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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial
and Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant
research project, while simultaneously developing links with international students and
academics in the field. An allied purpose is to bring a variety of international researchers
to South Africa to give them a glimpse of the dynamic environment that is developing at
UCT in the African Institute of Financial Markets and Risk Management. The primary goal,
however, is for students to learn to work in diverse teams and to be exposed to a healthy
dose of fair competition.

The Fourth Financial Mathematics Team Challenge was held from the 18th to the 28th of
July 2017. The challenge brought together five teams of Masters and PhD students from
Australia, Germany, South Africa and the UK to pursue intensive research in Financial
Mathematics. Each team worked on a separate research problem during the twelve days.
Professional and academic experts from Brazil, Switzerland, Australia, Austria, Canada,
South Africa, and the UK individually mentored the teams; fostering teamwork and pro-
viding guidance. As they have in the past, the students applied themselves with remark-
able commitment and energy.

This year’s research included topical projects on (a) portfolio risk diversification, (b) early-
warning systems for financial crises and long-term asset management, (c) model calibra-
tion via neural networks, (d) the management of parameter estimation risk in a Mean-
Variance portfolio optimisation exercise, and (e) rough volatility modelling paradigms.
These were either proposed directly by our industry partners or chosen from areas of
current relevance to the finance and insurance industry. In order to prepare the teams,
guidance and preliminary reading was given to them a month before the meeting in Cape
Town. During the final two days of the challenge, the teams presented their conclusions
and solutions in extended seminar talks. The team whose research findings were adjudged
to be the best was awarded a floating trophy. Each team wrote a report containing a critical
analysis of their research problem and the results that they obtained. This volume contains
these five reports, and will be available to future FMTC participants. It may also be of use
and inspiration to Masters and PhD students in Financial and Insurance Mathematics.

FMTC IV was a great success, so 2018 and FMTC V are already in the pipeline!

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

An important concept in portfolio construction is diversification. The central hy-
pothesis of diversification is that some asset classes should perform well when oth-
ers perform badly, thus the profit and loss of a diversified portfolio should remain
relatively stable when there is a downturn in a single asset class.

Since 2008, portfolios that are based on risk diversfication have become more
popular. These strategies are said to have something from US $ 150 billion to US
$ 1.5 trillion invested in them1. The idea of such risk parity portfolios is to diversify
the risk of a portfolio rather than its financial exposure.

However, through May 2013 and late 2015, there was a downturn in several
asset classes, and portfolios that were (supposedly) based on risk parity principles
performed poorly during this period2. The aim of this project is to investigate why
this might be the case. The central research question is:

“How do risk parity portfolios perform under realistic assumptions for the
movements of the underlying asset returns?”

The goal is to determine whether the downturn in risk parity portfolios was due to
the concept of risk parity being flawed, or rather whether there are pitfalls in the
standard modelling approach.

The construction of risk parity portfolios when standard deviation is used as the
risk measure is neatly reviewed by Maillard et al. (2010) and generalised to other
risk measures by Tasche (2007). An investigation into the real-world performance
for a very small sample of assets is performed in Stefanovits (2010).

This projects proceeds in five stages. First, a simulation environment is estab-
lished for varying levels of model tractability and realism. Then, the construction
of risk parity portfolios is examined. Third, a numerical investigation is performed
where the simulation environment is used to test the performance of the risk parity
portfolios. After the numerical investigation is complete, the most realistic model
framework is fitted to 31 assets in a real-world data set. Finally, the performance of
risk parity portfolios is backtested against a limited sample of historical data.

1https://finance.yahoo.com/news/quants-fire-back-paul-tudor-172047543.
html

2http://www.salientindices.com/risk-parity.html
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Figure 1: Four fifths of Team 1 - The Psychic Pony Skeletons.

2 Simulation

For the purpose of this investigation, we wish to be able to simulate returns from
multiple assets with a complex dependency structure. This section outlines several
simulation methods. First we will consider simulating from the multivariate nor-
mal (MVN) and multivariate t (MVt) distributions. Following that, we will con-
sider a more realistic dependency model using copulas. Finally, we combine the
copula dependency structure with a simple time-series model. This last case fol-
lows recommendations set forward by Nystrom and Skoglund (2002).

2.1 Multivariate Distributions

Simulating from the MVN distribution is relatively straightforward. Let us assume
we wish to simulate n returns of N assets. We wish to simulate a matrix of returns
R ∈ RN×n given a column vector of means µ ∈ RN×1 and a covariance matrix
Σ ∈ RN×N . We first compute the lower triangular matrix, L, given by the Cholesky
decomposition of the covariance matrix, i.e., Σ = LL>. Then given a matrix of
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random standard normal variates Z ∈ RN×n;

R = µ+ LZ

where Z is simulated in MATLAB using the command randn(N,n). As we are
simulating returns, µ is taken as a vector of zeros.

While the MVN distribution is a good starting point, it fails to capture many of
the stylized facts of asset returns. One of these facts, the presence of fatter tails, is
better captured by a Student’s t distribution. To simulate R ∈ RN×n from a MVt
distribution, we consider a similar procedure as with the MVN distribution and
introduce a degrees of freedom parameter ν. The returns matrix is given by

R = µ+ LY,

where Y ∈ RN×n is a matrix of random Standard Student t variates with a common
degree of freedom ν. It is important to note that in this case Σ is actually not the
covariance matrix of the outputted returns, but rather a scaled version of it. The
true covariance of the returns is given by

Cov(R) = LCov(R)LT =
ν

ν − 2
Σ.

Example 1. Consider the two asset (bivariate) case. Given a correlation ρ and fixed
degrees of freedom ν = 3, we can create contour plots for changing ρ. We notice
how in both instances, as the correlation becomes large positive or negative the data
groups closer together. The impact of the Student’s t distribution is also displayed
in Figure 2 as we can see a wider spread in the contours, due to the heavier tails,
when compared to the MVN distribution.

These two methods of simulation give us returns with distributions which are
tractable, however we would like to consider a more realistic model for returns and
their underlying dependency structures. The next section introduces the concept
of copulas and how to simulate returns data using them.

2.2 Copulas

When modelling the returns of multiple assets, we wish to capture both the char-
acteristics of each individual asset and the dependence structure between the as-
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Figure 2: The bivariate Gaussian (MVN) distribution with varying correlation.
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sets as best as possible. When using a multivariate distribution (such as the MVN
or Mvt), we describe both of these using a joint distribution. Copulas allow us
to divide up the construction of this joint distribution such that the individual as-
set’s characteristics are described by marginal distributions while their dependence
structure is described by the copula (Nystrom and Skoglund, 2002).

The fundamental theorem underlying copula analysis is Sklar’s theorem, see
Sklar (1959).

Theorem 2 (Sklar’s Theorem). Let H be an n-dimensional distribution function
with marginals F1, . . . , Fn. Then there exists an n-copula C such that ∀x ∈ Rn,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

and if F1, . . . , Fn are all continuous, then C is unique. Conversely, given a cop-
ula C : [0, 1]d → [0, 1] and margins Fi(x) then C (F1(x1), . . . , Fd(xd)) defines a d-
dimensional cumulative distribution function.

Now, if we let Fi be a continuous and invertible univariate distribution function
for i = 1, . . . , n, we have the following corollary from Nelsen (1999) that allows us
to specify a copula in terms of distribution functions.

Corollary 3. Let H be an n-dimensional distribution function with continuous
marginals F1, . . . , Fn and copula C. Then for any u ∈ [0, 1]n,

C(u1, . . . , un) = H(F−11 (u1), . . . , F
−1
n (un)).

We will consider two elliptical copulas, the Gaussian and Student’s t, as well as
the Clayton Archimedean copula.

2.2.1 Measures of dependence

Copulas are used to describe the dependence structure existing between random
variables. It is therefore useful to have some measure of this dependence. The
most common measure of dependence between two random variables, X and Y ,
is Pearson’s correlation

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.
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Pearson’s correlation is a linear measure of dependence, which is suitable for el-
liptical multivariate distributions, such as the MVN and MVt distributions, but
is not appropriate for the non-elliptical joint distributions which arise when us-
ing copulas, see (Embrechts et al., 2001). More suitable measures of dependence
are Kendall’s tau and Spearman’s rho, which are invariant under non-linear trans-
forms. We shall consider Kendall’s tau for this paper.

