.

• The contribution and distribution rates of all funds have the same param-
eters, namely the vectors (c1, c2, c3) and (q1, q2, q3) respectively. We further
assume these parameters satisfy the Feller condition.

• The parameters of fund performance are identical across all funds, and these
are µ and σ.

Now assuming that the above assumptions hold, for T (j)
• ≤ t < T (j), the dynamics
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of fund j ∈ {1, ...,m} are given by

dV
(j)
t = [δ

(j)
t (1− C(j)

t )1{t≤T (j)
∗ }

+ (µ− ρ(j)
t )V

(j)
t ]dt+ σV

(j)
t dW

µ(j)
t , (9)

dδ
(j)
t = (c

(j)
1 + c

(j)
2 δ

(j)
t )dt+ c

(j)
3

√
δ

(j)
t

(√
1− β2dW

δ(j)
t + βdW δ

t

)
,

dρ
(j)
t = (q

(j)
1 + q

(j)
2 ρ

(j)
t )dt+ q

(j)
3

√
ρ

(j)
t

(√
1− γ2dW

ρ(j)
t + γdW ρ

t

)
,

where m is the total number of funds in the portfolio; W δ, W ρ, {Wµ(j)}mj=1,

{W δ(j)}mj=1 and {W ρ(j)}mj=1 are independent Brownian motions; T (j)
• is the invest-

ment period start date, T (j)
∗ is the investment period end date, and T (j) is the fund’s

maturity date. The correlation between contribution and distribution policies of
different funds is reflected by the β and γ parameters respectively.

To simulate the CFO model, for each fund j ∈ {1, ...,m}, we utilize a second-
order Taylor approximation of the SDEs above using the reflected Milstein scheme.
Given initial conditions {V (j)

T
(j)
•
}mj=1, {δ

(j)

T
(j)
•
}mj=1 and {ρ(j)

T
(j)
•
}mj=1 for times {ti}ni=1 and

uniform time step ∆ = ti−ti−1 the Milstein scheme yields an approximate solution
to (9) given by

V
(j)
ti+1

= V
(j)
ti

+ [δ
(j)
ti

(1− C(j)
ti

)1{t≤T (j)
∗ }

+ (µ− ρ(j)
ti

)V
(j)
ti

]dt+ σV
(j)
ti

√
∆Z

µ(j)
i+1 (10)

+
1

2
σ2V

(j)
ti

∆

[(
Z
µ(j)
i+1

)2
− 1

]
δ

(j)
ti+1

=

∣∣∣∣∣δ(j)
ti

+ (c1 + c2δ
(j)
ti

)∆ + c3

√
δ

(j)
ti

∆
(√

1− β2Z
δ(j)
i+1 + βZδi+1

)
+

1

4
c2

3∆

[(√
1− β2Z

δ(j)
i+1 + β2Zδi+1

)2
− 1

] ∣∣∣∣∣
ρ

(j)
ti+1

=

∣∣∣∣∣ρ(j)
ti

+ (q1 + q2ρ
(j)
ti

)∆ + q2
3

√
ρ

(j)
ti

∆
(√

1− γ2Z
ρ(j)
i+1 + γZρi+1

)
+

1

4
q3∆

[(√
1− γ2Z

ρ(j)
i+1 + γZρi+1

)2
− 1

] ∣∣∣∣∣,
provided the times points satisfy T (j)

• ≤ ti < T (j). Outside this interval the three
processes vanish to zero. The sets {Zδi }, {Z

ρ
i }, {Z

µ(j)
i }, {Zδ(j)i } and {Zρ(j)

i } are
independent sets of simulated standard normal variables. Now even though the
c′s and q′s may satisfy the Feller condition, it is still theoretically possible that the
resultant rates δ and ρ are negative for some time points due to discretisation error,
at least in the case when ∆ is quite large. Of course when ∆ is ”small enough”,
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this will lead to more accurate results and decrease the probability of ever hitting
the boundary zero; however, this comes at a computational cost. An alternative
solution to this problem, termed the reflection scheme, which we have undertaken,
amounts to simply reflecting the negative rates as illustrated by the absolute value.
See Diop (2004) for a detailed analysis of the reflection scheme, together with its
convergence properties.

3.2 The stochastic optimisation problem

To find the optimal commitment schedule in the stochastic model, we simulate N
realisations of the portfolio ofm funds. This yields the two sets {Hl}Nl=1 and {fl}Nl=1

where

Hl := 2(navl · navTl + 2πnavl · CTl − π2Cl · CTl ),

fl := 2π(p(t0)l − v(t0)l)k
T + π2(p(t0)l − v(t0)l)Cl · kT ,

where we use the same notation as in Section 2.2 and denote the dependence on the
realisations by the subscript l. The optimal commitment schedule a is then found
by minimising

1

2
a · Ĥ · aT + a · f̂ + const.

subject to aj ≥ 0 for all j ∈ {1, . . .m}, where

Ĥ :=
1

N

N∑
l=1

Hl,

f̂ : =
1

N

N∑
l=1

fl.
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3.3 Implementation
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Figure 3.3: Sample dynamics of contributions, distributions and net asset value of
a simulated fund with T• = 30, T? = 37, T = 51, δ0 = 0.2, c = (0.35,−0.1, 0.6),
ρ0 = 0.2, q = (0.1,−0.1, 0.15), µ = 0.08, σ = 0.3, β = 0.1, γ = 0.15, m = n = 100,
L = 100

Figure 3.3 above displays a sample path for contributions, distributions and NAV
for a fund simulated using the parameters given in the figure. The shapes of the
plots above are similar to those shown in Figure 3.1. A visible difference is the
roughness of the plots in Figure 3.3, which is not surprising since only one sample
path was taken. A smoother plot can be obtained by averaging different sample
paths. The sharp rise in NAV is due to the high initial commitments that are re-
quired in order to achieve a 10% portfolio exposure.
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Figure 3.4: Average actual exposure to PEF vs average target exposure to PEF under
the stochastic model with parameters δ0 = 0.2, c = (0.4,−0.1, 0.4), ρ0 = 0.2, q =
(0.1,−0.1, 0.15), µ = 0.15, σ = 0.25

Similarly to Figure 2.4 from the Yale Model, the actual exposure to PE ramps up
quickly and overshoots the target exposure due to the high initial commitments
required to achieve the 10% portfolio exposure. A striking difference is the con-
vergence speed of the two strategies: In the stochastic case, convergence is rather
slow and tends to oscillate about the target exposure. The oscillatory nature is due
to the presence of a stochastic component in the dynamics of contributions, distri-
butions and NAV. Note also that Figure 3.4 shows expected values while we are
minimising the squared distance between the random variables. Thus the Bias-
Variance tradeoff introduces an additional error term, which explains the disparity
of convergence compared with the deterministic case shown in Figure 2.4.
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3.4 Sensitivity analysis
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Figure 3.5: Effect of varying the drift parameter µ on the actual exposure to PEF
under the stochastic model with parameters δ0 = 0.2, c = (0.4,−0.1, 0.4), ρ0 = 0.2,
q = (0.1,−0.1, 0.15), σ = 0.25, β = 0.1, γ = 0.15, m = n = 100, L = 100

With a higher drift parameter µ, the portfolio of PEFs yields more value per unit in-
vested. This results in a higher total portfolio value, and hence a higher investment
in private equity would be required to maintain the 10% target exposure.

3.5 Calibration

In order to calibrate the stochastic model (9) we estimate the parameters

{c1, c2, c3, q1, q2, q3, µ, σ, β, γ}
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by the method of moments. For this we deduce the following formulae for j 6= k ∈
{1, . . . ,m} assuming integrability of the processes:

E(dV
(j)
t ) = E(dD

(j)
t ) + E((µ− ρ(j)

t )V
(j)
t dt)
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(j)
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)
Discretising the equations above yields the following estimators:
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We are left with determining estimators for the parameters c1, c2, q1, q2. We note
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that

dE(δ
(j)
t ) = E((c

(j)
1 + c

(j)
2 δ

(j)
t ))dt

has the solution

E(δ
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u ) =

∫ t
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c1e

c2(t−s)ds =
c1

c2
(ec2(t−u) − 1).

Thus determining c1 and c2 can be carried out jointly by solving the equations
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which yield the equations
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Equations (11) can be solved numerically using the “fmin” function in MATLAB.
As the provided data is relatively sparse, an appropriate winsorisation has to be
applied to account for non-positive entries in the computation of these estimators.
We obtain the values given in Figure 3.5, which we compare to de Malherbe (2004).
We also bootstrap 10% confidence intervals. From the table it is evident that our
calibrated values have the same order of magnitude as the one obtained by de Mal-
herbe (2004). Strikingly the values obtained for σ are quite high, which makes an
estimation of µ using method of moments nearly impossible.
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Figure 3.6: Comparison of calibration results of the stochastic model for the pro-
vided data

Parameter Model calibration Confidence intervals de Malherbe (2004)
c1 3.156 (0.942, 5.100) 2.821

c2 -13.479 (−18.494,−7.951) −8.740

c3 1.785 (1.293, 2.025) 1.463

q1 2.582 (1.234, 4.147) 3.508

q2 -20.945 (−27.337,−13.997) −17.468

q3 1.693 (1.390, 1.918) 1.929

µ 0.002 (−0.861, 0.929) 0.043

σ 0.421 (0, 1.704) 0.293

β 0.624 (0.0148, 0.718) NA
γ 0.265 (0.0244, 1.265) NA

0 10 20 30 40 50 60 70 80 90 100
Time (Quarters)

-25

-20

-15

-10

-5

0

5

10
c1
c2
c3

Figure 3.7: Calibration of c1, c2, c3 for the stochastic model

Figure 3.7 shows different values of (c1, c2, c3) calibrated for the different vintages
individually. Contrary to the deterministic case, where a relationship between the
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optimal commitment schedule a(ti) and the growth rate for the different funds was
evident, we cannot observe such a relationship between the optimal commitment
schedule and the different values for c = (c1, c2, c3) in this case. It thus seems
justified to assume that the values of c do not depend on the vintage of the fund.
Figure 3.8 shows the calibrated distributions, contributions and net asset values
for a specific fund. Evidently the performance of the fitting is not convincing. This
might be the reason why de Malherbe (2004) opts for more sophisticated estimation
procedure: In fact they use maximum likelihood estimation adapted to the Milstein
discretisation of the CIR processes.
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Figure 3.8: Comparison of fitted contributions (a), distributions (b) and net asset
values (c) according to the stochastic model and contributions, distributions and
net asset values provided in the data for one vintage

Lastly a comparison of the optimal commitment strategies according to the de-
terministic Model and stochastic model is presented in Figure 3.9. The character-
istic spike of the commitment rate according to the deterministic model yields a
lower overall level reached in the long run compared to the stochastic model. Both
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optimal commitment schedules show the same seasonality, albeit it is more pro-
nounced in the stochastic model.
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Figure 3.9: Comparison of the optimal commitment schedule of the deterministic
and the stochastic model calibrated to the data provided.

4 Conclusion

In this report we introduce the methodology and state of the art valuation tools of
the private equity industry. Furthermore we elaborate on the most common prac-
tices employed. An understanding of the operational features of a particular fund
is key to modelling its cash flow dynamics. The number of capital commitments
is contractually agreed upon at the closing, but is only partially drawn down dur-
ing the investment period. Furthermore, the timing and size of distributions is
uncertain, while the value of the private equity stake is dynamic and not reflected
in current market prices. This makes the construction of a model that accurately
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captures the dynamics of the contributions, distributions and net asset value of a
private equity portfolio quite intricate.

In the first part of this report we discuss the deterministic Yale Model introduced in
Takahashi and Alexander (2002). We then set up and solve a quadratic optimisation
problem in order to find a commitment schedule, such that the proportion of pri-
vate equity held in our portfolio is constant over time. The optimized commitment
schedule shows high variability. This is why we apply a smoothing procedure via
variance penalization. Furthermore we undertake a sensitivity analysis of the un-
derlying parameters.

We calibrate our model by estimating the required parameters using the data pro-
vided and then assess the goodness of fit by comparing it to the observed values.
The long-term behaviour of the commitment is studied in the hope of finding a
steady state.

Finally, we turn our attention to the continuous-time stochastic model introduced
in de Malherbe (2004). We discuss the dynamics of the model before turning to the
calibration of the parameters required to fit the model to the data. Our parameter
estimates are close to the parameter values given in de Malherbe (2004).

Our analysis shows there is hardly any convincing performance improvement of
the stochastic model in terms of calibration and robustness compared with the de-
terministic model. Furthermore the deterministic model has better fitting proper-
ties and is computationally less expensive than the stochastic one. The Yale model
is also more tractable as it has an easier underlying model structure, which leads
to a better understanding of its robustness properties. We leave an adaptive op-
timisation of the commitment schedule obtainable by the Dynamic Programming
Principle for further research.
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1 Introduction

One of the most frequently practiced areas of research in financial mathematics
is that of portfolio optimisation; in particular the mean-variance (MV) framework
of modern portfolio theory, as introduced by Markowitz (1952). By imposing cer-
tain assumptions on the asset expected return vector and the variance-covariance
matrix, the model allows us to solve a quadratic programming problem to calcu-
late optimal portfolios based on maximising the expected return subject to a given,
minimal, level of risk and certain budget constraints. However, the parameters
required to solve this problem must be estimated using historical data, and com-
monly used estimation approaches such as frequentist and Bayesian expected loss
approaches fail to incorporate any parameter uncertainty into decision making.
Due to the statistical uncertainty in parameter estimates and the sensitivity of solu-
tions to resulting perturbations in the parameters, the optimal portfolios obtained
are often unreliable. Additionally, the MV portfolio problem assumes returns are
independent and identically distributed (iid) Gaussian, which in practice may not
always seem realistic, and can fail if there is not enough data or too large a number
of assets under consideration.