Definition 4 (Kendall’s tau). Consider two random variablesX and Y , then Kendall’s
tau is defined as

τ(X,Y ) = P[(X − X̄)(Y − Ȳ ) > 0]− P[(X − X̄)(Y − Ȳ ) < 0]

where (X,Y ) and (X̄, Ȳ ) are i.i.d.

Embrechts et al. (2001) provide us with a simple closed form solution for the
Kendall’s tau when considering a copula C with two continuous random variables
X and Y .

τ(X,Y ) = 4E[C(U, V )]− 1

where U, V ∼ U(0, 1). We shall revisit Kendall’s tau when we discuss Archimedean
copulas.

2.2.2 The Gaussian copula

When considering a copula we are uninterested in the marginals and the charac-
teristics of each asset, and only consider the dependency between them. We can
therefore fully specify the Gaussian copula by its correlation matrix. It is important
to note here that adding a mean vector to the Gaussian copula has no effect and
therefore we will always assume zero mean when simulating.

Definition 5 (Gaussian copula). Let Σρ be a correlation matrix with diag(Σρ) = 1

and Φρ the standardised Multivariate Normal distribution function with correla-
tion matrix Σρ. The Gaussian copula is then defined as:

C(u1, . . . , un; ρ) = Φρ(Φ
−1(u1), . . . ,Φ

−1(un))

where u ∈ [0, 1]n.

Let us return to our problem of simulating n returns from N assets in the form
of the returns matrix R ∈ RN×n. Let us assume the we know the form and the
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Figure 3: The bivariate Gaussian copula with varying Kendall’s tau.

parameters of the marginal distributions F1, . . . , FN and we want to simulate from
a Gaussian copula with correlation matrix Σρ.

First we simulate a matrix X ∈ RN×n of MVN random numbers using the the
method outlined previously. Since the means are irrelevant we can ignore them
(i.e. X = LZ). We then transform numbers to lie on [0, 1] by inputting them into
the univariate standard normal cumulative distribution function, Φ. This captures
the dependence structure of the assets in a unit hypercube. Applying the inverses
of the marginal distribution functions F−11 , . . . , F−1N to each row of this matrix gives
R with the desired returns structure.

Example 6. Consider the bivariate case of the Gaussian copula. In this case, the
dependence structure is completely specified by Kendall’s tau. In Figure 2.2.2, we
plot contours of the generated unit square for varying Kendall’s tau. The τ = 0

case implies a uniform copula, with no dependence between the returns.

2.2.3 The Student’s t copula

Definition 7 (Student’s t copula). Let Σρ be a correlation matrix with diag(ρ) = 1

and Tρ,ν the standardised Multivariate Student’s t distribution function with corre-
lation matrix Σρ and ν degrees of freedom. The Student’s t copula is then defined
as:

C(u1, . . . , un; Σρ, ν) = Tρ,ν(t−1ν (u1), . . . , t
−1
ν (un))

10



Figure 4: The bivariate Student’s t copula with varying Kendall’s tau.

where u ∈ [0, 1]n and t−1ν is the inverse univariate Student’s t distribution with ν

degrees of freedom.

To simulate from the Student’s t copula with known parameters Σρ and ν and
known marginal distribution functions F1, . . . , FN we follow a similar method to
the Gaussian copula. We first simulate random numbers from a MVt distribution
with parameters ρ and ν using the method described previously. We then trans-
form these realisations onto [0, 1]N by applying the inverse of the Student’s t dis-
tribution with ν degrees of freedom. Lastly, applying the inverses of the marginal
distribution functions F−11 , . . . , F−1N to each row of this matrix gives R with the
desired returns structure.

Example 8. Consider the bivariate case of the Student’s t copula and set the degrees
of freedom, ν = 3. The dependence structure is now specified by the Kendall’s tau
and the degrees of freedom. In Figure 2.2.3, we plot contours of the generated unit
square for varying Kendall’s tau. In contrast to the Gaussian copula, we see that
there is dependence structure when the Kendall’s tau is zero. This is due to the
structure imparted by the degrees of freedom, resulting in a non-uniform copula.
In the other plots, we notice that there is stronger dependence towards the tails
than with the Gaussian copula. This is due to the thicker tails of the Student’s t
distribution.
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2.2.4 Archimedean copulas

Definition 9 (Archimedean Copula). We define an Archimedean copula by its gen-
erator ϕ(u), where:

C(u1, . . . , un) =

ϕ
−1(ϕ(u1) + · · ·+ ϕ(un)) if

N∑
n=1

ϕ(un) ≤ ϕ(0)

0 otherwise

and ϕ(u) is a continuous, strictly decreasing and convex function with ϕ(1) =

0, ϕ′(u) < 0 and ϕ′′(u) > 0 for all 0 ≥ u ≥ 1.

Archimedean copulas often present us with several desirable properties and
can simplify the mathematics (Bouyé et al., 2000). One such such simplification is
a closed-form solution for Kendall’s tau in the bivariate case,

τ = 1 + 4

1∫
0

ϕ(u)

ϕ′(u)
du.

This is useful when we wish estimate the parameters of the copula.
For this paper, we will only consider the Clayton Archimedean copula. This

copula is appropriate to financial applications since it has asymmetric dependence
(unlike the elliptical copulas) skewed towards the lower tail. This fits into what we
witness in financial markets as assets often move together more in crashes than in
booms.

The d-dimensional Clayton copula has a generator of the form

ϕθ(x) = (1 + θ)
− 1
θ

+

where θ ≥ −1
d−1 (McNeil and Nešlehová, 2009). For the bivariate case, we can get

an estimate for θ directly from an estimate for Kendall’s tau, while for higher di-
mensions we need to calculate the Kendall’s tau function described by McNeil and
Nešlehová (2009). Once θ has been estimated, simulating from d-dimensional Clay-
ton copulas is relatively simple.

McNeil and Nešlehová (2009) give a detailed overview of the mathematics un-
derlying the simulation procedure, but we will just summarise the necessary re-
sults. We use the Marshall Olkin’s simulation algorithm which is described by
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Figure 5: The bivariate Clayton copula for varying values of Kendall’s tau.

Hofert (2008). This method relies on knowing the form of the radial distribution,
FV , of the copula. For the Clayton copula, this is Gamma distribution with shape
parameter 1

θ and scale parameter 1. Given θ, the algorithm for simulating 1 sample,
(U1, . . . , Ud) from a d-dimensional Clayton copula is;

1. Sample V ∼ Gamma(1θ , 1).

2. Sample i.i.d. Xi ∼ U [0, 1], i ∈ {1, . . . , d}.

3. Ui = ϕ−1θ (− log(Xi)
V ).

This allows us to generate a sample from the Clayton copula via sampling from the
Gamma and Uniform distributions.

Example 10. Consider a bivariate Clayton copula. The copula is fully specified by
the parameter θ which can be derived directly from the Kendall’s tau. We now
consider a range of only positive Kendall’s taus, and plot the resultant contours of
the unit square in figure 10. As with the Gaussian copula, when the Kendall’s tau
is zero, there is no visible structure. As the Kendall’s tau increases so does the co-
depedence, however unlike the elliptical distributions, the dependence is skewed
to the lower tail.
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2.3 Time-series

Nystrom and Skoglund (2002) argue that the combination of time-series models
with copulas is sufficiently general to model financial returns and manage risk. A
time-series model is fitted to each underlying asset and a copula is used to intro-
duce interdependence between the assets. This dependence is, in general, more
complex than can be captured by a single variable, like correlation. In the simplest
case, they suggest a GARCH(1,1) time-series model, estimated from each under-
lying along with a t-copula to model their dependence. In this section, we briefly
discuss how to simulate from such a model.

Consider a series of GARCH(1,1) models, each estimated from an underlying
asset. Each individual return is then described by

rit =µi + εit, (1)

εit =ζtσ
i
t, (2)

for i = 1, . . . , N , where ζt
iid∼ [0, 1]. Thus, εit ∼ [0, (σit)

2]. The conditional variance is
given by

(σit)
2 = ωi + αi1ε

2
t−1 + βi1(σ

i
t−1)

2. (3)

As we are simulating returns we assume µi = 0 for every i. Furthermore, we
assume the residuals, εit, are Gaussian.

Simulating from the above is fairly straightforward: given initial values, Gaus-
sian random variables can be generated and used to advance the returns process
through time. To introduce the copula dependance, the Gaussian random variables
must be inferred from random samples of the copula.