This motivates the exploration into alternative ways to compute optimal portfo-
lios, in particular those that manage to incorporate statistical error in the estimated
parameters into the portfolio selection problem. In this report, we will make use of
the ‘divergence robust’ or ‘data-driven robust’ expectation (DR-expectation), as in-
troduced by Cohen (2017), to extend the existing MV portfolio optimisation frame-
work in order to overcome the difficulty of incorporating uncertainty into the valu-
ation of decisions regarding optimal portfolios. The DR-expectation is a non-linear
expectation that is closely related to a risk measure and, given a data set, can be
used to obtain a prediction interval for a random variable that will incorporate the
certainty of an estimate of that variable.

The data we will work with throughout will be that of the 30 constituents of the
Dow Jones Industrial Average (DJIA). In Section 2 we introduce the theory under-
lying modern portfolio theory and compute the optimal portfolio, given the data,
under the maximum likelihood estimator (MLE) for the parameters. All optimi-
sation frameworks require estimates of the parameters involved; Section 3 intro-
duces two ways in which to estimate these parameters - principal component anal-
ysis (PCA) and Bayesian shrinkage techniques - the first of which we use to obtain
the MLE when there are large amounts of data involved. Section 4 introduces the
DR-expectation, which will then be used to compute the optimal portfolio for in-
sample data from the original data set, however this time incorporating the uncer-
tainty in the parameter estimation into the decision through a ‘penalty’ function.
The optimal portfolio that is obtained in this setting is then compared to the naive
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MV portfolio (where statistical error is not taken into consideration) in the two
cases where the parameters are estimated by the MLE and Bayesian shrinkage, an
equally weighted portfolio, and a market weighted portfolio for the same data.

Finally, in Section 5 we extend the results of Section 4 to first consider a moving-
window approach in which we varied both the length of the historical data used
for calibration, and the frequency with which we rebalanced the portfolio holdings,
in order to find the optimal combination of both factors. Secondly, we introduce
the idea of optimisation under an alternative risk measure - expected shortfall. Ex-
pected shortfall portfolio optimisation allows us to overcome the problems that
may be associated to assuming iid normality of the data, as the framework accom-
modates for flexibility in both the model fitted to each individual asset’s returns, as
well as the dependence structure between assets (we describe a copula approach
here). Section 6 concludes this project.
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2 Modern Portfolio Theory

In this chapter we introduce the mean-variance (MV) portfolio optimisation theory
of Markowitz (1952), which will underpin the main optimisation problem of this
project. The model assumes that an investor faces a risk-return trade-off, and must
find the strategy that maximises their portfolio return without increasing the level
of risk they take on past a certain threshold (dependent on the risk preferences of
the investor, which are captured by a ‘risk aversion’ parameter).

2.1 The MV optimal portfolio

The general set-up assumes that an investment is made intoN assets whose returns
are modelled by the random matrixR ∈ RN×T , given by

R = (r1, . . . , rN )> =


R

(1)
1 R

(1)
2 · · · R

(1)
T

R
(2)
1 R

(2)
2 · · · R

(2)
T

...
...

. . .
...

R
(N)
1 R

(N)
2 · · · R

(N)
T

 (1)

where rn = (R
(n)
1 , . . . , R

(n)
T ), 1 ≤ n ≤ N denotes the return of the nth asset in

the time period {1, . . . , T} for some T > 0. The assets are assumed to be iid Gaus-
sian and their distribution is characterised by their expected return vector, given by
µ = E[R] ∈ RN , and covariance matrix, given byV = E[(R−µ)(R−µ)>] ∈ RN×N ,
which must both be estimated using historical data.

A portfolio consisting of a combination of the N assets can be constructed, and
is characterised by the weight vector π = (π(1), π(2), . . . , π(N))>, where π(i) is the
fraction of the total amount of capital that is invested into the ith asset. If we ini-
tialise the initial capital of the investor to 1, we have the constraint that all portfolio
weights must sum to 1, i.e. π>1 = 1 - we will refer to this as the investor’s budget
constraint. It is important to note that in this set-up, we allow for negative weights,
as investors are permitted to short-sell.

The total return of the portfolio is therefore given by π>R, and hence the expected
portfolio return by π>µ and the variance of the return by π>V π. An investor as-
sesses the value of a portfolio by combining its mean and variance in the following
way

π>µ− λπ>V π (2)

where λ ∈ R is the risk aversion parameter. Assuming that we are only considering
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fully-invested portfolios, we can use the method of Lagrange multipliers to solve
the optimisation problem

max
π

(π>µ− λπ>V π) (3)

under the budget constraint π>1 = 1, and obtain a closed-form expression for the
optimal portfolio weights, given by

π∗ =
1

2λ
V −1(µ+

2λ− µ>V −11
1>V −11

1). (4)

As mentioned above, in practice the expected returns vector and the covariance
matrix of the returns are not known and are therefore must be estimated from his-
torical data. For a portfolio of N assets, this leaves us with N expected returns,
N variances and N(N − 1)/2 covariances to estimate. Due to the large number of
parameters, this can prove problematic. For example, if we wanted to construct a
portfolio consisting of a combination of the constituents of the S&P500, there are
125,000 covariances, giving 126,000 total parameters to estimate, and hence solving
these estimation problems numerically will be both tricky and time consuming.

Assume we use the method of maximum likelihood estimation to estimate the pa-
rameters, θ = (µ,V ). Given some data observations x, the model uses the like-
lihood function L(θ;x) and finds the values of the parameters that maximise it,
given the data, i.e.

θ̂ = arg max
θ

(L(θ;x)) . (5)

In practice, it is often convenient to work with the log-likelihood function,

`(θ;x) = lnL(θ;x)

and maximise this instead.

If the sample data are assumed to be iid normally distributed, as in the MV set-up,
MLEs for the mean and covariance matrix are given by

µ̂ =
1

n

n∑
k=1

xk

and

V̂ =
1

n

n∑
k=1

(xk − µ̂)(xk − µ̂)>

respectively.

As an example, and to put this into practice, we start by considering the first 3
stocks from the DJIA (see Table 7 in the appendix) and the following three cases:
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• The standard MV portfolio problem, the closed-form solution of which is
given by Eq.(4);

• The MV porfolio problem, however now with the added constraint of long-
only portfolios, i.e. π(i) ≥ 0 for all 1 ≤ i ≤ N ;

• Equally weighted portfolios, i.e. π(i) = 1/N .

Figure (1) shows the value of the optimal portfolios in each of the three settings.
While we note that Case 1 has the largest value over all time periods, as expected it
is significantly more volatile due to the lack of restriction on the hedging positions
that an investor may take (i.e. both long and short positions).

0 500 1000 1500 2000 2500 3000

time

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

M
V

 v
a
lu

e
 o

f 
th

e
 p

o
rt

fo
lio

Standard MV Optimisation

Long-only Constraints On The Weights

Equally Weighted Portfolio

Figure 1: The value of the optimal portfolios over time under the assumptions of
(1) standard MV optimisation, (2) long-only constraints on the weights, and (3) an
equally weighted portfolio of the three assets.

2.2 Singularity of the covariance matrix

One of the main problems that one may encounter in solving the above portfolio
optimisation problem is singularity of the covariance matrix, as the optimal closed-
form solution given by Eq. (4) requires a matrix inverse. The return matrix, given
by Eq. (1), can be written as R = (r1, . . . , rT ), where rt = (R

(1)
t , . . . , R

(N)
t )> is the

vector of returns of all assets at time t > 0.
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It follows that the expected return can be written as

µ̂ =
1

T

T∑
t=1

rt =
1

T
R · 1, (6)

and the covariance matrix as

V̂ =
1

T

T∑
t=1

(rt − µ̂)(rt − µ̂)> =
1

T
R(I − 1

T
11>)R> (7)

where T represents the number of data observations available (i.e. the number
of days considered if we are working with daily returns). Regardless of whether
the true covariance matrix is invertible, we observe from Eq. (7) that the sample
covariance can never be invertible in the case where N ≥ T . This follows from the
fact that the maximum rank of V will be the rank of (I − 1

T 11>) which is T − 1:

rank(V ) ≤ rank(I − 1

T
11>) = T − 1 < T ≤ N. (8)

To summarise, if the number of assets exceeds the number of available observa-
tions, the sample covariance matrix will be non-invertible.

In cases where we are considering a large number of assets, the covariance matrix
V will be close to singular. Natural approaches to overcome this problem are to use
some additional regularization of V and/or V −1, or to impose further constraints
on π. These approaches will be discussed in Section 4.

2.3 The Market Model

One of the downfalls of modern portfolio theory is the requirement for extensive
data to estimate the parameters reliably, which is not always available. An ex-
tension of modern portfolio theory is the multi-factor model, which assumes that
returns are driven by a number of underlying, observable factors, each with some
economic interpretation. In this context, of particular interest is the model which
asserts market returns should be the sole factor determining asset returns. This
is the renowned capital asset pricing model (CAPM), pioneered by Sharpe (1964),
and is a single-index model with the market portfolio as the sole factor.

Due to the fact that assets in the market are held by a number of investors in various
quantities, it is assumed that financial assets are held in proportion to the market
capitalisation. Let R(i)

t denote the return at time t ∈ [0, T ] for asset i, then the
single-index model for this asset is given by

R
(i)
t = α

(i)
t + βRMt + ε

(i)
t (9)
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or in matrix form for N assets by

Rt = α+ βRM
t + εt (10)

where ε(i)t are the zero mean uncorrelated elements of the N × 1 residual matrix, εt.
The asset return covariance matrix, implied by the market model is

V = σ2Mββ
T + Σε (11)

where σ2M is the market portfolio variance.

Ledoit and Wolf (2003) state that the covariance matrix can be estimated by per-
forming a multivariate regression and can be denoted as,

F = s2Mbb
T + Σ̂ε (12)

where s2M is the sample variance of the market portfolio and Σ̂ε the sample resid-
ual covariance matrix.

It should be noted that in choosing to work with the market model framework,
we only need to estimate 2N + 1 parameters, which is significantly less than the
N(N + 1)/2 parameters required to be estimated in the standard MV framework.
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3 Parameter Estimation

As mentioned in Section 2, portfolio optimisation problems require estimation of
the necessary parameters; in the MV framework, this is the expected return vector
and covariance matrix of the iid Gaussian asset returns. The expected return vector
rarely causes any problem when being estimated from historical data, however this
is not the case with the covariance matrix, often due to its large dimensionality. In
this section, we discuss two methods of estimating the covariance matrix that can
deal with a high number of assets.

3.1 Principal component analysis

Principal component analysis (PCA) is a statistical procedure that can be used to
describe the covariance structure using only a few linear combinations of the origi-
nal stochastic variables. As a result, PCA reduces the amount of data required and
allows interpret-ability of the model. Moreover, PCA can also bring to light some
relationships in the data that might not always be noticed when using alternative
estimation methods. Consider an N ×N covariance matrix. In order to reproduce
all the variability in the system in a standard estimation framework, N principal
components are required. However, in reality, most of the variability can be ex-
plained with K < N principal components without significant loss of information.
This reduction of the data characterises PCA.

Assume that we have N assets with returns R = (r1, . . . , rN ), as before, where S
is the sample covariance matrix for the assets. The matrix S will have eigenvalue-
eigenvector pairs (e1, λ1), (e2, λ2), . . . , (eN , λN ),where ei = [e1,i, e2,i, . . . , eN,i]

> and
λ1 > λ2 > · · · > λN . The principal components for the ith sample will be given by

gi = e>i R =
N∑
i=1

en,irn, i = 1, 2, . . . , N. (13)

As a result, and as shown by Johnson and Wichern (1992), S can be decomposed as

S = λ1e1e
>
1 + λ2e2e

>
2 + · · ·+ λNeNe

>
N

=
[√
λ1e1

√
λ2e2 . . .

√
λNeN

] 
√
λ1e1√
λ2e2
. . .√
λNeN

 = LL>.

(14)

As mentioned above, one of the desirable characteristics of PCA is the ability to
reduce the amount of data whilst maintaining important information. It can be
shown that the covariance structure can be described by using only a few of the
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principal components and neglecting the contributions of the smallest eigenvalues,
i.e. the first K eigenvalues. It then follows that Eq. (14) can be rewritten as

S ≈ λ1e1e>1 + λ2e2e
>
2 + · · ·+ λKeKe

>
K

=
[√
λ1e1

√
λ2e2 . . .

√
λeK

] 
√
λ1e1√
λ2e2
. . .√
λeK

 = LL>
(15)

where L ∈ RN×K .

3.2 Bayesian shrinkage

A second method for estimating the covariance matrix when there is a large num-
ber of assets under consideration (and hence too many parameters to be estimated
in order to use the sample covariance matrix) is to use a Bayesian statistical pro-
cedure called shrinkage. The resulting estimator will be a typical Stein estimator.
This technique also overcomes the problem of singularity of the covariance matrix
when the number of assets, N , exceeds the number of historical observations per
asset, T , as discussed in Section 2.2.

As with any method in Bayesian statistics, a prior must be assumed for the covari-
ance matrix, which in turn imposes structure to the estimation problem to reduce
the dependency on purely estimated parameters (as the uncertainty in the sample
estimate increases, the prior takes on greater importance). Stein (1956) proposed
a method of obtaining an optimal balance between estimation error and bias by
taking an appropriate weighting of the unbiased (sample covariance matrix) and
the biased (the prior covariance matrix) estimator. This weighting factor assigned
to the prior, α ∈ [0, 1], is called the ‘shrinkage intensity’ as it shrinks the unbiased
estimator to the biased estimator (also referred to as the ‘shrinkage target’), which
will also generally be non-singular.

3.2.1 MV portfolio using shrinkage techniques

In this context, we take the prior to be the single-index CAPM covariance matrix,
F , and weight between the two extremes: this matrix, and the N -factor sample
covariance matrix S. It should be noted in making this choice of prior that the
CAPM covariance matrix is not an unbiased estimator, due to stringent structural
assumptions, but it is not exposed to extreme estimation error. Additionally, on the
other hand, the sample covariance matrix is an asymptotically unbiased estimator,
yet has a large amount of estimation error. Fundamentally, a trade-off between bias
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and estimation error is needed. The shrinkage intensity is denoted by α ∈ [0, 1],
and the resultant shrinkage estimator is given by

ΣShrink = αF + (1− α)S. (16)

In this set-up, we assume that the asset returns are iid, have finite fourth moments,
and that N is fixed whilst T → ∞. This allows S to be consistent whilst F is not,
and the shrinkage intensity to asymptotically tend to 0 over time.

The objective will now be to find a shrinkage estimator that gives an optimal so-
lution to Eq. (16) and that does not break down when N ≥ T , i.e. the objective
function we must solve to obtain such an estimator does not require the covariance
matrix to be non-singular. Ledoit and Wolf (2003) define the optimal α as the solu-
tion that minimises the expected value of the quadratic loss function between the
shrinkage estimator and the true covariance matrix (based on the Frobenius norm),
given by

L(α) = ‖αF + (1− α)S −Σ‖2. (17)

Setting the expected value of the first derivative of Eq. (17) equal to zero, we can
obtain the resultant optimal shrinkage intensity as

α∗ =

∑N
i=1

∑N
j=1 (V ar[si,j ]− Cov[fi,j , si,j ])∑N

i=1

∑N
j=1 (V ar[fi,j − si,j ] + (φi,j − σi,j)2)

, (18)

which can be rewritten as

α∗ =
1

T

π − ρ
γ

+O
(

1

T 2

)
, (19)

where

π =
N∑
i=1

N∑
j=1

AsyV ar(
√
Tsi,j) (20)

ρ =

N∑
i=1

N∑
j=1

AsyV ar(
√
Tfi,j) (21)

γ =

N∑
i=1

N∑
j=1

(φi,j − σi,j)2. (22)

At this point, it should be noted that the true parameters φ, ρ and γ are not directly
observable. Thus, they need to be estimated. Ledoit and Wolf (2003) propose the
consistent estimator of κ = (φ − ρ)/γ as k = (p − r)/c, and it follows that the
asymptotic optimal shrinkage estimator is given by,

Σ̂Shrink =
k

T
F + (1− k

T
)S. (23)

12



The consistent estimator of φ is p =
∑N

i=1

∑N
j=1 pi,j , where

pi,j =
1

T

T∑
t=1

((ri,t − ri)(rj,t − rj)− si,j)2. (24)

Similarly, the consistent estimator of ρ is given by

r =

N∑
i=1

N∑
j=1

ri,j (25)

for i 6= j and ri,j = 1
T

∑T
t=1 ri,j,t where

ri,j,t =
sj,MsM,M (ri,t − ri) + si,MsM,M (rj,t − rj)− si,Msj,M (rM,t − rM )

s2M,M

(rM,t − rM )

× (ri,t − ri)(rj,t − rj)− fi,jsi,j .
(26)

For the diagonal elements, we have that ri,i = pi,i. Finally, we have the sample
equivalent

c =
N∑
i=1

N∑
j=1

ci,j , (27)

which can be shown to be a consistent estimator of γ where

ci,j = (fi,j − si,j)2. (28)

In Section 4, we use these shrinkage techniques to obtain an estimator for the co-
variance matrix of our data, and then compare the performance of MV portfolios
using this estimator, to those using the MLE.
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4 Optimisation Under Uncertainty

In this section we present the nested optimisation problem that, given a data set
(here, the log-returns of the constituents of the DJIA), will allow us to obtain op-
timal portfolios that take statistical uncertainty into consideration. We begin by
introducing the DR-expectation, as this will be central to the nested convex optimi-
sation problem that we aim to solve.

4.1 DR-expectation

The motivation behind the DR-expectation, as introduced by Cohen (2017), is to
construct a means of incorporating statistical uncertainty into valuation problems
that involve unknown parameters. We begin this section by introducing the gen-
eral framework of non-linear expectations, which is often used to model uncer-
tainty in a random setting (i.e. Knightian uncertainty as in Föllmer and Schied
(2002)), and then use these concepts, however, now connecting them to statistical
estimation to define the DR-expectation. We refer to Cohen (2017) for the defini-
tions and theorems given below.

Definition 4.1. Let (Ω,F .P) be a probability space and L∞(F) denote the space of
P-essentially bounded F-measurable random variables. A non-linear expectation
on L∞(F) is a mapping

E : L∞(F)→ R

satisfying the assumptions

• Strict monotonicity: for any ξ1, ξ2 ∈ L∞(F), if ξ1 ≥ ξ2 a.s. then E(ξ1) ≥ E(ξ2)
and if in addition E(ξ1) = E(ξ2) then ξ1 = ξ2 a.s.

• Constant triviality: for any constant k ∈ R, E(k) = k

• Translation equivariance: for any k ∈ R, ξ ∈ L∞(F), E(ξ + k) = E(ξ) + k.

A convex expectation will satisfy the above conditions, as well as the following
condition:

• Convexity: for any λ ∈ [0, 1], ξ1, ξ2 ∈ L∞(F),

E(λξ1 + (1− λ)ξ2) ≤ λE(ξ1) + (1− λ)E(ξ2).

We consider a class of convex expectations that satisfy lower semicontinuity, i.e. for
a sequence {ξn}n∈N ⊂ L∞(F) with ξn ↑ ξ ∈ L∞(F) pointwise, E(ξn) ↑ E(ξ), and
denote the space of all probability measures on (Ω,F) that are absolutely continu-
ous with respect to P byM1 to give the following theorem by Föllmer and Schied
(2002) and Frittelli and Gianin (2002).
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Theorem 4.2. Suppose E is a lower semi-continuous convex expectation. Then
there exists a ‘penalty’ function α :M1 → [0,∞] such that

E(ξ) = sup
Q∈M1

{EQ[ξ]− α(Q)} . (29)

If α(Q) <∞, for someQ ∼ P, we can restrict our attention to measures inM1 that
are equivalent to Pwithout loss of generality.

The definition of the DR-expectation, which itself is a non-linear (convex) expecta-
tion, follows by specifying a form of the penalty function α(·) that incorporates the
likelihood function of the data set. This penalty term indicates how reasonable the
estimated value is based on the data observations, and is defined as follows.

Definition 4.3. For a model Q ∈ M1, let the likelihood of the data x under Q
be denoted by L(Q|x). Let Q ⊂ M1 be a set of models under consideration (e.g.
a parametric set of distributions)). We define the Q|x-divergence as the negative
log-likelihood ratio, i.e.

αQ|x(Q) := −log (L(Q|x)) + sup
Q̃∈Q

{
log
(
L(Q̃|x

)}
. (30)

Now, we can define the DR-expectation.

Definition 4.4. For fixed observations x, an uncertainty aversion parameter k > 0
and exponent k

′ ∈ [1,∞], we define the convex expectation, which we will refer
to as the “Q|x-divergence robust expectation” or “data-driven robust expectation”
(DR-expectation), as

Ek,k
′

Q|x (ξ) := sup
Q∈Q

EQ [ξ(ω,x)]−
(

1

k
αQ|x(Q)

)k′ (31)

where ξ : Ω × RN → R is a Borel-measurable function with respect to the data
observations and we take x∞ = 0 for x ∈ [0, 1] and +∞ otherwise.

In the above definition, ξ explicitly depends on the data observations x. From now
on, assume that under each Q ∈ Q, we know X , x = {Xn}Nn=1 are iid random
variables and ξ = φ(X) for some φ a Borel-measurable function. This allows us to
write EQ[ξ(ω,x)] = EQ[ξ].

The paper presents the two extremal cases where k
′

= 1 and k
′

= ∞, and states
that the intervening cases are natural interpolations between theses:

Ek,1Q|x(ξ) := sup
Q∈Q

{
EQ[ξ]− 1

k
αQ|x(Q)

}
(32)

Ek,∞Q|x (ξ) := sup
{Q:αQ|x(Q)<k}

{EQ[ξ]} . (33)
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Essentially, given a random variable ξ, we can use the DR-expectation to obtain a
prediction interval for its estimated value. The expectation E(ξ) (which is convex)
can be thought of as an ‘upper’ expectation, depending on the certainty of the
estimate of ξ given the sample, i.e. we consider all possible values of ξ and use the
data to determine how reasonable we think they are. Additionally, we can then
define the corresponding ‘lower’ expectation (which is concave) by −E(−ξ), thus
giving the prediction interval for ξ by

[−E(−ξ), E(ξ)] .

Note that since E is a convex expectation, then ρ(ξ) = E(−ξ) is a convex risk mea-
sure. The term that takes into consideration how reasonable the estimate is based
on data observations is the penalty term, and thus we can use the DR-expectation
to retain knowledge of levels uncertainty in our estimates and feed this knowledge
into decision making. In the following subsection, we apply this set-up to a port-
folio optimisation problem.

In what follows, we denote the penalty function αQ|x(Q) byR(θ;x).

4.2 Nested optimisation problem

In this subsection, we address the main problem of this report: how can we incor-
porate statistical uncertainty into decision making involving optimal portfolio
selection? The problem extends the classical results, as discussed in Section 2,
by incorporating the DR-expectation, and whilst there exists a lot of literature on
convex optimisation, there has been little research into applying this nested opti-
misation problem to the optimal portfolio theory setting.

Recall the classical MV portfolio optimisation problem where we want to maxim-
imise the expected returns, π>µ, subject to minimising the variance, π>V π, i.e.
we use a Lagrangian multiplier with risk aversion parameter λ to solve

sup
π

{
π>µ− λπ>V π

}
(34)

with the constraint π>1 = 1.

To extend this problem to incorporate statistical uncertainty, first consider the fol-
lowing DR-expectation where the data used is denoted by r. We can use this to
define the following risk measure:

E(π>µ− λπ>V π) = inf
θ

{
π>µ− λπ>V π +R(θ; r)

}
. (35)
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The form of the penalty functionR(θ; r) follows from Definition (4.3), and requires
the likelihood function of the data:

R (θ; r) =

(
1

k

(
−` (θ; r) + sup

π′
`
(
θ
′
; r
)))k′

. (36)

This convex expectation gives us an upper expectation for the return on the port-
folio given the minimum variance constraint. To find the portfolio π∗ that will
maximise this return, we therefore have to solve the following nested optimisation
problem:

sup
π
E(π>µ− λπ>V π) = sup

π

(
inf
θ

{
π>µ− λπ>V π +R(θ; r)

})
(37)

with the constraint π>1 = 1.

To begin, we will assume the 30 DJIA log-returns in our data set are independent
and identically distributed (iid) Gaussian with parameters θ = (µ,V ) which, using
the corresponding likelihood function, gives us the following optimisation prob-
lem to solve:

sup
π

inf
θ

{
π>µ− λπ>V π +

(
1

k

(
1

2
log|V | − 1

2

N∑
i=1

(r − µ)> V −1 (r − µ)

−1

2
log|V̂ | − 1

2

N∑
i=1

(r − µ̂)> V̂ −1 (r − µ̂)

))k′
= sup

π
inf
θ

π>µ− λπ>V π +

1

k

(
1

2

(
θ − θ̂

)> (
Iθ̂(r) +O

(
N−1/2

)(
θ − θ̂

)))k′
(38)

where θ̂ = (µ̂, V̂ ) is the MLE and Iθ̂(r) is the observed information evaluated at
the MLE or, in other words, the Hessian matrix.

The main challenge lies in solving this nested pair of optimisation problems. Prac-
tically, it is not simple to consider them simultaneously, and to calculate each step
in turn would be extremely time consuming. In the following subsection we dis-
cuss an approximation to simplify the problem, however this can only be applied
under certain conditions.
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4.3 Minimax approximation

If the functionR(θ; r) in Eq. (37) is convex, we have a concave-convex problem and
can interchange the sup and inf , leaving us with the following convex optimisation
problem to solve:

inf
θ

sup
π

{
π>µ− λπ>V π +R(θ; r)

}
= inf

θ

{
π∗>µ− λπ∗>V π∗ +R(θ; r)

} (39)

where π∗ is the optimal portfolio obtained by solving the MV problem. This re-
duces the difficulty of the problem, as many ways to solve convex optimisation
problems exist. Another case in which we can interchange the order of the sup
and inf in the nested optimisation problem is when we have a large sample, and
R(θ; r) will be large whenever θ 6= θ̂ and R(θ; r) is twice differentiable, giving a
local minimum.

However, in practice these conditions often fall through. In the Gaussian case for
example the penalty function is only convex in the parameters (V −1µ,V −1) and
not in (µ,V ). Additionally, the approximation fails when the estimated value of
the covariance matrix is singular.

When solving the optimisation problem, it is important to evaluate the trade-off
between the error induced by using a minimax approximation to simplify the prob-
lem, and the computational time and difficulty of solving the nested optimisation
without such an approximation. We find that the error associated to using the ap-
proximation in our problem is of order 1/N2, and hence for large sample sizes it
seems justifiable to use a minimax approximation.

4.4 Data

In what follows, the data we use1 consists of the daily price returns as well as log-
returns of the Dow-Jones Industrial Average constituents, which are given in Table
4 in the appendix. The data relates to the period 2015/01/02 to 2018/06/27. More-
over, the data was filtered for the adjusted closing prices. Despite the reliability
of Bloomberg, there were some missing values in the data set and due to the fact
that the time period under consideration was relatively short and the sample size of
stocks was small, we had to resort to linear interpolation to deal with these missing
values.