Thus, to advance the model one step,N random realisations are generated from
the copula. These realisations must then be standardised such that they have zero
mean and unit variance (this step is essential when the copula is not Gaussian). The
inverse Gaussian cumulative distribution function is then applied to these random
variables, which will be distributed on the uniform hypercube of dimension N , to
obtain the Gaussian variates required to drive the process.

The procedure is illustrated in the numerical investigation of Section 4.6.

14



3 Portfolio construction

In this section, we are interested in constructing risk parity portfolios for different
risk measures. Risk parity portfolios are portfolios such that the risk contribution
to the selected risk measure from each component is equal. Intuitively, the risk
contribution of a component is equal to the product of its weight in the portfolio
and its marginal risk contribution. This section follows Tasche (2007).

3.1 Marginal risk contribution for different risk measures

3.1.1 General formulation

We rely on Euler’s theorem for homogenous functions in order to decompose the
risk of the portfolio into the risk contributed by each of its components.

Definition 11 (Homogeneous function). A function f : U ⊂ Rn → R is called
homogeneous of degree 1 if for all h > 0 :

f(hu) = hf(u)

.

When the function f is differentiable, we can use Euler’s theorem on homoge-
neous functions so as to decompose the function on each of its component.

Theorem 12 (Euler’s theorem on homogeneous functions). Let f : U ⊂ Rn → R be
a continuously differentiable function. Then f is homogeneous of degree 1 if and
only if

f(u) =
n∑
i=1

ui
∂f(u)

∂ui

where u = (u1, ..., un) ∈ U, h > 0.

Now that we have seen Euler’s theorem, we can use it to construct our risk
parity portfolio. First, consider n real valued random variables X1, ..., Xn that will
represent the return of the n assets in our portfolio for some time horizon and
w = (w1, ..., wn) the vector of weights in our portfolio. The return of our portfolio
is then

X(w) =
n∑
i=1

wiXi
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for the considered horizon. Let ρ be our risk measure, such that the economic cap-
ital required by our portfolio is ρ(X(w)). We are interested in evaluating the risk
contribution of asset i, denoted ρ(Xi | X) to the total risk of the portfolio, ρ(X(w)).
Assuming our risk measure is homogeneous of degree 1 and continuously differ-
entiable, we can use Euler’s theorem to compute the risk contributions of each
component:,

ρ(Xi | X) = wi
∂ρ(X(w))

∂wi
,

and

ρ(X) =

n∑
i=1

ρ(Xi | X) =

n∑
i=1

wi
∂ρ(X(w))

∂wi
.

We now consider three different commonly used risk measures: standard de-
viation (σ), Value-at-Risk (VaR) and Expected Shortfall (ES). All of those risk mea-
sures are homogeneous of degree 1 and under smoothness conditions for value at
risk and expected shortfall (see (Tasche, 1999)) we can derive the risk contributions
for each of the risk measures. The relevant computational formulae are given by:

σ(Xi | X) = wi
(Σw)i√
w′Σw

,

VaRα(Xi | X) = −wiE[Xi | X = −VaRα(X)],

and

ESα(Xi | X) = −wi
1

α
E[Xi | X ≤ −VaRα(X)].

The details of the derivation can be found in Stefanovits (2010).

3.1.2 Closed-form formulas

The marginal risk contributions for standard deviation are always available in
closed-form as long as we have an estimate for the covariance matrix of the re-
turns. It does not depend on the underlying distributions that gave rise to the co-
variance estimate. For Value-at-Risk and Expected Shortfall, we can derive analyt-
ical solutions for the case when the returns are multivariate normal or multivariate
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Student’s t, as in Section 2.1. For the MVN case,

VaRα(Xi | X) = −wi
(

(Σw)i√
w′Σw

Φ−1(α)− µi
)
,

and

ESα(Xi | X) = −wi
(

(Σw)i

α
√
w′Σw

φ(Φ−1(α))− µi
)
,

whereas for the MVt case

VaRα(Xi | X) = −wi
(

(Σw)i√
w′Σw

T−1ν (α)− µi
)

and

ESα(Xi | X) = −wi
(

ν

1− ν
(Σw)i

α
√
w′Σw

(
1 + (

T−1ν (α))2

ν
)

)
tν(T−1ν (α))− µi

)
.

3.1.3 Monte Carlo methods

When the underlying dependency structure is complex, closed-form expressions
for the marginal risk contributions are unavailable. To construct risk parity port-
folios, we turn to Monte Carlo simulation to estimate the required quantities. We
focus only on estimating the marginal risks for expected shortfall.

If we assume that the distribution of the returns is continuous, the general for-
mula for the marginal risk is

∂ESα(X)

∂wi
= − 1

α
E

[
Xi | X ≤ −VaRα

(
n∑
i=1

wiXi

)]
.

To estimate this, we generate N simulations of our n assets, either using model
generated data or empirical distributions. Given a portfolio w = (w1, ..., wn), we
can compute an estimate of the necessary profit and loss distribution.

In order to determine the marginal risk contribution of asset i, we sort the array
of portfolio returns. Based on this sorted array, the returns of asset i are also sorted.
To compute the marginal risk, we sum the first αN sorted values of the returns
of asset i, and we divide it by − 1

αN . However, sorting an array costs a significant
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amount of execution time. Instead of sorting the array of the portfolio returns, we
can simply sum the returns of asset i whenever the return of the portfolio is less
than its α-quantile and then divide the sum by − 1

αN . We thus obtain the marginal
risk contribution of asset i. Using this vectorised technique instead of sorting an
array is approximately ten times faster when implemented in Matlab.

3.2 Optimisation Problem

So far, we have seen how to compute marginal risk contributions either using the
closed-form solution or Monte Carlo simulation. We are now interested in building
risk parity portfolios using one of these risk measures. In another words, we want
to build a portfolio w = (w1, ..., wn) such that for all i, j:

ρ(Xi | X) = ρ(Xj | X)⇔ wi
∂ρ(X(w))

∂wi
= wj

∂ρ(X(w))

∂wj
.

We are not considering portfolios where one can short assets.
This can be restated as the following optimisation problem:

w∗ = argminf(w)

s.t.
n∑
i=1

wi = 1 and 0 ≤ wi ≤ 1∀i,

where

f(w) =
n∑
i=1

n∑
j=1

(
wi
∂ρ(X(w))

∂wi
− wj

∂ρ(X(w))

∂wj

)2

The idea is to minimise f in order to equalise all the risk contributions of the
portfolio. At each iteration of the algorithm, the programme computes the score
function f with new weights and we find a solution when f(w∗) = 0 (i.e, all the
risk contributions are equal for this portfolio).

The above optimisation problem can be solved using Sequential Quadratic Pro-
gramming (SQP), or Cyclical Coordinate Descent (CCD), see Griveau-Billion et al.
(2013).
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3.3 Framework

We now have an overview of the different parts we need in order to build our risk
parity portfolios. Let us see how these different parts interact with each other so as
to build a risk parity portfolio for standard deviation and expected shortfall using
Monte Carlo simulation.

3.3.1 Risk parity portfolio for standard deviation

For standard deviation, marginal risk contributions do not depend on the underly-
ing distribution, but only on the covariance matrix:

∂σ(w)

∂wi
=

(Σw)i√
w′Σw

. Obtaining the risk parity portfolio is quite fast and simple. We only need to
plug the closed form formula in the optimisation problem and we get the optimal
weights after a few iterations of the SQP algorithm.

3.3.2 Risk parity portfolio for expected shortfall using Monte Carlo

Based on the underlying distributions - either obtained from model generated data
or empirical distributions - we generate N samples of our n assets returns. At each
iteration of the SQP algorithm, we compute the returns of the portfolio with the
new weights and estimate the marginal risk contribution for each asset. Given
the portfolio and the marginal risks we can compute the score function f for this
iteration. After some iterations, the algorithm converges and we obtain the optimal
weights.

As the number of assets and Monte Carlo simulations increase, the number of
iterations required for the algorithm to converge increases too. Instead of using
the equally-weighted portfolio as initial guess in our optimisation algorithm, we
can compute the initial guess using the MVN assumption for the returns. This
dramatically increases the rate of convergence.
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4 Numerical Investigation

4.1 Overview

In this chapter, we investigate the sensitivity of the profit and loss distribution of
five portfolios (equally-weighted risk contribution (ERC) -with volatility, expected
shortfall and VaR as risk measures-, equally weighted (EW) and mean variance
(MV)) to changes in the mean and covariances of the asset returns. There may be
errors in estimating these parameters from asset returns data therefore we should
have a good understanding of the effect these parameters have on the profit and
loss distribution of the portfolios. With the assumption that the asset returns ei-
ther have a multivariate Gaussian or multivariate Student’s t distribution, we will
analyse the following 5 cases:

1. µ = 0;

2. µ proportional and inversely proportional to σ;

3. sensitivity to µ;

4. sensitivity to Σ; and

5. model misspecification.