1The data was obtained through the Bloomberg Terminal.
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4.5 Numerical implementation

In order to solve the nested optimisation problem, we used the ‘optim’ routine in
R. This routine minimises an objective function, using a given algorithm, which for
the purposes of this project we chose to be the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, unless stated otherwise. The ‘optim’ routine only allows for op-
timisation over a vector, and permits only lower and upper bounds for the vector
as restrictions. This meant that the matrix V needed to be transformed into a vec-
tor, where no symmetry restrictions are placed on the vector. To do this, PCA was
used, with the two characterisations given by Cholesky and eigendecomposition
were considered.

We began by using the characterisation given by the Cholesky decomposition,
starting with the case where we only considered three stocks in the portfolio. Whilst
in this set-up the characterisation solved the problem efficiently, the parameters we
needed to estimate scaled proportionately to n2, where n is the number of stocks
under consideration. As expected, when extending the problem to consider a larger
number of stocks, i.e. all 30 of the DJIA, this presented issues in terms of both a
rapid increase in computing time, as well as machine error becoming significant.
As a result, we concluded that that the Cholesky decomposition was unfeasible,
and decided to resort to the eigendecomposition with the restriction that the num-
ber of eigenvalues used in the decomposition would be given by K for

K = min(20, |λ̂|) (40)

λ̂ = {λ : λ > 10−8}

where λ is an eigenvalue of V . This ensured the number of parameters to optimise
over for the variance matrix was limited to at most 20. The assumption was made
that eigenvalues below 10−8 suggested little to no movement along the eigenvec-
tors associated with these eigenvalues, and so these eigenvalues were treated as
zero. Additionally, the eigenvectors were treated as constant, and were not opti-
mised over. As such, we then approximated the covariance matrix V by
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V =
[
e1 e2 . . . eN

]

λ1

λ2
. . .

λN



e1
e2
...
eN



≈
[
e1 e2 . . . eN

]


λ1
λ2

. . .
λK

0
. . .

0




e1
e2
...
eN



=
[
e1 e2 . . . eK

]

λ1

λ2
. . .

λK



e1
e2
...
eK


where K ≤ 20 is the number of eigenvalues used. Note that this method of char-
acterising V requires the same number of parameters to be estimated, regardless
of how many stocks the portfolio needs to be allocated between. This also extends
to the estimated values used in the expected return vector, µ. Normally, this vector
would requireN estimates, however based on the assumption that the eigenvalues
after the Kth biggest are small and hence set to zero, the mean parameters can be
expressed as a linear combination of the first K eigenvectors as follows

µ =
[
e1 e2 . . . eN

]

µ1
µ2
...
µN



≈
[
e1 e2 . . . eK 0 . . . 0

]

µ1
µ2
...
µN



=
[
e1 e2 . . . eK

]

µ1
µ2
...
µK

 .
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The total number of parameters to estimate will always be 2K: K eigenvalues and
K mean scalars, µi for 1 ≤ i ≤ K. This parametrisation was used for the vector of
parameters in our model, and is what is being referred to by ‘θ’ for the remainder
of Section 4.

We began by using the above framework to solve the optimisation problem re-
quired to calculate the MLE under the assumption that the data follows a multi-
variate Gaussian distribution. The ‘optim’ routine discussed above also allows the
user to extract the Hessian matrix from the objective function, which was used in
calculating the DR-expectation penalty function R(θ; r), as we used the approxi-
mation given by the second line of Eq. (38).

At this point, a long-only restriction was placed on the values of π, i.e. requiring
that both 1>π = 1 where 1 is a vector of 1’s, and πi ≥ 0, ∀πi ∈ π. This recognises
the fact that it is often difficult in practice to short assets. An added benefit of this
approach is that the portfolio weights are all necessarily less than or equal to 1,
which creates a scenario where the total capital exposure the investor is subject to
is limited to the initial amount invested, i.e. the most they can lose is their total in-
vestment. After implementing this added constraint in our optimisation problem,
we saw that it decreased the discrepancy between the naive and DR-expectation
portfolios versus the evenly weighted and market weighted portfolios, relative to
the set-up where the investor is also permitted to short assets.

To summarise, after incorporating this additional restriction, the problem state-
ment now becomes

max
π

(
π>µ− λπ>V π

)
s.t. 1>π = 1 (41)
πi ≥ 0; ∀ πi ∈ π

for the naive portfolio, and

sup
π

inf
θ
{π>µ− λπ>V π +R(θ; r)}

s.t. 1>π = 1 (42)

πi ≥ 0; ∀ πi ∈ π

for the portfolio problem that incorporates uncertainty via the DR-expectation.
Additionally, note that in this case, the optimal naive portfolio can no longer be
computed as

π∗ =
1

2λ
V −1(µ+

2λ− µ>V −11
1>V −11

1).
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As a result, an optimisation routine needed to be implemented to calculate the
portfolio weights under the quadratic programming problem given by Eq. (41).
We worked with the optimisation routine ‘solve.QP’2, which allows one to solve
problems of the form

min

(
−d>b+

1

2
b>Db

)
subject to A>b ≥ b0

where D and d are a matrix and a vector, respectively, appearing in the quadratic
function to be minimised. A is a matrix defining the constraints under which we
want to minimise the quadratic function, and b is a vector holding the values of
b0. This routine also gives the additional option of enforcing strict equality on the
first constraint, allowing us to easily implement our long-only portfolio constraint,
and hence was used to calculate the naive long-only portfolio π∗. The default for
‘solve.QP’ requires the matrix D to be invertible, however since D is not of full
rank, this is not the case. The function ‘solve.QP’ also gives the option of supply-
ing the inverse ofD instead ofD itself, and therefore to take advantage of this and
to overcome the requirement of invertibility of D if the inverse is not provided in
the function, we calculated the pseudoinverse ofD and provided this instead.

The notion of a pseudoinverse was first introduced by Moors (1920) and later pio-
neered by Penrose (1955). SupposeA is an N ×N matrix. The pseudoinverse ofA,
denoted asA+ will have the following properties:

1. AA+A = A,

2. A+AA+ = A+.

However it is not always the case that (AA>)−1 exists. Barata and Hussein (2012)
propose that AA> + µ1 will be invertible for non-vanishing µ and a small |µ|.
Thus,A>(AA>+µ1)−1 and (A>A+µ1)−1A> will be well-defined for µ 6= 0 and
will converge toA+ as µ→ 0. This process is defined as Tikhonov’s regularisation,
as introduced by Tikhonov (1963).

Now, relating this back to our problem, if V = EV̂ ET is the eigenvalue decompo-
sition of V , then the matrixD in Eq. (41) can be characterised by

DTD = 2λV .

Note that the risk aversion parameter here, λ, is not to be confused with any eigen-
values. Simple matrix algebra can be used to show that D−1 = (1/

√
2λ)EV ∗ET ,

2solve.QP is a function under quadprod. More detail can be found at https://cran.
r-project.org/web/packages/quadprog/index.html
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where V ∗ is the diagonal matrix with elements 1/
√
eigenvalues.

We now return to the nested optimisation problem given by Eq. (37), which we
initially attempted to solve using two stacked instances of ‘optim’. This was effec-
tive for a smaller number of stocks, such as the three stock case, but had difficulty
with larger portfolios, in the form of significant machine error, and hence did not
provide the flexible solution that we required. The issue here stemmed from the
fact that when a large number of stocks were considered, ‘optim’ was unable to
differentiate between small changes in the value of either π or θ, since the value of

π>µ− λπ>V π +R(θ; r)

would often take on values greater than the machine was able to track. This would
then result in the routine being unable to vary the parameters in any intuitive way,
essentially resulting in no change in the portfolio weights π from whichever initial
guess was provided.

The first way this was dealt with was by scaling the variables in θ by a factor of 104.
This allowed ’optim’ to measure small changes in θ, and the difference this made
on functions of it, hence allowing the routine to deviate from the initial guess of
π. Secondly, tolerance levels were lowered from the default of 10−8, and values of
10−6, 10−4, and 10−3 were tested. Despite these efforts however, the nested optimi-
sation was still not workable, and as a result the minimax approximation had to be
used. With this approach, tolerances could be left at the machine default, but the
upscaling of the θ variable was still necessary, and the number of iterations used
had to be increased from the default 100 to 20000. The minimax approach gave
reasonable estimates when using a large sample size to estimate θ, as suggested by
the argument in Section 4.3. The effectiveness of the DR-expectation portfolio over
the naive portfolio was severely reduced when using smaller sample sizes, as ex-
pected, as when we have a low number of parameters to estimate, we expect to be
less uncertain of our estimated values - this was quantified by tracking the returns
of each optimal portfolio through time in the two cases where the number of stocks
was 3 and 30.

Using this minimax approximation, we begin solving Eq. (42) by interchanging the
infimum and supremum and then using the ‘optim’ routine in conjunction with the
‘solve.QP’ routine to minimise

sup
π
{π>µ− λπ>V π}+R(θ; r) (43)

over θ, while ‘solve.QP’ solved the inner supremum (subject to the given budget
and long-only constraints). In practice, we found that ‘optim’ attempted to utilise
negative eigenvalues in searching through possible values of θ, which resulted in
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the matrix D not being positive definite — a problem for the ‘solve.QP’ function.
To correct this, the “L-BFGS-B” algorithm was used in place of the “BFGS” algo-
rithm, as this allows one to implement lower bounds for θ; a lower bound of 10−12

was used for the eigenvalues.

When implementing this, portfolio balancing was done on a once off basis (i.e.
we computed the optimal portfolio weights and held this position over time), and
results were collected for a period of 250 days. The following set of parameters was
tested:

{Days used to estimate θ ∈ Dθ, k ∈ kused, k
′ ∈ k′used, λ ∈ λused}

Dθ = {7, 21, 63, 126, 252}
kused = {5, 10, 15, 30}

k
′

used = {5, 6, 7, 8}
λused = {10, 20, 30}.

4.6 Comparison

To make comparisons between our long-only DR-expectation portfolio, the naive
MV portfolio (where both the sample covariance matrix and the shrinkage covari-
ance matrix estimator are used), the equally weighted portfolio and the market
weighted portfolio, we ran the code over a variety of different choices of the param-
eters λ, k, k

′
, as well as using various lengths of historical data, as shown above. In

this section, we review the findings from a variety of these cases.

1. In Figure 2, we plotted the returns on the naive portfolio over time (measured
in days) for three values of the risk aversion parameter, λ = 10, 20, 30. These
changes in λ did not have a significant impact on the portfolio however, as
demonstrated by the similarity in the three lines in the figure, suggesting that
MV portfolios do not have high sensitivity to the risk preferences of investors.
Since we used the minimax approximation in computing the DR-expectation
portfolios, it follows that λ also will have little effect on these portfolios, and
therefore in what follows we will not take the choice of λ to be of particular
importance in our analysis.

2. Sharpe ratios are often perceived to be an accurate method of comparing the
risk-adjusted return between portfolios when assets are assumed to be nor-
mally distributed (as is the case in our set-up). The Sharpe ratios for the
evenly weighted and market weighted portfolios were calculated as 0.05207
and 0.5037, respectively. Considering all of the different combinations of the
parameters described above, we computed the Sharpe ratio in each case. Ta-
ble 1 shows the largest of these Sharpe ratios for the different portfolio types
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Figure 2: Returns on the naive portfolio for a variety of values of the risk aversion
parameter λ = 10, 20, 30.

over a variety of calibration periods. In all cases, the three portfolio construc-
tion methods under consideration outperformed the evenly weighted and
market weighted portfolios. This holds even under the shortest calibration
period of 7 days, where only 7 historical data points would for each stock
have been used to determine the optimal portfolio. We concluded that one
possible explanation for this was that the data was taken from a highly stable
and developed market, leading to strong data and the ability to draw reliable
inferences using only small amounts of it.

Table 1: The maximum Sharpe ratios over all parameter combinations for each
portfolio type under a variety of calibration windows.

Calibration Period Naive DR Shrinkage
7 0.06914 0.05884 0.06576

21 0.05294 0.06347 0.05598

63 0.09788 0.09765 0.09775

126 0.11362 0.11002 0.11364

252 0.09206 0.08794 0.08968
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3. Figure 3 allows us to visualise these Sharpe ratio results for the DR-expectation
portfolio vs the naive portfolio, as we have plotted the difference in their
Sharpe ratios for the five calibration periods. When the value is above zero
the DR portfolio is outperforming the naive. We see that when the calibra-
tion period being used is 7 or 126 days, the DR portfolio under performs
significantly. This is expected in the case of a 7 day learning period as the
interchange between the sup and inf in the nested optimisation is less justi-
fied than when we are using longer learning periods, and hence we do not
expect strong performance from the resulting DR portfolio. Excluding the 7
day calibration period case, we also note that as this period increases, there
is less variability between the Sharpe ratios of the two portfolios i.e. altering
the learning period once we exceed a certain number of days will have less
impact on the relative performance of portfolios.

Figure 3: The difference between the Sharpe ratios of the DR-expectation portfolio
and the naive MV portfolio over a variety of different calibration periods.
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Parameters
Calibration

k k′ λ
max(DR Sharpe Percentage

Period - naive Sharpe) change
7 5 5 10 −0.00725 −10.974%

21 30 6 20 0.01089 23.959%

63 10 7 10 0.00474 5.148%

126 5 7 10 −0.00325 −2.873%

252 5 5 30 −0.00218 −2.508%

Table 2: The maximum difference of the Sharpe ratios for various combinations of
the parameters under various calibration periods for the DR–expectation vs naive
portfolio.