Consider stock, currency and bond returns with volatilities 30%, 10% and 5%,
respectively. We will use the following correlation matrix throughout this investi-
gation:

ρ =

 1 −0.3 −0.5

−0.3 1 0.1

−0.5 0.1 1


.

4.2 Multivariate Normal

4.2.1 Influence of µ

µ = 0
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Firstly, we consider multivariate normal asset returns. When the mean of the
returns are zero the risk parity portfolios all have the same profit and loss distribu-
tion. Since we consider a fixed covariance matrix and mean of the asset returns, the
only variable to consider in calculating the profit and loss of the portfolios is the
weights of each portfolio. In this case when the distribution of these portfolios are
the same, the weights for the portfolios are the same. This can be shown by taking
the marginal risk contribution of the risk parity portfolios as a proportion of the
total risk of the portfolio (Stefanovits, 2010):

marginal risk
porfolio risk

=
marginal risk

sum of marginal risks
; (4)

ERCσ :=
mi (Σm)i /

√
m′Σm∑N

i=1mi(Σm)i/
√
m′Σm

;

ERCES :=
mi (Σm)i /

√
m′Σm∑N

i=1mi(Σm)i/
√
m′Σm

;

ERCVaR :=
mi (Σm)i /

√
m′Σm∑N

i=1mi(Σm)i/
√
m′Σm

.

The variance and mean of the portfolio returns will be used to calculate the
0.01-quantile of the the profit and loss distribution using the norminv function in
Matlab. The expected value of the portfolio returns (see Stefanovits (2010)) is

N∑
i=1

miµi. (5)

The variance of the portfolio returns is

N∑
i=1

N∑
j=1

mimjCov(Ri, Rj) = m′Σm (6)

where Cov(Ri, Rj) is the covariance between asset i and asset j.
It can be seen in Figure 6 that the portfolio risks are ordered in the following

way Maillard et al. (2010):

σMV ≤ σERC ≤ σEW. (7)
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Figure 6: Profit and Loss (P&L) probability density with µ = 0.

The derivation of the relationship in equation (7) is shown in Maillard et al. (2010).
The risk parity portfolios all have the same profit and loss distribution due to

the mean of the asset returns being zero. The lower 0.01-quantile is -0.0884 for the
risk party portfolio, -0.2058 for the equally weighted portfolio and -0.0818 for the
minimum variance portfolio. It can be seen in figure 6 that the minimum variance
portfolio has the fattest tails with the largest 0.01-quantile.

µ proportional and inversely proportional to σ

The expected value of asset returns in the market is usually proportional to
their volatilities i.e high profit and loss is associated with high volatility. We will
consider the asset returns with means that are proportional to their volatilities and
asset returns that are not proportional to their volatilities. This will give us an idea
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Table 1: Portfolio mean.
Case ERCσ ERCES ERCVaR EW MV

µ ∝ σ 0.0378 0.0375 0.0375 0.0567 0.0325
µ 6∝ σ 0.0769 0.0865 0.0923 0.0567 0.0841

Table 2: Portfolio 0.01-quantile.

Case ERCσ ERCES ERCVaR EW MV

µ ∝ σ -0.0506 -0.0503 -0.0503 -0.1492 -0.0494
µ 6∝ σ -0.0115 0.0040 -0.0157 -0.1492 0.0023

of the effect the misspecification of the mean has on the profit and loss distribution
of the portfolios. The asset mean values considered are µ = [0.1 0.05 0.02] and
µ = [0.02 0.05 0.1].

Figure 7: P&L probability density.

When the means of asset returns are non-zero and proportional to their volatil-
ities the relationship in equation ((7)) holds. The higher the mean of the portfolio
returns the fatter the tails of the distribution. We are concerned about the tails of the
profit and loss distribution, in particular the 0.01-quantile. The equally weighted
portfolio has the fattest tails with the largest 0.01-quantile and the highest portfolio
mean; this is illustrated in figure 4.2.1. The minimum variance portfolio has the
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Table 3: ERCes varying µ.

µest 7% error µest 20% error µest 33% error µest 47% error µest60%

0.01-quantile -0.0477 -0.0427 -0.0378 -0.0328 -0.0278
mean 0.0402 0.0452 0.0501 0.0551 0.0601

Table 4: ERCV aR varying µ.

µest 7% error µest 20% error µest 33% error µest 47% error µest 60% error

0.01-quantile -0.0477 -0.0427 -0.0378 -0.0328 -0.0278
mean 0.0402 0.0452 0.0501 0.0551 0.0601

smallest portfolio mean and 0.01-quantile. When the assets means are not propor-
tional to their volatilities we see that the equally weighted portfolio performs the
worst with the fattest tails and the lowest mean. The minimum variance portfolio
has smallest 0.01-quantile with relativity high portfolio returns which is due to the
fact that we have an asset that has a high mean and low variance.

4.2.2 Misspecification of µ and σ

Sensitivity to µ

We will now vary the mean of the asset returns as a proportion of itself to inves-
tigate the sensitivity of the profit and loss distribution of the portfolio with misspec-
ification of µ. We only consider the ERC expected shortfall and the Value-at-Risk
portfolios as the asset allocations for these portfolios depend on the mean of assets.

The expected shortfall portfolio is sensitive to the misspecification ofµ. Making
an error of 50% in estimating the means of the assets leads to a large change in the
mean and 0.01-quantiles of the portfolios. This is a problem as it is difficult to
estimate the mean of the asset returns accurately.

The ERC Value-at-Risk portfolio is sensitive to the misspecification of µ. If we
make an error of 50% in estimating the means of the asset returns the mean and
0.01-quantile of the portfolio changes. We can see that the minimum variance and
expected shortfall portfolio have same dependence on the mean; this is due to the
fact that the asset returns distribution is multivariate normal which is symmetric.
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Figure 8: P&L probability density with varying µ.

Table 5: Risk parity portfolio weights.

Real Σest 25% error Σest 50% error

w1 0.1219 0.1093 0.1007
w2 0.2668 0.2902 0.3012
w3 0.6113 0.6004 0.5981

Sensitivity to Σ

We will now vary Σ as a proportion of itself to analyse the sensitivity of the port-
folios to the misspecification of the covariance matrix of asset returns. We consider
the case when µ = 0:

The weights of the risk parity portfolio are not very sensitive to a change in
the covariance matrix. However the profit and loss distribution of the portfolio is
sensitive it the misspecification of Σ. The tails of the profit and loss distribution
vary significantly when Σ is incorrectly estimated. This can be seen in table 6.
Because the portfolio P&L distribution is very sensitive to errors in estimating Σ,

Table 6: Risk parity portfolio 0.01-quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.0884 -0.1635 -0.2099
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Table 7: EW portfolio 0.01-quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.2059 -0.2865 -0.3490

Table 8: MV Portfolio 0.01-quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.0818 -0.1163 -0.1163

it imported to have a good estimate for the covariance matrix of the multivariate
normal asset returns.

The equally weighted portfolio is not very sensitive to the misspecification of
the covariance matrix of the asset returns. We can see in table 7 that a 50% error
in the estimation of the covariance matrix does not lead to a large change in the
0.01-quantile of the portfolio.

The minimum variance portfolio is sensitive to the misspecification of the co-
variance matrix. We can see that a 50% estimation error of the asset returns’ co-
variance matrix does lead to a large change in the 0.01-quantile of the portfolio.
All five portfolios are sensitive to errors in the estimation of the covariance matrix.
Therefore, it is important to be able to get a good estimate of the covariance matrix
to ensure the error in estimating the P&L of the portfolios is small.

Figure 9: P&L probability density with varying Σ.
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Table 9: ERCes 0.01-quantiles.

Misspecified Model Real model

0.01-quantile -0.1580 -0.1576

Table 10: ERC.
Misspecified Model Real model

0.01-quantile -0.2066 -0.1583

4.2.3 Misspecification of the model

We now investigate the influence the misspecification of the model of asset returns
has on the P&L distribution of the portfolio. This investigation will be done on the
ERC expected shortfall and Value-at-Risk portfolios as these two portfolios depend
on the chosen returns model to calculate the portfolio weights. We will assume the
underlying distribution of the asset returns is multivariate normal, calculate the
portfolio weights and then use these weights to calculate the P&L assuming the
asset returns were multivariate Student-t distribution. This will be compared to
the calculation of the portfolio weights and P&L assuming the asset returns were
distributed multivariate Student’s t distribution.

Figure 10: P&L probability density with misspecified model.
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Firstly, consider the ERC expected shortfall portfolio with µ = [0.02 0.05 0.1].
Refer to table 9 for the 0.01-quantiles. Next we consider the ERC Value-at-Risk
portfolio with µ = [0.02 0.05 0.1]. Figure 4.2.3 illustrates that a model misspeci-
fication for the ERCes portfolio does not change the distribution of the P&L. The
0.01-quantile does not significantly change. The model misspecification for the
ERCV aR portfolio does change the results of the P&L distribution. The µ that was
chosen is the µ that is not proportional to the volatilities of the asset returns. If the
µ is chosen to be proportional to the asset volatilities then the misspecification of
the model for the ERCV aR portfolio does not change the distribution of the P&L.

4.3 Multivariate Student-t

We will now consider the case where we assume the asset returns are distributed
multivariate Student-t. We have chosen this distribution as it is a more realistic
model of asset returns as it has fatter tails than the multivariate Gaussian distribu-
tion. We will investigate the sensitivity of the P&L distributions of the portfolios to
µ and Σ.

4.3.1 Influence of µ

µ = 0

When the mean of the asset returns are zero, then the risk parity portfolios
have equal P&L distributions. This can be shown analytically by taking marginal
risk contribution as a proportion of the total risk of the portfolio in each case (see
Stefanovits (2010)) using equation (4).

The risk parity portfolios all have the same P&L distributions with the 0.01-
quantile being -0.1714. The 0.01-quantiles are -0.4019 for the equally weighted and
-0.1598 for the minimum variance portfolio. The relationship in equation (7) holds
in this case. The minimum variance portfolio has the fattest tails with the largest
portfolio mean.

µ proportional and inversely proportional to σ

We will now investigate the effect the means of the asset returns has on the P&L
distribution of the portfolio when the means are proportional, and not proportional
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Figure 11: P&L probability density with µ = 0.

to the asset volatilities. The asset mean values considered are µ = [0.1 0.05 0.02]

and µ = [0.02 0.05 0.1].
When the means of the assets are proportional to their volatilities the equally

weighted portfolio has the fattest tails followed by the risk parity portfolios. When
the means of the assets are not proportional to their volatilities the equally weighted
portfolio performs the worst: it has the fattest tails and the smallest portfolio mean.
We are concerned about the tails of the portfolio P&L, in particular the 0.01-quantile.
The 0.01-quantiles can be seen in table 11. The minimum variance portfolio has the
smallest 0.01-quantile. The 0.01-quantiles do not change drastically when µ is not
proportional to the asset volatilities.
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Table 11: Portfolio quantile.

Case ERCσ ERCES ERCVaR EW MV

µ ∝ σ -0.1711 -0.1700 -0.1701 -0.3969 -0.1586
µ 6∝ σ -0.1696 -0.1576 -0.1583 -0.3969 -0.1568

Figure 12: P&L probability density.

4.3.2 Misspecification of µ and σ

Sensitivity to µ

We will now investigate the sensitivity to of the P&L distribution of the portfo-
lios to the misspecification of µ. This is done by varying µ as a proportion of itself.
We will consider the two portfolios that depend on µ.

Consider the sensitivity of the ERCes portfolio to varying µ. It can be seen in
table ?? that the values of the 0.01-quantile are very similar when µ is incorrectly
estimated. This means that the multivariate Student-t distribution is not very sen-

Table 12: ERC.
µest 7% error µest 20% error µest 33% error µest 47% error µest60%

0.01-quantile -0.1699 -0.1698 -0.1696 -0.1694 -0.1693
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Table 13: µ portfolio varying.

µest 7% error µest 20% error µest 33% error µest 47% error µest 60% error

0.01-quantile -0.1700 -0.1698 -0.1697 -0.1695 -0.1694

sitive to the misspecification of µ. This is also illustrated in figure 13.

Figure 13: P&L probability density with varying µ.

Consider sensitivity of the ERCV aR portfolio to varying µ. The values of the
0.01-quantiles for the ERCV aR portfolio do not change drastically when µ is incor-
rectly estimated. Refer to table ?? for these results. We can see that the ERCV aR
and ERCes portfolio P&L distributions are not sensitive to the misspecification of
µ.

Sensitivity to Σ

We investigate the sensitivity of the portfolio’s P&L distribution to the misspec-
ification of the asset returns covariance matrix. We set the µ = 0.

We will now vary Σ as a proportion of itself for risky parity portfolio. The
change in the portfolio weights is very small but the change in the 0.01-quantiles
of the P&L is large. The risk parity portfolio is very sensitive to errors in the esti-
mation of the covariance matrix of the asset returns. These results can be seen in
table 14.
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Table 14: Risk parity portfolio weights.

Real Σest 25% error Σest 50% error

w1 0.1219 0.1093 0.1007
w2 0.2668 0.2902 0.3012
w3 0.6113 0.6004 0.5981

Table 15: Risk Parity Portfolio 0.01-quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.1725 -0.3190 -0.4097

We vary Σ as a proportion of itself for the equally weighted portfolio. The
change in the 0.01-quantile of the P&L of the portfolio is relatively small when the
covariance matrix is incorrectly estimated. This means that the equally weighted
portfolio is not very sensitive to the misspecification in the asset returns covariance
matrix. These results can be seen in table 16.

We will now vary Σ as a proportion of itself for minimum variance portfolio.
The change in the 0.01-quantile of the portfolio is relatively small when the covari-
ance matrix is incorrectly estimated. This means that the equally weighted port-
folio is not very sensitive to the misspecification in the covariance matrix. These
results can be seen in table 17. The risk parity portfolio is the most sensitive to in-
correct estimation of the covariance matrix. It is therefore important that we have a
good estimate for the covariance matrix when calculating the portfolio weights of
a risk parity portfolio that has multivariate Student-t asset returns.

4.3.3 Conclusion

The P&L of the portfolios that have multivariate Student-t asset returns are less
sensitive to the misspecification of µ than the multivariate normal asset returns.
This may be due to the the way the marginal risk contributions are calculated. In

Table 16: EW Portfolio 0.01-quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.4019 -0.5592 -0.6811
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Table 17: MV Portfolio quantiles.

Real Σest 25% error Σest 50% error

0.01-quantile -0.1598 -0.2270 -0.2270

Figure 14: P&L probability density with varying Σ.

the case of the multivariate Student-t ERCV aR portfolio, the marginal risk contri-
butions are calculated with the inverse student-t cumulative distribution function
(cdf) which is always larger than the inverse normal cdf due to the fatter tails. This
means that the influence of µ on the marginal risk contribution will be less for
the multivariate Student-t than the multivariate normal asset returns. The sensi-
tivity of the asset returns covariances on the P&L distributions is generally high.
This means that we should have a good estimator for the covariance matrix. The
misspecification of the distribution of the multivariate returns does not highly in-
fluence the P&L distribution of the portfolios.

Remark 13 (Two-asset case). In our investigation, the two-asset case is not the most
interesting. Indeed when we have two assets, the marginal risk contributions do
not depend on the covariance between the assets for all three risk measures. We
are going to prove it for the standard deviation, but the proof is the same for the
other risk measures and for Gaussian and Student-t distributions. In the portfolio,
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we want to equate the risk contributions. Thus,

w1
∂ρ(X(w))

∂w1
= w2

∂ρ(X(w))

∂w2
,

w1
(Σw)1√
w′Σw

= w2
(Σw)2√
w′Σw

,

w2
1σ

2
1 + w1w2σ1,2 = w2

2σ
2
2 + w1w2σ1,2,

w2
1σ

2
1 = w2

2σ
2
2.

As we can see, equating the risk contributions does not depend on the covariance
σ1,2 for the assets.

4.4 Clayton Copula with Gaussian Marginals

In this section, we study the Clayton copula with Gaussian marginals. We are going
to use three assets corresponding to a stock, a currency and a bond, with means
µ = (0.1, 0.05, 0.02) and volatilities σ = (0.3, 0.1, 0.05) respectively. The Clayton
copula takes a single parameter, θ, which drives the correlation between the assets.