4. Using the Sharpe ratios that we computed for the DR and naive portfolios
over all different combinations of the parameters, in Table 2 we find the
combination of λ, k, k

′
under each learning window that gives the best im-

provement to the Sharpe ratio of the DR portfolio over the naive portfo-
lio, i.e. the furthest right column of the table shows max (DR Sharpe ratio
- naive Sharpe ratio) over all parameters for a given calibration period. In
some cases, there is no combination of parameters that improve the DR Sharpe
ratio over that of the naive portfolio, and hence we just minimise how much
worse the difference is (this corresponds to negative values in the last col-
umn). We observe that when the calibration period is larger (126 and 252
days) or on the smaller end (7 days), the performance of the DR portfolio is
worse than that of the naive in all cases of parameter combinations. Our hy-
pothesis as to why this is the case for the larger two calibration periods lies in
the fact that the large amount of data provides enough information that the
naive portfolio can come up with accurate estimates, and hence the penalty
that captures our lack of estimation confidence isn’t particularly necessary
and hence doesn’t make much of a difference to the portfolio performance.
Intuitively this makes sense, as we are only estimating 40 parameter values
(eigenvalues and mean scalars), but using either 156 or 252 data samples to
do so. We believe that the out-performance of the DR expectation breaks
down in the 7 day calibration period case as the interchange between the sup
and inf functions in the nested optimisation problem is less justified when us-
ing such a small number of data samples - this also suggests that any results
corresponding to a 7 day calibration window may be outliers. In the interme-
diate cases (21 days and 63 days), we can find values of the parameters for
which the DR portfolio will outperform, and note that the best performance
of the DR portfolio over the naive occurs in the case of a 21 day calibration
period. Table 3 demonstrates similar results for the Sharpe ratios of the MV
naive portfolio constructed using the shrinkage estimate and the usual naive
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portfolio that makes use of the sample covariance matrix. Figure 4 shows the
cumulative returns over the three portfolios for the 21 day calibration period,
with the parameters given in Tables 2 and 3 for the DR and Shrinkage cases.
Whilst the DR portfolio outperforms over time, there is an unusual period
starting at around 30 days into holding the portfolio where the returns on the
DR portfolio drop significantly, but those on the other two portfolios do not.

Table 3: The maximum of the differences of the Sharpe Ratios for various values of
λ over various calibration periods for the Shrinkage portfolio vs the naive portfolio.

Parameter
Calibration

λ
max(Shrinkage Sharpe Percentage

Periods - naive Sharpe) change
7 10 −0.0003 −5.17%

21 20 0.01054 23.185%

63 20 0.0002 2.07%

126 10 0.000039 0.034%

252 20 0.00105 1.191%
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Figure 4: Cumulative returns through time of the three different portfolios, based
on the optimal parameters shown in Tables 2 and 3 for the DR and Shrinkage cases,
and a 21 day calibration period.

5 Extensions

In this section we consider a few ways in which we can extend the results discussed
previously.

5.1 Moving-window approach

Here, we started by removing the long-only restriction and constructed portfo-
lios that also allowed for a rebalancing over time. Recall that, since the long-only
restriction has been removed, the closed-form solution for the optimal portfolio
under a given θ is given by

π∗ =
1

2λ
V −1(µ+

2λ− µ>V −11
1>V −11

1)

where the pseudoinverse (also referred to as the generalised inverse) of V was used
where necessary (usually whenever the number of stocks considered exceeded the
number of eigenvalues use in the eigendecomposition, K).
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The MLE for θwas used to calculate the naive portfolio holdings. In construction of
the DR-expectation portfolio, the minimax approximation was used to interchange
the sup and inf , and we optimised

π̂>µ− λπ̂>V π̂ +R(θ; r)

over θ where π̂ is the closed form optimal solution to the maximisation.

In the analysis, time constraints prevented us from considering all combinations of
parameters, and hence just the following parameters were used:

k = 22

k
′

= 8

λ = 30.

These parameters describe a moderately risk-averse individual, who places a high
value on the confidence of parameter estimates based on the data. Moving win-
dows were constructed under the following combinations:

Days used to estimate θ Number of days between rebalances
7 7, 21
21 7, 21, 63
63 7, 21, 63, 126
126 7, 21, 63, 126, 252
252 7, 21, 63, 126, 252

Figure 5 shows the cumulative return of the DR-expectation, naive, and evenly
weighted portfolios, where there is no long-only holding restriction, a calibration
period of 126 days, and rebalancing every 126 days. In this scenario, the evenly
weighted portfolio out-performed both the DR-expectation and naive portfolio.
The most likely explanation for this is that an aggressive short investment might
be undertaken as a result of the optimisation problem. In the worst performing
period, the DR-expectation drifted further away from the naive portfolio — likely
due to uncertainty limiting highly aggressive allocation, and suggesting that this
poor performance of the DR portfolio would be reduced if we were to reintroduce
the long-only constraint.

5.2 Expected shortfall portfolio optimisation

Here, we consider an extension of the MV optimisation problem, and then analo-
gously to before, we incorporate statistical uncertainty into our optimisation prob-
lem through the use of the DR-expectation. Any optimisation problem requires a
risk measure; in MV optimisation, the risk measure chosen by Markowitz was the
volatility of the returns. The drawbacks to measuring risk in terms of the variance
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Figure 5: Cumulative returns through time of three different portfolios, with 126
day calibration period and 126 days between rebalances.

however, is that large negative and large positive fluctuations in the returns are
equally penalised, which, from the point of view of a financial investor may not
seem justified and hence motivated the introduction of downside risk measures
(focussing on the lower tail risk, i.e. downside losses) in financial modelling.

Definition 5.1. For a random variable X with distribution function FX(·), and a
given confidence level α ∈ [0, 1], the value at risk (VaR) of X is defined by

VaRα(X) = inf {x ∈ R|FX(x) ≥ α} . (44)

In the case where X is a continuous random variable and its distribution function
has a well-defined inverse (the quantile function, F−1X (·)), we have VaRα(X) =
F−1X (α).
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Value at Risk, as defined above, essentially gives you the threshold that your port-
folios losses will not exceed with probability α. One of the main drawbacks to VaR,
however, was its lack of ability to describe tail behaviour beyond the α-quantile
level. This lead to the construction expected shortfall (ES), which averages over
the portfolio losses that exceed VaR.

Definition 5.2. For a random variable X with distribution function FX(·), and a
given confidence level α ∈ [0, 1], the expected shortfall (ES) of X is defined by

ESα(X) = − 1

α

∫ α

0
VaRγ(X)dγ. (45)

The alternative robust portfolio optimisation problem we consider in this section
is to find the optimal portfolio weights subject to minimising the ES of portfolio
returns for a given level α. Excluding parameter uncertainty, the naive equivalent
to this optimisation problem is given by

inf
π

{
ESα(π>R; θ̂)

}
s.t. π>1 = 1

(46)

where the ES will be a function of the parameter estimates θ̂ as it is determined
by the distribution of the future portfolio returns π>R. Since π>R exhibits a mul-
tivariate distribution, calculate the ES is non-trivial due to the complexity of con-
structing multivariate quantile functions, and unlike the MV optimisation problem,
a closed form solution for π∗ does not exist, regardless of the assumption in under-
lying distribution of the returns. We compute the ES as follows. Assume we have
measures corresponding to θ and θ̂ (the MLE) and n samples ofπ>R under θ̂ given
by ri ∼ f(ri;θ) for 1 ≤ i ≤ n, to which we assign an equal weighting, wi = 1/n.
We can compute the sample weights under θ by

w̄i = wi
f(ri;θ)

f(ri; θ̂)
. (47)

Now, fixing a choice of π throughout, we use the following algorithm to compute
the ES of π>R numerically:

1. Order π>ri → π>r(i)

2. Calculate cumsum(w̄(i))

3. Find i∗ such that cumsum(w̄(i)) = α

4. Set ˆVaRα(θ) = π>r(i∗)
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5. Set ESα(θ) = mean
(
π>r(j)

)
for all j such that π>r(j) > π>r(i∗).

Now, taking statistical error into consideration, we use the DR-expectation to intro-
duce a penalty function to quantify this uncertainty, and aim to solve the following
nested optimisation problem

inf
π

sup
θ

{
ESα(π>R;θ)−R (θ; r)

}
s.t. π>1 = 1

(48)

where, as before,

R (θ; r) =

(
1

k

(
−` (θ; r) + sup

θ′
`
(
θ
′
; r
)))k′

. (49)

Note that as a higher ES is considered worse for a portfolio, there is a sign change
before the penalty function and the order of the sup and inf are interchanged in Eq.
(48).

The main advantage of the ES optimisation problem over the MV approach is that
it allows us to consider non-Gaussian log-returns (assuming normality for asset
returns is often scrutinised, one of the reasons being that returns data usually ex-
hibits fatter tails than a Gaussian model allows for) as well as non-linear portfolios.
This introduces flexibility in the distribution fitted to the data, for instance allow-
ing the tails of log-returns to be modelled asymmetrically, and hence expanding
the general scope of investment scenarios to which the optimisation problem can
be applied. On the other hand, however, a drawback to this approach is that the
computation of the ES of multivariate data is nontrivial, and hence ES optimisation
is a simulation based optimisation problem which in turn introduces more statisti-
cal uncertainty. Additionally, if a copula is used to model the multivariate depen-
dence between assets, the computational time increases as drawing samples from
a copula proves more time consuming than drawing from an elliptical distribution.

Despite the fact that the full advantages of using ES as a risk measure are not
utilised unless log-returns are assumed non-Gaussian, for simplicity you could be-
gin by remaining in the Gaussian setting and computing the ES optimal portfolio
to compare to the MV case. Isaksson (2016) demonstrates that under the assump-
tion of elliptically distributed log-returns, there is in fact a connection between the
ES and MV optimisation problems that is characterised through the risk aversion
parameter, λ. This set-up allows you to use the same penalty function as Section
4.5.

Due to time constraints we did not implement this idea numerically, however if we
were to do so, we would first need to compute the naive ES optimal portfolio, and
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then again by implementing a minimax approximation, we could largely make use
of our existing code to solve the ES DR-expectation nested optimisation problem.

5.2.1 Non-Gaussian extension

Assume we now want to use a distribution beside the Gaussian to model our data,
and a copula to describe the multivariate dependence structure between each stock.

Definition 5.3. A function C : [0, 1]d → [0, 1] is a d-dimensional copula if C is the
joint distribution function of a d-dimensional random vector on the unit cube with
standard uniform marginals and it holds that

• C(u1, . . . , ud) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d};

• C(u1, . . . , ud) = ui if uj = 1 for all j = 1, . . . , d and j 6= i;

• C is non-decreasing on its support.

For a random vector X = (X1, . . . , Xd) with continuous marginals where the ith

marginal has distribution function Fi(x), the joint distribution of the Xi can be
constructed using a d-copula as

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))

= C(u1, . . . , ud) = F
(
F−11 (u1), . . . , F

−1
d (ud)

)
.

(50)

The corresponding copula density is given by

c(u1, . . . , ud) =
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) =

f(x1, . . . , xd)

f1(x1) . . . fd(xd)
. (51)

Assuming that the distribution function we fit to the ith stock’s log-return data is
given by Fi(ri) (parameters are estimated via the maximum likelihood method)
and the chosen copula by Cθ(u1, . . . , uN ), the optimisation problem becomes

inf
π

sup
θ

{
ESα

(
π>R;θ

)

−

(
1

k

(
−cθ (F1(x1), . . . , FN (xN )) + sup

θ′
cθ (F1(x1), . . . , FN (xN ))

))k′
(52)

subject to π>1 = 1.

To solve the nested optimisation problem under this setting, we only have to change
the penalty function (as this is determined by the likelihood function of the data),
and can use the same algorithm to calculate the ES as a function of the parameters
and portfolio weights (ESα(π>R;θ)).
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6 Conclusion

In this project, we considered a new way of constructing optimal portfolios of a set
of assets that incorporate statistical error resulting from parameter estimation (this
being one of the leading reasons as to why naive portfolios that do not account for
this error fail in practice) into the optimisation problem. This set-up resulted in
a complex nested optimisation problem which, in order to construct these portfo-
lios numerically, required numerous estimation and approximation techniques to
be employed. A number of problems were encountered along the way, stemming
from both the fact that whilst convex optimisation is a well-researched area, there is
little existing literature or algorithms on solving convex optimisation problems of
our type, as well as both time and computational power constraints. Given that we
had to leave our code running overnight in order to obtain the spread of results re-
quired to accurately compare the performance of the different portfolios, we were
restricted in the number of times we could tweak and re-run our code.

Despite these concessions, however, in the case where we constructed portfolios
based on a long-only investment restriction that account for uncertainty (what we
referred to throughout as the DR-expectation portfolios), results indicated an im-
provement in portfolio performance over the evenly weighted and market weighted
portfolios; this analysis was based off both the Sharpe ratio and the cumulative
returns through time of each of the portfolios. When dropping the long-only re-
striction, the performance of the DR-expectation did not beat that of the evenly
weighted or market weighted naive portfolios, results that were both disappoint-
ing and slightly perplexing.

Throughout, our analysis was limited to using data from the DJIA, an index con-
sisting of only 30 stocks that trade in a well-developed and highly liquid market,
suggesting that the quality of the data is likely to be high. It would be interesting to
extend these results to a portfolio consisting of a significantly larger number of as-
sets (for instance, the constituents of the S&P 500), as the method employed in our
code carries scalability. Additionally, a further extension could be to consider dif-
ferent markets where, for example, the quality of the data may be lower than that
of the DJIA, in order to observe whether the performance of the DR-expectation
portfolio would differ significantly. Intuitively, we would assume that when the
quality of data is lower, the confidence one may have in statistical estimates of
parameters drawn from the data would be lower, and hence it would be more ben-
eficial to construct a DR portfolio over a naive portfolio in order to account for this
lack of confidence. The same idea holds when the number of assets increases, as
as the number of parameters to estimate in the naive case increases, the confidence
in each estimate should be expected to decrease. Exploring such options, however,
was restricted due to time constraints and a lack of computational power.