We compare the performance of risk parity portfolios (using expected short-
fall and standard deviation as risk measures) against the classical mean variance
(MV) portfolio and a constant equally weighted (EW) portfolio. For each of our
experiences, we generate three sets of data from the Clayton copula: the first to
estimate the covariance matrix of the assets, the second to estimate marginal risk
contributions for expected shortfall, and the last one to generate the profit and loss
distributions. Unless stated otherwise, θ = 0.5, which gives the following correla-
tion matrix between the assets:

Σρ =

1.0000 0.3171 0.3180

0.3171 1.0000 0.3176

0.3180 0.3176 1.0000

 .

4.4.1 Influence of Mean

Firstly, we consider the case where all assets have zero mean, i.e µi = 0 for all
i, but still have the volatility defined above. The resulting portfolio properties are
summarised in Table 18 and the profit and loss distributions are displayed in Figure
15.
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Table 18: Portfolio properties when the mean return of all the assets is equal to 0.

ERC ES ERC σ Mean Variance Equally Weighted

0.01-quantile -0.177 -0.178 -0.12 -0.311
mean −1.30 ∗ 10−4 −1.30 ∗ 10−4 −0.97 ∗ 10−4 −1.90 ∗ 10−4

Max drawdown -0.38 -0.38 -0.25 -0.65

Figure 15: Profit and loss distributions when the mean of the returns is equal to 0
for all assets.
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Table 19: Portfolio properties when the mean return of all the assets is proportional
to their volatility.

ERC ES ERC σ Mean Variance Equally Weighted

0.01-quantile -0.139 -0.141 -0.097 -0.254
mean 0.037 0.037 0.023 0.057
Max drawdown -0.38 -0.39 -0.24 -0.69

Table 20: Portfolio properties when the mean return of all the assets is inversely
proportional to their volatility.

ERC ES ERC σ Mean Variance Equally Weighted

0.01-quantile -0.046 -0.101 -0.025 -0.623
mean 0.090 0.077 0.095 0.057
Max drawdown -0.22 -0.33 -0.17 -0.62

We observe that both risk parity portfolios are performing exactly the same.
In terms of risks, they are situated between the mean variance portfolio and the
equally weighted portfolio. We can also see that the returns generated by the Clay-
ton copula are not symmetrical: we can indeed note that the left tail is thicker than
the right tail. This is interesting because empirical distribution exhibits the same
behaviour.

Now we turn to the case where the mean is proportional to the volatility for
each asset, µ = (0.1, 0.05, 0.02). The results appear in Table 19

Now that the mean of the returns are not zero, we can see that both risk parity
portfolios are in-between mean variance and equally weighted portfolios. They
have lower risks than the equally weighted portfolio but lower returns, and higher
risks than the mean variance portfolio but better returns.

Lastly, we consider the case when the mean is inversely proportional to the
standard deviation, µ = (0.02, 0.05, 0.1). The results are summarised in Table 20
and Figure 16.

We can see here that the ES portfolio behaves better than the SD one. Indeed, it
has higher returns and at the same time a lower risk (better quantile and better max
drawdown). This is probably due to the fact that all the assets have the same corre-
lation and are positively correlated. We can note that the mean variance portfolio
outperforms all the other portfolios in terms of returns and risks, which is normal
since we have an asset with low variance and high returns. On the other hand, the
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Table 21: Portfolio properties and estimation.
Real µ µest7.4% error µest18.9% error µest24.1% error µest50.2% error

0.01-quantile -0.14 -0.138 -0.136 -0.144 -0.141
mean 0.0370 0.0366 0.0362 0.0380 0.0373
Max drawdown -0.354 -0.346 -0.343 -0.363 - 0.357

equally weighted portfolio behaves really badly: it has low returns and high risks.
The ES, SD and MV portfolios invest mostly in the asset with low variance and
high return. Since the assets are positively correlated, in case of a crash, all assets
tend to go down together and the equally weighted portfolio has a non-negligible
part invested in the asset with high variance, which explains its bad performance.

4.4.2 Misspecification of µ and Σ

In this section, we investigate what happens if we estimate badly either µ or Σ.

Sensitivity to mean
We add a Gaussian noise to the vector of means in order to measure the influence
of a bad estimation of µ. Since the standard deviation portfolio does not depend
on the returns of the assets, we only investigate the impact of the bad estimation of
µ on the expected shortfall portfolio.

We can observe that the portfolio is really robust against bad estimation of µ in
the case of a Clayton copula with positive correlations. Indeed, even if we make a
relative error of 50% when estimating µ, the portfolio remains very close to the one
when µ is known. The changes in the portfolio are very small even when the error
in estimating µ is very important.

Sensitivity to covariance
Here, we add noise to the covariance matrix Σ and investigate what happens. We
also consider what happens when µ = 0 and µ 6= 0.

When there is noise in the covariance matrix - coming from estimation for in-
stance - we observe that the weights of the SD portfolio are very close to each other
and that the performances of the portfolios are roughly the same. We can conclude
that even if we have a rather bad estimation of our covariance portfolio, the result-
ing portfolio will still be very close to the real one.
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Figure 16: Profit and loss distributions for µ inversely proportional to σ.

Table 22: Portfolio weights for standard deviation risk measure when there is esti-
mation error in the covariance matrix.

Real Σ Σest20% error Σest40% error

w1 0.1003 0.0889 0.1113
w2 0.3008 0.3441 0.2988
w3 0.5989 0.5670 0.5900
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Table 23: Portfolio properties for zero mean and estimation error in the covariance
matrix.

Real Σ Σest20% error Σest40% error

0.01-quantile -0.178 -0.177 -0.183
Mean −1.30 ∗ 10−4 −1.29 ∗ 10−4 −1.33 ∗ 10−4

Max drawdown -0.382 -0.381 -0.394

Table 24: Portfolio properties for non-zero mean and estimation error in the covari-
ance matrix.

Real Σ Σest20% error Σest40% error

0.01-quantile -0.141 -0.139 -0.145
Mean 0.037 0.037 0.038
Max drawdown -0.388 -0.383 -0.401

4.4.3 Copula influence

Here, we try to understand the influence of the θ in our Clayton copula. The first
thing we observe is that, if we increase θ, all the correlation coefficients will increase
in the same way. For instance, if all the correlation coefficients are equal to ρ = 0.21

and we increase the θ by 0.3, all the coefficients will become ρ = 0.36.
Second, we observed something very important: if we increase the θ coefficient,

the weights in the risk parity portfolios do not change! Indeed, when we increase θ,
we increase the correlation in the same way for all assets, and the tails are moving
uniformly in all directions, which does not affect the expected shortfall.

Lastly, we were not able to get a negative correlation coefficient with the Clay-
ton copula, which can be problematic since some assets can be negatively corre-

Table 25: Parameters.
θ Corr wES wσ

0.1

 1
0.076 1
0.078 0.077 1

 0.097
0.311
0.592

 0.102
0.302
0.596


2

 1
0.684 1
0.685 0.685 1

 0.096
0.310
0.594

 0.101
0.302
0.597


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lated - for instance stocks and bonds. Furthermore, if we could have a correlation
coefficient that moves in opposite directions, we would observe a change in the
weights of the portfolio.

4.4.4 Misspecification of the model

In this section we investigate what happens when, if generating data from the Clay-
ton copula, we assume that the returns are normally distributed.

In order to check the implications of a model misspecification, we generate N
samples from the Clayton copula and estimate the covariance matrix. Using the
covariance matrix, we can compute the risk contributions and the weights of the
portfolio since we have a closed form solution for multivariate normal returns. We
generate another N samples from the Clayton copula to estimate the ES portfolio
using Monte Carlo.

We observe that the weights are the same. It means that the Clayton copula
does not have any specific dependence between the assets. Indeed, the Clayton
copula does not affect the tail dependences: the tail dependences are uniform in
all directions, so the expected shortfall computed using Monte Carlo does not take
into account the effect of the copula.

4.4.5 Conclusion

The Clayton copula is quite interesting to study as it is asymmetrical and has a
thicker left tail. One of the major things that we have seen is, when using a Clay-
ton copula which affects the tail dependencies in the same way all across spaces,
we do not add a significant dependence in the tail. ES and SD portfolios are very
close and do not evolve when the θ parameter of the Clayton copula increases or
decreases. We would expect to have very different results with skewed copulas,
which would have tail dependences between assets in a non-uniform way. Since
the covariance matrix cannot capture this kind of tail dependence, we would ex-
pect our ES portfolios to perform better than the portfolios based on the estimated
covariance matrix. The Clayton copula we used only allowed us to have the same
positive correlation between assets, and thus does not allowed us to induce neg-
ative correlation between assets, which results in constant risk parity portfolios.
However, the portfolio construction is quite robust to estimation errors in µ and Σ.