35



Bibliography

João Carlos Alves Barata and Mahir Saleh Hussein. The Moore–Penrose pseudoin-
verse: A tutorial review of the theory. Brazilian Journal of Physics, 42(1-2):146–165,
2012.

Samuel N Cohen. Data-driven nonlinear expectations for statistical uncertainty in
decisions. Electronic Journal of Statistics, 11(1):1858–1889, 2017.
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7 Appendix

Table 4: Constituents of the Dow-Jones Industrial Average
Company Name Company Name Company Name
3M American Express Co Apple Inc
Boeing Co Caterpillar Inc. Chevron Corp.
Cisco Systems, Inc Coca-Cola Co. DuPont de Nemours & Co.
Exxon Mobil Corp. General Electric Co. Goldman Sachs Group Inc
Home Depot Inc. Intel Corp. International Business Machines
Johnson & Johnson JP Morgan Chase Co McDonald’s Corp.
Merck & Co. Inc. Microsoft Corp. NIKE Inc
Pfizer Inc. Procter & Gamble Co Travelers Companies Co.
United Technologies Corp. UnitedHealth Group Verizon Communications Inc.
Visa Inc. Wal-Mart Stores Inc. Walt Disney Co.
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1 Introduction

Since the 2008 financial crisis, South Africa’s derivatives market has continued to
grow and develop. It is one of the largest economies on the continent and has bene-
fitted from a strong and well developed supervisory financial framework. In South
Africa, primitive financial markets exist for bonds and equity while derivative fi-
nancial markets exist for swaps, futures and options written on all underlying asset
classes. The inter-bank interest rate market is a financial market in which partic-
ipants are able to trade vanilla funding products as well as interest rate derivatives.

In this report, we will discuss the applicability of the Lognormal Forward-LIBOR
Market Model (LFMM) to the South African inter-bank market. We will discuss
pricing Caps, Floors and Swaptions within this framework. In particular, we aim
to answer the question: Is there a parsimonious instantaneous volatility and cor-
relation parameterization for long-term modelling with the LFMM after joint cali-
bration?

The LFMM was introduced simultaneously by Brace, Gaterek & Musiela (1997),
and Miltersen, Sandmann & Sondermann (1997). It is widely used for pricing in-
terest rates derivatives by modelling the forward inter-bank rates that are directly
observable in the market rather than the short rates or instantaneous forward rates.
The LFMM assumes that forward rates are lognormally distributed under its for-
ward measure. This has the advantage of being consistent with the Black 1976
model when pricing caplets and floorlets and, hence, caps and floors. However,
it is incompatible with pricing swaptions using the same approach. Indeed, we
will show in section 2 that the assumption of lognormal forward rates under its
forward measure used under the LFMM leads to non-lognormal swap rates under
the same measure. We therefore require approximations to price swaptions under
the LFMM, such as the Rebonato formula and the Hull-White formula.

We first present the LFMM model and the valuation of caps and swaptions under
this framework. Next, we will describe the data obtained from the market. We will
discuss two different calibration procedures in great detail. Then, we will detail
the different approximations we used to recover the swaption prices. Finally, we
will conclude whether or not there exists a parsimonious instantaneous volatility
and correlation parameterization that provide adequate fit and can thus be used
for long-term modelling, furthermore, we aim to assess the apropriatness of the
LFMM in the South African inter-bank market.
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2 Lognormal Forward-LIBOR Market Model

2.1 Structure

In this section we introduce the Lognormal Forward-LIBOR Market Model (LFMM),
its assumptions and the notation we will use throughout the paper.
Let P (t, T ) be the value at time t of a zero-coupon bond delivering P (T, T ) = 1 at
time T > t. The simply-compounded forward LIBOR rate is defined as:

F (t, T, S) :=
1

τ(T, S)

(P (t, T )

P (t, S)
− 1
)
, 0 ≤ t < T < S. (1)

where τ(T, S) is the year fraction of the period [T, S]. Let t be the current time. Con-
sider a set T0 < ..., TM < TM+1 of bond tenor dates. Times Ti are expressed in years
from the current time. The corresponding simple forward rate Fi(t) of the LIBOR
rate L(Ti, Ti+1) from Ti to Ti+1 at some time t≤ Ti is given by F (t, Ti, Ti+1) =: Fi(t).
We have Fi(Ti) = L(Ti, Ti+1).

Consider the probability measure Qi+1 associated with the numeraire P (t, Ti+1),
i.e. with the price of the ZCB whose maturity coincides with the maturity of
the forward rate. Qi+1 is often called the forward adjusted measure for matu-
rity Ti+1. Let τi be the year fraction of the period [Ti;Ti+1]. By definition, we
have Fi(t)P (t, Ti+1) := 1

τi
(P (t, Ti) − P (t, Ti+1)). It follows that Fi(t)P (t, Ti+1) is

the price of a tradable asset (difference between two zero-coupon bonds with a
nominal amount of 1

τi
) and it has to be a martingale under the probability measure

Qi+1 associated with the numeraire P (t, Ti+1) when divided by this numeraire.
Hence, Fi(t) is martingale under Qi+1. The LFMM assumes the following driftless
geometric Brownian for the forward LIBOR rate Fi(t) under Qi+1:

dFi(t) = σi(t)Fi(t) dW i+1
i (t), t ≤ Tk (2)

where σi(t) is the instantaneous volatility at time t of the forward LIBOR rate Fi(t)
and W i+1

i (t) is the ith component of the M-dimensional Brownian motion W i+1(t)
under Qi+1 with instantaneous covariance given by:

d
〈
W i+1
i ,W i+1

j

〉
t

= ρi,j dt. (3)

The forward LIBOR rate Fi(t) is lognormally distributed under Qi+1. However, the
dynamics of Fi(t) under a measure Qm+1 different from Qi+1 are not martingales
and are given by:

dFi(t) = µi(t) dt+ σi(t)Fi(t) dWm+1
i (t), t ≤ Ti (4)
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where µi(t) :=


−σi(t)Fi(t)

m∑
j=i+1

ρi,jτjσj(t)Fj(t)
1+τjFj(t)

for i < m;

0 for i = m;

σi(t)Fi(t)
i∑

j=m+1

ρi,jτjσj(t)Fj(t)
1+τjFj(t)

for i > m,

(5)

whereWm+1
i (t) is the ith component of the M-dimensional vector Brownian motion

Wm+1(t) under Qm+1 with instantaneous correlations given by

d
〈
Wm+1
i ,Wm+1

j

〉
t

= ρi,j dt. (6)

The matrix formed by elements ρi,j is denoted ρ.

2.2 Pricing caps

A caplet (floorlet) is essentially a call (put) option on a LIBOR rate L(Ti, Ti+1). Re-
call τi is the year fraction of the period [Ti;Ti+1]. The payoffs of such options are
given by:

Caplet payoff := τi

(
Fi
(
Ti
)
−K

)+
(7)

Floorlet payoff := τi

(
K − Fi

(
Ti
))+

(8)

Hence the value of caplet prices at time 0 is:

Caplet
(
0, Ti,K

)
:= E

[
τiD

(
0, Ti+1

)(
Fi
(
Ti
)
−K

)+]
= Ei+1

[
τiP
(
0, Ti+1

)(
Fi
(
Ti
)
−K

)+]
= τiP

(
0, Ti+1

)
Ei+1

[(
Fi
(
Ti
)
−K

)+]
, (9)

where Ei+1[.] is the expectation (at time 0) under the Ti+1 forward measure Qi+1,
D
(
0, Ti+1

)
is the stochastic discount factor and P

(
0, Ti+1

)
is the zero-coupon bond

price.
Define the average percentage variance of the lognormally distributed forward rate
Fi(t) for t ∈

[
0, Ti

)
(the integrated instantaneous variance standardized with re-

spect to the time difference) as:

v2Fi :=
1

Ti
Vari+1

[∫ Ti

0

dFi(t)

Fi(t)

]
=

1

Ti
Vari+1

[∫ Ti

0
d logFi(t)

]
=

1

Ti
Ei+1

[∫ Ti

0
d
〈
logFi

〉
t

]
=

1

Ti

∫ Ti

0
σ2i (t) dt, (10)
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where Vari+1 is the variance under the Ti+1 forward measure Qi+1.
We can then compute the expectation using Black’s formula:

Ei+1

[(
Fi
(
Ti
)
−K

)+]
=: Bl

(
Fi(0), vFi

√
Ti,K, 1

)
(11)

where vFi is the caplet volatility for a given strike K, and Bl is the Black’s function
defined by:

Bl
(
F, v,K, ξ

)
= ξ

[
FΦ
(
ξd1
(
F, v,K

))
−KΦ

(
ξd2
(
F, v,K

))]
, (12)

where Φ(·) denotes the standard normal cumulative distribution function, with

d1
(
F, v
√
T ,K

)
=

log
(
F
K

)
+ v2T

2

v
√
T

(13)

and
d2
(
F, v
√
T ,K

)
= d1

(
F, v
√
T ,K

)
− v
√
T . (14)

Similarly, floorlet prices are given by:

Floorlet
(
0, Ti,K

)
:= E

[
τiD

(
0, Ti+1

)(
K − Fi

(
Ti
))+]

= τiP
(
0, Ti+1

)
Bl
(
Fi(0), vFi

√
Ti,K,−1

)
(15)

A cap (floor) is a collection of caplets (floorlets) with a common strike. Hence the
value of the cap (floor) covering the period Tα to Tβ with payment dates T ={
Tα+1, ..., Tβ

}
is simply the sum of the values of the caplets (floorlets):

Cap
(
0, T ,K

)
=

β−1∑
i=α

Caplet
(
0, Ti,K

)
=

β−1∑
i=α

τiP
(
0, Ti+1

)
Ei+1

[(
Fi
(
Ti
)
−K

)+]
(16)

=

β−1∑
i=α

τiP
(
0, Ti+1

)
Bl
(
Fi(0), vFi

√
Ti,K, 1

)
(17)

Similarly, the price of a floor with the same payment dates T is given by:

Floor
(
0, T ,K

)
=

β−1∑
i=α

τiP
(
0, Ti+1

)
Bl
(
Fi(0), vFi

√
Ti,K,−1

)
(18)
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2.3 Pricing swaptions

An Interest-Rate Swap (IRS) is a contract according to which two parties exchange
payment streams, typically fixed interest rates against floating interest rates. When
the fixed leg is paid and the floating leg is received the IRS is termed Payer IRS
(PFS), whereas, in the other case, we have a Receiver IRS (RFS). Payments occur at
predetermined dates T =

{
Tα+1, ..., Tβ

}
. At each time Ti+1 an PFS investor will

pay the amount τiK and receive τiL(Ti, Ti+1) = τiFi(Ti). Hence, the value at time
t < Tα of his cash flow is equal to:

PFS
(
t, T ,K

)
:=

β−1∑
i=α

E
[
τiD

(
t, Ti+1

)(
Fi
(
Ti
)
−K

)
|Ft
]

(19)

=

β−1∑
i=α

τiP
(
t, Ti+1

)(
Fi(t

)
−K

)
(20)

=

β−1∑
i=α

τiP
(
t, Ti+1

) 1

τi

( P (t, Ti)

P (t, Ti+1
− 1
)
−
β−1∑
i=α

τiP
(
t, Ti+1

)
K (21)

= P (t, Tα)− P (t, Tβ)−K
β−1∑
i=α

τiP
(
t, Ti+1

)
(22)

The forward swap rate Sα,β(t) at time t for the sets of times T is the rate used in the
fixed leg of the an IRS that makes it a fair contract at inception, t. In other words,
it is the fixed rate K for which PFS

(
t, T ,K

)
is equal to 0. With this convention we

obtain:

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β−1

i=α τiP
(
t, Ti+1

) (23)

Dividing both the numerator and denominator by P (t, Tα) and noticing that
P (t,Tk)
P (t,Tα)

=
∏k−1
i=α

P (t,Ti+1)
P (t,Ti)

=
∏k−1
i=α

1
1+τiFi(t)

for all k > α, we can express the forward
swap rate Sα,β(t) in terms of the forward-LIBOR rates as:

Sα,β(t) =

1−
β−1∏
j=α

1
1+τjFj(t)

β−1∑
i=α

τi
i∏

j=α

1
1+τjFj(t)

(24)

Hence, under the LFMM, the swap rate is not lognormally distributed.
A swaption with strike K is the option to enter an IRS with fixed rate K at a fixed
future date Tα, with payments occurring at dates Tα+1, .., Tβ . Hence, if we assume

7



unit notional amount, the payer swaption payoff can be written as:

PS
(
t, T ,K

)
:= E

[
β−1∑
i=α

τiD
(
t, Ti+1

)(
Sα,β

(
Tα
)
−K

)+
|Ft

]
(25)

Introducing the numeraire Cα,β(t) =
β−1∑
i=α

τiP
(
t, Ti+1

)
, we can consider the proba-

bility measure Qα,β associated with it, called the forward-swap measure, and write
the swaption price as follows:

PS
(
t, T ,K

)
= Cα,β(t)Eα,β

[(
Sα,β

(
Tα
)
−K

)+|Ft] (26)

where Eα,β[.] is the expectation (at time t) under the measure Qα,β .
As we noticed earlier, the forward swap rate Sα,β(t) is a function of the forward
LIBOR rates and it is not lognormally distributed under the swap measure Qα,β .

However, if we assume it is, we can write:

dSα,β(t) = σSα,β (t)Sα,β(t) dWα,β(t), (27)

where σSα,β (t) is the instantaneous volatility at time t of the forward swap rate
Sα,β(t) and Wα,β(t) a Brownian motion under the forward swap measure Qα,β .
Define the average percentage variance of the lognormally distributed forward
swap rate Sα,β(t) for t ∈

[
0, Tα

]
(the integrated instantaneous variance standard-

ized with respect to the time amount) as:

v2Sα,β :=
1

Tα
Varα,β

[∫ Tα

0

dSα,β(t)

Sα,β(t)

]
=

1

Tα
Varα,β

[∫ Tα

0
d logSα,β(t)

]
=

1

Tα
Eα,β

[∫ Tα

0
d
〈
logSα,β

〉
t

]
=

1

Tα

∫ Tα

0
σ2Sα,β (t) dt, (28)

where Varα,β is the variance under the forward swap measure Qα,β . This model for
the evolution of the forward swap rate is also known as lognormal forward swap
market model (LSMM).

With this assumption of lognormal distribution for the forward swap rate, we can
then compute the swaption price using Black’s formula :

PS
(
t, T ,K

)
= Cα,β(t)Bl

(
Sα,β(t), vSα,β

√
Tα,K, 1

)
(29)
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Although this assumption of lognormally distributed forward swap rates is not
compatible with the LFMM assumptions that lead to expression (24), the swap-
tion volatility v2Sα,β can be approximated from the LFMM parameters so that the
swaptions prices can be computed from (29).
The following sections detail the different assumptions and approximations we
used to calibrate our LFMM to compute the swaption volatilities from the LFMM
parameters.
For further details, see Chapter 6 of Brigo & Mercurio (2006).

3 Calibration

3.1 Data

3.1.1 Data description

South African swap curve data was sourced from the JSE, and market cap and
swaption volatilities were sourced from Bloomberg. The swap curve data included
yield rates up to 30 years, with a total of 165 points per yield curve. In total, there
were 3559 business days worth of yield curve data, starting at 2 January 2004, up
until 29 March 2018.
The cap market data included data from 26 January 2012 up until 30 March 2018,
which included a total of 1612 observations. These observations were of caps with
terms to maturity that ranged between 1 year to 10 years, each with a common
tenor of a quarter of a year. The data included at the money caps, as well as caps
with a range of absolute strikes.

Figure 1: South African Swap Curve
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The swaption data included volatilities from 24 November 2010 until 30 March
2018. This data excluded a large number of values throughout, between the start
of the data, and until 24 December 2010. Thus, it included a total of 1892 viable ob-
servations. Both the terms and the tenor of the swaption observations varied, with
the tenor ranging between 1 and 10 (in steps of 1), and the term ranging between
0.08333 and 10.

3.1.2 Data thinning

Not all data that was collected was relevant to the final outcome. As a result, a data
thinning algorithm was generated in order to remove data points from the final
outcome which were not necessary.
The cap and swap data included data from days which were public holidays in
South Africa. This meant that there wasn’t any corresponding yield curve data
from the JSE. In order to manage this problem, there were two possible avenues.
Either estimate the yield rates on the public holidays through some linear interpo-
lation scheme, or exclude the additional Bloomberg data from further analysis. The
latter option was deemed more appropriate given that data from a public holiday
could not be actual market data, and the aim of using the time series data was sim-
ply to determine trends in the market over time. There was enough data without
these additional points to get a general idea of these trends.
In addition to this, there was one data point in the yield curve data which appeared
to deviate drastically from all others. For example, the 30 year yield rate was more
than a third that of the 30 year yield rate for the previous day and the following day.

3.1.3 Data analysis

Figure 2 shows a plot of the yield curves across time. This shows that the major-
ity of South African yield curves have a similar structure: yield rates increase for
shorter maturities and then taper off for longer maturities. Yield rates themselves
have not necessarily been consistent which is to be expected given the period of
time that the data covers. The most recent data points, however, appear to have
relatively consistent yield rates in terms of the structure of the yield curve. These
trends are consistent amongst the interpolated rates. This implies that the interpo-
lation scheme is sufficient to capture the market trends, whilst being more appro-
priate for the assumptions made by the LFMM model.

On the whole, the South African forward rates have maintained a consistent trend
over time. Figure 7 suggests that there are pockets of deviation from this trend,
but it appears that these deviations occur over short enough periods of time that
they do not constitute a shift in the underlying term structure of the forward rates
themselves. Promisingly, the most recent forward rates appear to be inline with
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Figure 2: South African Swap Curve

this general trend, implying that they would be relatively good for estimation.
Figure 8, which shows the caplet volatility estimate results, suggested a shift in
the structure of caplet volatilities. Initially, the trend in caplet volatilities with re-
spect to term to maturity was to increase then to gradually decrease beyond some
local maximum. However, more recent caplet volatility data suggests that caplet
volatilities generally increase with term to maturity, although the rate of increase
is generally steeper initially, then decreases with term to maturity. The recent con-
sistency of this trend would suggest that more recent caplet volatilities would be
better suited to estimating the future volatility rates than a longer historical aver-
age.
As the swaption data was essentially non-existent between the start of the data,
and until 24 December 2010, these points were excluded from analysis. In addi-
tion, there were many observations which were incomplete; in order to manage
these observations, the empty instances within each observation was estimated by
the previous day’s observation. In order to analyse the resulting data, we decided
to get an idea for market trends through analysing the 1, 5 and 10 year term swap-
tions along all their tenors. This was deemed acceptable as these terms give an idea
of the short, medium and long term nature of the swaption market. The plots of
these can be found in Figure 3, Figure 4 and Figure 5. From these plots it is clear
that there is a great deal of oscillation in the market structures. This would likely
suggest that it would be particularly difficult to model these volatilities, as well
as to appropriately use past data for the sake of calibrating any model that would
be used to model these volatilities (and prices). Across all tenors, there tends to
be a great deal of change in the quoted volatilities, whereas they all tend to con-
verge to some common volatility as the tenor increases. This would suggest that
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the modelling of longer tenor swaps may be reasonable.

Figure 3: South African Swap Volatilities (1 Year Term)
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Figure 4: South African Swap Volatilities (5 Year Term)
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Figure 5: South African Swap Volatilities (10 Year Term)

3.1.4 Yield rate adjustments

One of the assumptions of the LFMM is that the swaption term is exactly a quarter
of a year. This implies that, for example, that the first payment occurs after 91.25
days. Now, the yield rates that occur at this sub-day periods, are not directly ob-
servable in the market. In order to estimate these rates from the data available, a
linear interpolation scheme was used.
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Figure 6: Interpolated South African Swap Curve

3.2 Determining South African forward rates

There are several methods to determine the forward rates implied by the South
African swap curve. The method used in this paper is as follows:

• Determine the zero-coupon bond values implied by the South African swap
curve. This can be done by using the following equation:

P (0, Ti) = e−r(0,Ti)Ti (30)

• Determine the forward rates implied by the zero-coupon bond values through
the following equation:

Fi(0) := F
(
0;Ti, Ti+1

)
=

1

τi

(
P
(
0, Ti

)
P
(
0, Ti+1

) − 1

)
. (31)

The resulting forward rates can be seen in Figure 7.

3.3 Estimating caplet volatilities

The cap data includes the cap volatilities for caps with annual term to maturities,
up until a term to maturity of 10 years. However, there is no direct observation
of caplet volatility data. As a result of the structure of this data, there are 4 caplet
volatilites to estimate between calander dates. There are several methods of esti-
mating these caplet volatilities, which range in terms of the degree of their com-
plexity. The simplest method was elected for use in this paper; the reason for this
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Figure 7: Implied South African Forward Rates

is that our focus is the implementiaton of the LFMM. Simpler methods of caplet
volatility estimation give sufficient estimates, and are appropriate for the sake of
determining model adequacy. The cap data available for the sake of caplet estima-
tion was a set of at-the-money caps, as well as caps with the same absolute strikes
and terms to maturity. Bloomberg appears to use its own yield curve in determin-
ing the at-the-money strike for these caps, and thus the corresponding volatility. As
a result, it was deemed sufficient to consistently use the at-the-money caps for the
sake of estimating the at-the-money volatility. The method elected for use in this
paper is bootstrapping. This method’s strength, despite its simplicity, is its effiency
and that it will always provide a solution, given that a solution exists for the sys-
tem. It was further assumed that caplet volatilities were constant over calander
years. The algorithm for this method can be found in Iwashita & White (2014), and
is as follows:

• Sort the caps into increasing order of maturity

• Determine the price of the caps implied by their market volatilities using the
Black-Scholes formula for caps

• Generate a series of differences between these cap prices, setting the first ele-
ment equal to the price of the cap with the shortest term to maturity

• Assign caplets to the period corresponding to the relevant price differences

• For each disjoint period, assign a common volatility to the caplets and solve
for the volatility that can be substituted into the Black-Scholes formula, which
gives the relevant price difference
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The last line essentially breaks down into solving the following equation:

Cap
(
0, Tj ,K

)
−Cap

(
0, Tl,K

)
=

βj−1∑
i=βl

τiP
(
0, Ti+1

)
Bl
(
Fi(0), vCaplet

√
Ti,K, 1

)
Where Tj =

{
Tα+1, ..., Tβj

}
and Tl =

{
Tα+1, ..., Tβl

}
, with βj < βl.

Iwashita & White (2014) suggest the use of a one dimensional root footing algo-
rithm in order to solve for the caplet volatilites from the price differences. The fzero
Matlab function was used to solve these equations.
A simple check as to whether the bootstrapping algorithm was applied correctly
is to reprice the caps as a sum of the caplet prices, using the bootstrapped caplet
volatilities. If the bootsrapping algorithm was applied correctly, then these prices
will be equal. This was the case when we estimated the caplet volatilities, and we
can conclude that, given the parameter inputs, the bootstrapping algorithm was
applied correctly.

Figure 8: Time Series of Estimated Caplet Volatilities

3.4 Calibrating instantaneous volatilities

The instantaneous volatilities can be calibrated from the caplet volatilities. This is
essentially finding the curve which best fits the caplet volatility data. One of the
problems that is required to be solved in this paper is to determine the optimal
structure of the instantaneous volatilities. Thus, using no a priori knowledge of
the exact structure of the instantaneous volatilities, it was deemed appropriate to
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use more general parameterisations rather than less, whilst maintaining a parsimo-
neous approach to this volatility estimation process. One such parameterisation,
suggested by Brigo & Mercurio (2006) is:

σi(t) = [a(Ti−1 − t) + d]e−b(Ti−1−t) + c

Where the values of a, b, c and d can be estimated through the following relation-
ship:

v2i−Caplet =
1

Ti−1

∫ Ti−1

0

(
[a(Ti−1 − t) + d]e−b(Ti−1−t) + c

)2
dt

Where v2i−Caplet is the estimated volatility of the ith caplet, and Ti−1 is the exercise
date of the ith caplet. The least-squares method was applied to the above in order
to derive estimates for the values of a, b, c and d in the context of the market data.
An issue that arises when applying such a general formula is that the values for the
parameters are not guaranteed to be unique, within some level of tolerance for the
minimisation of the sum of squares. This would reduce the ability to compare these
parameter values over time. Whilst this isn’t necessarily the biggest drawback, it
does diminish the general strength of this type of parameterisation over that of a
simpler parameterisation.

Figure 9: Instantaneous Volatility vs Continuous caplet Volatilities

The other instantaneous volatility structure used, also suggested by Brigo & Mer-
curio (2006) was based off the assumption that the volatilities depend only the term
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to maturity. Through this assumption, one can construct the following table of in-
stantaneous volatilities:

Table 1: Matrix of instantaneous volatilities σi,j(t)

Instantaneous Volatilities Time t ∈ (0;T0] (T0;T1] (T1;T2] ... (TM−2;TM−1]
Forward Rate F1(t) η1 Dead Dead ... Dead

F2(t) η2 η1 Dead ... Dead
... ... ... ... ... ...

FM (t) ηM ηM−1 ηM−2 ... η1

The above η values allow for an exact fit of the instantaneous volatilities to the
estimated caplet volatilities. Given the evaluation method used to find the caplet
volatilities, this instantaneous volatility structure constitutes a piece-wise constant
instantaneous volatility assumption.

Figure 10: Instantaneous Volatility vs Constant caplet Volatilities

Both sets of instantaneous volatility assumptions allow for a reasonably good il-
lustration of the effect of the structure of the instantaneous volatility on the final
swaption and caplet prices predicted by the LFMM. Thus, they are sufficient to
achieve the goal of this paper: to check whether the LFMM is a reasonably good fit
for the South African inter-bank market.
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3.5 Estimating historical correlation

Historical correlation of the forward rates can be estimated by the correlation of
the log returns of the forward rates. This is a result of the lognormal result of the
LFMM. The estimated historical correlation has the characteristics that one would
generally expect from forward correlations, namely a so-called tent shape.
An interesting feature of the calculated historical correlation matrix is that it has
some negative correlations. These negative correlations tend to occur beyond the
10 year term points.

Figure 11: Historical Forward Correlations for South Africa

3.6 Swaption price approximation

In this section we briefly review two approximation formulae for swaption pricing,
namely the Rebonato formula and the Hull-White formula. For further details see
Brigo & Mercurio (2006) and McWalter & Van Appel (2018)

Rebonato noted that the swap rate can be seen as a linear combination of forward
rates (Rebonato, 1999). In other words, a swap rate is a weighted sum of forward
rates between maturity (α) and expiry (β), where the weight of each Libor forward
rate wi is dependent on the time t and all rates Fi from maturity to this rate, i.e.

Sα,β(t) =

β−1∑
i=α

wi(t)Fi(t), (32)
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with weights defined by

wi(t) =

τi
i∏

j=α

1
1+τjFj(t)

β−1∑
k=α

τk
k∏

j=α

1
1+τjFj(t)

. (33)

Moreover, Rebonato made the following simplifying assumptions for calculating a
swaption rate:

• each LIBOR forward rate Fi(t) and its weight wi(t) are independent;

• each weight wi(t) stays stable over time and thus can be approximated by its
initial value, i.e. wi(t) ≈ wi(0);

• each Fi(t) evolution is stable over time and thus its volatility is negligible, i.e.
Fi(t) ≈ Fi(0).

All assumptions together lead to the following approximation

Sα,β(t) =

β−1∑
i=α

wi(t)Fi(t), (34)

which can be further specified as the Rebonato formula below.

Approximation 3.1 (The Rebonato formula). The squared Black swaption volatility is

(
vSα,β

)2 ≈ 1

Tα

β−1∑
i,j=α

wi(0)wj(0)Fi(0)Fj(0)

S2
α,β(0)

ρij

∫ Tα

0
σi(t)σj(t) dt. (35)

Hull & White (2000) extended the Rebonato formula by using a Taylor expansion
of first order to approximate the weight wi.

Approximation 3.2 (The Hull-White formula). The squared Black swaption volatility
is (

vSα,β
)2 ≈ 1

Tα

β−1∑
h,j=α

Gh,j(0)ρhj

∫ Tα

0
σh(t)σj(t) dt. (36)

where

Gh,j(t) =
w̃h(t)w̃j(t)Fh(t)Fj(t)

S2
α,β(t)

. (37)

and

w̃h(t) = wh(t) +

β−1∑
i=α

Fi(t)
∂wi(t)

∂Fh
(38)
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and

∂wi(t)

∂Fh
=

wi(t)τh
1 + τhFh(t)


β−1∑
k=h

τk
k∏

j=α

1
1+τjFj(t)

β−1∑
k=α

τk
k∏

j=α

1
1+τjFj(t)

− I{i≥h}

 (39)

In the remainder of this paper, for all calibration purposes, we consider only ap-
proximations generated using the Hull-White formula.

3.6.1 Note on implementation

There are several important considerations to make when implementing both the
Rebonato and Hull-White Formula Hull & White (2000) for approximating Black
swaption volatilities under the LFMM. For the purpose of calibrating the LFMM
to the given market data one needs to generate, as efficiently as possible, a grid of
Black swaption volatilities with corresponding term (α) and tenor (β − α). Thus,
one would have to structure the underlying code in such a way that is best suited
to calculate these grids in aggregate.

Calculating these approximations from scratch for each specific α and β results in
much of the same information being generated repetitively, ultimately rendering
the calibration process far too time consuming. It is possible to separate much of
the information common to all α and β combinations so as to only generate this
once, which greatly improves the efficiency of generating the grid of Black swap-
tion volatilities.

For example, when calculating the weights used in the Hull-White Formula given
by 38, one would (only once, used for all combinations of α and β) create a ZxM
matrix with entries given by

where di,j =

τ
j∏

j=αi

1
1+τjFj(t)

for j > αi;

0 otherwise;

(40)

where i = 1,...,Z and j = αi,2,...,M where Z is total number of αi’s considered.
From this, it is possible (through various selective summation schemes) to extract
the information necessary to calculate the respective weights for each considered α
and β combination.

3.7 Correlation parametrisation

For a matrix to be considered a valid correlation matrix, the following properties
must hold:

22



• |ρi,j | ≤ 1 for all i, j

• ρ positive semi-definite

• ρi,i = 1 for all i

Furthermore, correlation of Forward Rates should yield the following desired prop-
erties:

• i→ ρi,j increasing for all i ≥ j ”decreasing along row”

• i→ ρi+p,i increasing for fixed p ”increasing along sub-diagonals”

In the following we consider several parsimonious correlation parametrisations:

• A Single-Parameter parametrization

ρi,j = exp(−β|Ti − Tj |), β ≥ 0. (41)

• A stable Two-Parameter parametrization

ρi,j = exp
[
− |i− j|
M − 1

(
log ρ∞ + η

M − 1− i− j
M − 2

)]
(42)

where ρ∞ = ρ1,M is the correlation between the farthest forward rates in the
family considered, and − log(ρ∞) > η.

• A Three-Parameter parametrizationx:

ρi,j = exp
[
− |i− j|

(
β − α2

6M − 18

(
i2 + j2 + ij − 6i− 6j − 3M2 + 15M − 7

)
+

α1

6M − 18

(
i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 3M2 − 6M + 2

))]
for i = 2, 3, ...,M − 1 and i = M where the parameters should be constrained
to be non-negative in order to ensure all desired characteristics for correla-
tion.

• An improved Two-Parameter parametrization

ρi,j = exp
[
− |i− j|
M − 1

(
− log ρ∞

+ η
i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 3M2 −M − 4

(M − 2)(M − 3)

)]
with the same constraint as before. This version of Two-Parameter param-
eterisation has the additional advantage that it is increasing along the sub-
diagonal, so further smoothing the correlation structure at the diagonal.
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There exists a reduced-rank parameterisation, as suggested by Rebonato (1999) and
discussed by Brigo & Mercurio (2006), which we shall denote as the Rebonato’s An-
gles parameterisation. We know that

ρ = PHP ′ (43)

where P is a real orthogonal matrix, and H is a diagonal matrix of positive eigen-
values of ρ as ρ is positive semi-definite. If we setA := PΛ, where Λ is the diagonal
matrix whose entries are the square roots of those in H , we yield the decompo-
sition ρ = AA′. We can mimic this by means of a suitable M × n matrix B such
that ρB = BB′. However, for the sake of simplicity of calibration, we consider the
specific case of n = 2. There are certain conditions that B has to meet for ρ to be a
valid correlation matrix. Rebonato (1999) suggests a general form for the rows of
such B, which in the two-factor case reduces to

ρi,j = cos(θi − θj) 0 ≤ θ ≤ π

2
(44)

This parameterisation ensures that all the necessary characteristics of a correlation
matrix are maintained. However, the desired characteristics may not be present.
A least squares method was used to calibrate the above models to the historical
market correlations. The lsqnonlin Matlab function was used to achieve this, which
was built specifically to handle least squares minimisation for non-linear functions.

4 Methodology

There exist two central approaches for calibrating the LFMM. We consider both
avenues, assessing appropriateness of fit and implications in each situation.

4.1 Fixing volatilities and calibrating correlation

Here, instantaneous volatilities of forward rates are fixed to that implied by the
market under the continuous parameterisation. Then, the following correlation
parameterisations are calibrated to the swaption prices:

• Single-Parameter

• Two-Parameter

• Two-Parameter Improved

• Rebonato’s Angles (M-Parameter)

A test of the quality of fit to market swaption prices is then conducted, using the
absolute relative error.
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4.2 Fixing correlation and calibrating volatility

Instantaneous correlations are fixed using the markets historical correlation data.
Then, the continuous parameterisation of instantaneous volatilities is calibrated to:

• Swaption prices exclusively

• A weighted combination of swaption and cap prices

A test of the quality of fit to market swaption prices is then conducted, using the
absolute relative error. Furthermore, the resultant instantaneous volatilities of the
forward rates are compared to those implied by the cap market data.

4.3 A note on implementation of Rebonato’s Angle Parameterisation

A hybrid bootstrapping technique is used to calibrate Rebonato’s Angle parame-
terisation. Initially, the first four θi’s (corresponding to the first four forward rates)
are calibrated by optimising them to fit the swaption price which incorporates only
the first four forward rates. This is done by selecting the upper-left 4x4 segment
of the σ-matrix and ρ-matrix (as seen below), which is then used to generate the
approximation of the swaption price.

One would then calibrate θ5 using the swaption which incorporates the first five
forward rates by selecting the upper-left 5x5 segment of both matrices, with θ1,θ2,
θ3, θ4 fixed from the previous calibration. It is notable that there exist gaps in the
swaption expiries (for example, when the previous swaption has ten relevant for-
ward rates, and the next available swaption has twelve) such that several θ’s may
need to be calibrated simultaneously. This process continues cascading down the
matrices, until one encounters the problem when there are two swaptions incor-
porating the same forward rates (for example, the 2x2 and 1x3 swaptions). In this
case, one could consider a weighting of these two swaption prices. However, for
the sake of simplicity, we select the swaption with the longer term to maturity as it
includes the least incremental information about the θ’s.
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σ matrix ρ matrix

5 Results

In this section we present the results of the two different calibration approaches
mentioned in the previous section. In all calibration approaches we aim to min-
imise the average relative errors between model-based swaption volatility and the
swaption volatility implied by the market. Recall that the relative error of calibrat-

ing a swaption volatility σmarket
α,β is defined as εα,β :=

|σmarket
α,β −σmodel

α,β |
σmarket
α,β

where σmodel
α,β

denotes the corresponding model-based swaption volatility.

In the first approach, we fix the instantaneous volatilities of forward rates and cali-
brate the correlations to the swaption prices in the market. The fitted instantaneous
correlations of each parametrisation are presented in Figure 12,Figure 13, Figure 14
and Figure 15, and the fitting quality (relative errors of swaption calibration) are
summarized in Table 2. We see that the first three parametrization give a poor
fit, but the calibrated correlation structures are rigid, smooth and contains all the
desired characteristics. The Rebonato’s angle parameterisation has the smallest cal-
ibration error for approximating the market swaptions due to the large number of
parameters that allow for extra freedom in the calibration. The calibrated correla-
tion structure suffices the necessary conditions, i.e. positive semi-definite matrix.
However it oscillates with large amplitudes as it might have incorporated too much
market noise of the swaption volatilities from the market.
In the second approach, we fix the instantaneous correlation and calibrate the in-
stantaneous volatilities of the forward rates to either only the swaption prices or
to a weighted combination of Caps and Swaptions prices. Figure 16 and Figure
17 shows the relative errors of fitting only swaptions and jointly fitting swaptions
and caps respectively. We see in both cases significant calibration errors. We notice
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Figure 12: Swaption calibration using the One-factor parameterisation. Left: in-
stantaneous correlation; Right: relative error of the swaption calibration. Each
point on the grid represents the relative error of calibrating to that swaption with
the corresponding term and tenor.

Figure 13: Swaption calibration using the Two-factor parameterisation. Left: in-
stantaneous correlation; Right: relative error of the calibration.
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Figure 14: Swaption calibration using the improved Two-Parameter parameterisa-
tion. Left: instantaneous correlation; Right: relative error of the calibration.

Figure 15: Swaption calibration using the Rebonato’s angle parametrization.

that the first one is slightly better, as it completely ignored the volatility structure
of the caps. Indeed, the calibrated volatility structure differs significantly from the
volatility structure implied from the Caps in the market.
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Single-Parameter Two-Parameter improv. Two-Parameter Rebonato’s
β ρ∞, η ρ̃∞, η̃ angle θ

average
relative error 36.14376% 35.28341% 34.37879% 5.46626%

Table 2: Relative error of calibrating correlation to Swaption prices from the market.
The best calibration is obtained by using Rebonato’s angles.

Figure 16: Relative error of calibrating swaption prices by assuming historical
correlation between the underlying forwards. Here we only assume continuous
parametrization for volatility of Caps. The average relative error is 20.85398%.
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Figure 17: Relative error of calibrating swaption prices. Here we calibrate the in-
stantaneous volatilities to the cap and swaption prices using the fixed instanta-
neous correlations (historical correlations). Further we assume equal weights for
minimizing the relative errors of both the cap and swaption prices. The average
relative error is 25.09454%.
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6 Conclusion

Within the two approaches of calibration of the LFMM, the results above give a
clear indication as to the appropriateness of the model within the South African
inter-bank interest rate market.

Using fixed instantaneous volatilities implied by the cap data:

• The correlation parameterisations that maintained the desirable characteris-
tics resulted in a low quality of fit to the swaption prices. (30%+ mean abso-
lute relative error)

• Using a more flexible parameterisation (Rebonato’s Angles) a much higher
quality of fit is achieved, but the correlation matrix oscillates beyond the point
of interpretation.

This corroborates the findings of Brigo & Mercurio (2006) (where their swaption
volatility structure was akin to that of a developed market) in which they state that
in order to have a good calibration to the swaption data we have to allow at least
partial oscillations in our correlation matrix. A priori it was conjectured that the
upward sloping volatility structure in South Africa may be conducive to a rigid
parametric correlation structure. However, our results refute this idea.
In order to impliment the more flexible Rebonato’s Angles parameterisation we
have proposed a novel hybrid calibration algorithm to deal with the much higher
dimentionality of the problem in the South African market, given that all South
African interest rate derivitives refernce three month JIBAR (which results in 79
forward rates). Please refer to subsection 4.2 for further information. Brigo & Mer-
curio (2006) present a cascade algorithm which provides exact fitting of the LFMM
to the swaption market via a peacewise constant and non-homogenous volatility
matrix. This was not conducive to our problem because the non-homogeneity of
the volatility structure does not permit long-term modelling. Therefore, we have
sought a similiar result with a parsimonious homogenous parameterisation of the
volatility structure.
Using fixed instantaneous correlations from historical data:

• Calibrating the instantaneous volatilities to cap and swaption data results in
vastly different instantaneous volatilities in comparison to those implied by
the market.

• Further, the resultant swaption prices deviate significantly from those present
in the market.

• This is a particularly large problem within the context of the South African
market, and may be as a result of the unusual swaption volatility structure.
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When using parsimonious instantaneous volatility and correlation parameterisa-
tions (which would be used for long-term modelling), the resultant fit is of poor
quality. Only once more flexible structures are introduced can the model yield an
adequate fit. We conclude that the LFMM is not appropriate for this purpose within
the context of the South African inter-bank interest rate market.
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