40



Figure 17: Evolution of correlation, and evolution of weights.

4.5 Student’s t Copula with Gaussian Marginals

As we have seen that having the same correlations for all assets was an issue with
the Clayton copula, we investigate what happens in the t-Copula with Gaussian
marginals when we change the correlation between assets. Even if the t-Copula
is symmetrical, it remains interesting because we can induce negative correlation
between assets and it has thicker tails than the Gaussian copula. We investigate
the influence on the SD portfolio with 3 assets when the correlation between two
assets moves towards -1 or 1 and the other correlations remain the same.

4.5.1 The effect of correlation tending to 1

Since the correlation goes towards 1, the assets tend to be more and more corre-
lated. However, the whole purpose of our risk parity portfolios is to diversify the
risk. It seems logical to invest more in the asset that is not correlated to the others
so as to diversify the risk, rather than holding a big proportion of two assets which
are heavily correlated. We can indeed see that in the figures: the proportion of two
assets are going down and the proportion of the other one is increasing.
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Figure 18: Evolution of correlation, and evolution of weights.

4.5.2 The effect of correlation tending to -1

Since the correlation goes towards -1, the assets tend to be less and less correlated.
It seems reasonable to invest more in those two assets since they tend to move
in opposite directions. This is what we observe in the graphs: the proportion of
the assets that are negatively correlated increases while the proportion of the non-
correlated asset decreases.

4.6 Student’s t-copula with GARCH(1,1)

In this section we introduce the first simulation environment that fits into the frame-
work suggested for risk management by Nystrom and Skoglund (2002). We model
the dependence between the returns using a t-copula and for the marginal distribu-
tion of each return a GARCH(1,1) time-series model is used. The time-series model
is described by (1) and (3) in Section 2.3.

Each individual return is described by

rit = µi + εit

for i = 1, . . . , 3, where εit = ζtσ
i
t with ζt

iid∼ [0, 1]. Thus, εit ∼ [0, σ2t ]. We model σ2t
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Figure 19: Sample path for three assets with t-copula dependence and GARCH(1,1)
marginals.

using a GARCH(1,1), which gives a model of the form,

(σit)
2 = ωi + αi1ε

2
t−1 + βi1(σ

i
t−1)

2.

The copula dependence is introduced through the noise term, ζt, as described in
Section 2.3. The time-series model parameters appear in Table 26. The student’s
t-copula has 3 degrees of freedom and its correlation matrix is

Σρ =

1.0000 −0.3 −0.5

−0.3 1.0000 0.1

−0.5 0.1 1.0000

 .
This dependance structure is in line with what is estimated from the market in
Section 5.2.1. The selected time-series parameters allow us to model three assets
with very different volatilities, see Figure 19

Five years of historical, or in-sample, data is generated to construct the initial
portfolios as well as estimate the initial return covariance. Four portfolios are then
constructed and their performance is evaluated over the course of 6 months. The
transition from the in-sample to out-of-sample data is indicated by the dashed red
line in Figure 19.
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Table 26: Time series parameters for the three asset case.

Parameter Asset 1 Asset 2 Asset 3

ωi 0.01 0.05 0.001
αi 0.2 0.1 0.4
βi 0.6 0.8 0.4

Figure 20: Realised volatility and relative change of the covariance of the simulated
returns.

Portfolios are recalibrated based on the relative change in the estimated covari-
ance matrix, i.e., when the covariance matrix has shifted more than 10% away of
its previous value, all the portfolios are recalibrated. The covariance and realised
volatility are estimated using a rolling 100-day window. For the illustrated path,
the realised volatility of the returns as well as the relative change in their covariance
is displayed in 20. Note that the relative change immediately drops after recalibra-
tion.

The considered portfolios are the classical Minimum Variance (MV) portfolio, a
portfolio with constant and equal weights (EW), and two risk parity portfolios: the
first based on the standard deviation risk measure, denoted ERCσ and the second
on the expected shortfall, ERCES . The asset allocation for the risk party portfolios
over the one year period is displayed in Figure 21.

For this sample path, the portfolios are recalibrated 5 times over the out-of-

44



Figure 21: The asset allocation for the ERCσ and ERCES over the 6 month out-of-
sample period with a recalibration threshold of 10%.

sample period, or roughly once per month. The ERCES portfolio is significantly
more dynamic (and thus more expensive) than the ERCσ portfolio, completely
closing out its position in the high-volatility asset, Asset 2, twice in this period.
The first close-out corresponds to the increase in the realised volatility of Asset 2

between day 40 and day 60.
The advantage of the simulation environment is that we are not restricted to

examining the results for a single path. A Monte Carlo experiment was run using
25 000 different realisations for the 6-month out of sample-path. This allows the
portfolio profit and loss distributions to be estimated.

Both the MW and EW proft and loss are symmetric with mean approximately
0, as expected. The axis in Figure 22 are tight, so although it is not clearly visible in
the depicted graph, there are actually long tails extending in both directions. The
MV portfolio appears to be more exposed to high returns, although it is expected
that this is a result of sample error. The depicted quantiles are for α = 0.01.

The profit and loss distribution of the ERCσ portfolio holds no surprises at
this stage - the complex marginal used to model each underlying return has not
significantly skewed the distribution. As in Section 4.2, the variance of the ERCσ

portfolio return lies between that of the MV and EW portfolios. Again, there are
symmetric long tails, as evidenced by the axis limits.
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Figure 22: Profit and loss histograms for the MV and EW portfolios over the 6-
month period.

Figure 23: Profit and loss histogram ERCσ portfolio over the 6-month period.
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The investigation of the profit and loss distribution of the ERCES portfolio is
computationally very expensive, as Monte Carlo methods have to be used to com-
pute the marginal risk contributions for each asset. The result is pending.
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5 Model Fitting

This part gives a description of the process followed for fitting a model to real
world data and how to estimate the covariance matrix need to calculate the portfo-
lio weights. Section 5.1 describes the process of estimation of the covariance matrix,
section 5.2.1 outlines the process followed to fit time series models for the marginal
distributions of the model while section 5.2.2 covers how the copula parameters
were estimated.

5.1 Covariance Matrix Estimation

In this section we investigate how to estimate the covariance matrix of returns data.
It is important to have a good estimate of the covariances between returns as these
covariances are used in portfolio construction. Errors in your covariance matrix
may lead to errors in your portfolio construction. The two methods that will be
used to compute the covariance matrix are the standard estimate and the shrink-
age estimate. We will assume that the returns are independent and identically
distributed.

The standard estimator uses the sample mean and sample covariance. This
matrix has little structure and therefore contains estimation error. This estimation
error is especially prevalent when the number of assets is less than the number of
realisations (Stefanovits, 2010). Suppose we have N stocks and T observations of
each of these assets. The sample return and covariance are defined by:

r̂ =
1

T

T∑
i=1

ri Σ̂ =
1

T

T∑
i=1

(ri − r̂)(ri − r̂)′. (8)

The shrinkage estimator is a weighted linear combination of a structured matrix
F , referred to as the shrinkage target, and the sample covariance Σ̂:

Σshrink = αF + (1− α)Σ̂ (9)

where α is the shrinkage constant which takes on values between 0 and 1 (Ledoit
and Wolf, 2004). The shrinkage target in equation (9) is designed to have very few
free parameters as well as being positive definite. This results in a shrinkage esti-
mate that is always positive definite. All the variables that are needed to calculate
the shrinkage estimate are extracted from the sample covariance matrix. Firstly the
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shrinkage target is estimated using the following equations:

Fii = Σ̂ii, Fij = χ̂

√
Σ̂iiΣ̂jj (10)

where

χ̂ =
2

(n− 1)n

n−1∑
i=1

n∑
j=i+1

χ̂ij , χ̂ij =
Σ̂ij√
Σ̂iiΣ̂jj

. (11)

It should be noted that χ̂ij is the correlation coefficient between assets i and
j. These correlation coefficients are used to calculate χ̂ where χ̂ is the average
correlation coefficient of Σ̂. This results in shrinking target matrix that corresponds
to all assets being equally correlated. The next step is to estimate the shrinkage
constant α. The shrinkage constant should minimise the expected value of the
distance between the shrinkage estimate and the actual covariance matrix. Ledoit
and Wolf (2003) provides an estimate for this parameter:

α̂ =
1

T

π̂ − ρ̂
λ̂

(12)

Ledoit and Wolf (2004) proves that α̂ can be estimated by κ, which asymptoti-
cally behaves like a constant if N is fixed and T tends to infinity:

κ =
1

T

π − ρ
λ

(13)

Equation (13) can be estimated by finding estimators for π, ρ and λ:

π̂ =
N∑
i=1

N∑
j=1

π̂ij , π̂ij =
1

T

T∑
k=1

[(
rik −

1

T

T∑
l=1

ril

)(
rik −

1

T

T∑
l=1

rjl

)
− Σ̂ij

]2
,

λ̂ =
N∑
i=1

π̂ii, ρ̂ =
N∑
i=1

N∑
j=1,j 6=i

χ̂

2

√ Σ̂jj

Σ̂ii

ψ̂ii,ij +

√
Σ̂ii

Σ̂jj

ψ̂jj,ij

 ,

where

ψ̂ii,ij =
1

T

T∑
i=1

rik −
1

T

T∑
l=1

ril

2

− Σ̂ii

rik −
1

T

T∑
l=1

ril

rjk −
1

T

T∑
l=1

rjl

 − Σ̂ij



ψ̂jj,ij =
1

T

T∑
j=1

rjk −
1

T

T∑
l=1

rjl

2

− Σ̂jj

rik −
1

T

T∑
l=1

ril

rjk −
1

T

T∑
l=1

rjl

 − Σ̂ij

 .
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The above results are proven by Ledoit and Wolf (2004). The first consistent
estimator π̂ is the scaled sum of the asymptotic variances of the variables in the
sample covariance matrix. The second consistent estimator is λ̂ which is the ac-
counts for the errors in the shrinkage target. And lastly ρ̂ is the scaled sum of the
asymptotic covariances of the variables in the shrinkage target (F ) with the vari-
ables in the sample covariance matrix. It should be be noted that the shrinkage
target has to be between 0 and 1, therefore if it is below 0 we truncate it to 0 and if
it is above 1 then we truncate it to 1.

Example 14. We test the performance of the shrinkage estimator against that of
the standard estimator. This is done by generating T random normal returns for
N assets with a specified volatility for each asset. These returns are correlated by
selecting a correlation matrix, constructing the covariance matrix and then using
the Cholesky transformation to correlate the assets. The covariance of the returns
is then estimated using equation (9) and equation (8). Equation (9) is implemented
in Matlab using the code provided by Ledoit and Wolf (2003). The Frobenius norm
is calculated 100 times to compare the difference between the actual covariance
matrix and the estimated covariance matrix. We chose 4 increasing numbers of
realisations with 20 assets to illustrate how the shrinkage estimate performs against
the sample estimate. A random correlation matrix and volatilities for the 20 assets
were generated.

Figure 24 above show that the shrinkage estimate is a better estimate for the co-
variance matrix than the sample estimate. This is especially true when the number
of realisations is less than the number of assets. As the number of realisations are
increased then sample and and shrinkage estimate tend toward the same values.

5.2 Fitting the model

Our data consists of the returns of 31 assets. These assets consist mostly of indices
and cover most of the major asset classes. We split the time frame into a training
set, from 05/01/2010 to 21/04/2016, and a 250 day testing window following the
training set. This section focuses on fitting model to the training data of three as-
sets: the S&P 500 Index, the USD/EUR exchange rate and the US Treasury Bonds
Index.
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5.2.1 Fitting Time Series Marginal Distributions

To fit time series models as the marginals for our data, we roughly follow the Box-
Jenkins method (Pankratz, 2009). This section illustrates the procedure followed
for fitting a model for the S&P 500 Index. Similar procedures were followed for
the remaining assets. A quick glance at the daily logarithmic returns, displayed in
figure 25, shows that the returns series appear to be stationary.

The sample autocorrelation function (ACF) and sample partial autocorrelation
function (PACF) plots in figure 26 illustrate that there exists some serial correlation
in the return series, but this serial correlation is not persistent. To account for this,
we initially fit a Autoregressive Moving Average (ARMA) Process to the return
series.

The built-in MATLAB function, estimate, which uses Maximum Likelihood
Estimation to estimate the model specifications, suggests that an ARMA(1,1) model
best fits the data. Looking at the the ACF and PACF of the standardised residuals,
figure 27, we can see that we have successfully removed most of the serial correla-
tion. Finally, we check that the residuals are distributed correctly. Figure 28 con-
trasts the QQ-plots when using Standard Gaussian and Student’s t innovations.
Clearly, the assumption of Student’s t residuals is much better. This is what we
would expect due to the fat tails often associated with stock returns.

The ARMA(1,1) with Student’s t innovations adequately compensates for the
serial correlation which we witness in the returns, however we still expect the re-
turns to display some heteroskedasticity. Looking at the ACF and PACF of the
squared returns, figure 29, we see clear persistence in both cases. This suggests we
need to account for heteroskedasticity using a GARCH model.

We fit an ARMA(1,1) for the conditional mean of the return series and a GARCH
model for the conditional variance. The best fitting model is a GARCH(1,1). The
resultant model form is,

rt = µ+ a1rt−1 + εt + b1εt−1

where εt = ζtσt with ζt
iid∼ [0, 1] ⇒ εt ∼ [0, σ2t ]. We model σ2t using a GARCH(1,1),

which gives a model of the form,

σ2t = ω + α1ε
2
t−1 + β1σ

2
t−1
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Table 27: Time series marginals parameter estimates for the three asset case.

Parameter S & P 500 USDEUR US Treasury Bonds Index

µ 7.83925× 10−5 0.000171222 0.000143469
a1 0.916668 −0.706299 0.119305
b1 −0.957224 0.682714 −0.201991
ω 5.05448× 10−6 2× 10−7 4.86642× 10−7

α1 0.152863 0.0410829 0.112685
β1 0.815075 0.955154 0.826055
Degrees of Freedom 4.69221 6.55816 10

The parameters for the time series marginals when for the three asset case are
summarised in Table 27

The resulting standardised residuals display almost no significant serial corre-
lation and the assumption of Student’s t innovations holds. Applying the same
methodology to each of our assets gives us the required marginal distributions and
their parameters.

5.2.2 Fitting a Student’s t Copula

We introduce dependence into our model via the innovations of the time series
marginals. We know these innovations follow a Student’s t distribution each with
their respective degrees of freedom. We can transform the standardised residuals to
uniform variates through the inverse Student’s t cdf. We assume a t copula, as sug-
gested by Nystrom and Skoglund (2002), and use MATLAB’s copulafit function
to estimate the degrees of freedom and the correlation matrix, Σρ via Maximum
Likelihood Estimation. The resultant estimates are ν̂ = 3.1887 for the degrees of
freedom and

Σ̂ρ =

 1.0000 −0.3603 −0.5269

−0.3603 1.0000 0.1288

−0.5269 0.1288 1.0000


for the correlation matrix. We now have a fully specified model from which we can
simulate from.
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6 Realistic Risk Parity

6.1 Backtesting

In this section we investigate the performances of risk parity portfolios against real
data. We want to see how our risk parity portfolios perform against the MV and
EW portfolios in terms of returns and risk. Specifically, we expect our ES risk parity
portfolio to have the lowest maximum drawdown since its the only portfolio that
takes the tail dependences into account.

We use a t-Copula ARMA-GARCH marginals model. We estimate the param-
eters using 6 years of data and run the portfolios for 1 years. At each step in time,
we compute the covariance matrix over a hundred days window. We compare it to
our previous covariance matrix: if it changes more than a fixed percentage, we up-
date the covariance matrix and recalibrate the t-Copula (we do not recalibrate the
marginals). Then, we compute our new risk parity portfolios. For standard devia-
tion one, we use the new estimate of the covariance matrix to compute it, and for
the expected shortfall one, we do a Monte Carlo simulation using 100 000 samples
generated using our newly estimated t-Copula.

The data contains a cross-section of returns from variety of asset classes from
05/01/2010 until 21/04/2016 plus an additional 250 days. The contents are listed in
Table 28.

6.1.1 Three-asset case

In this section, we are only going to use three assets corresponding to a stock, a
currency and a bond: SPXIndex, USDEURCurncy, BUSYIndex.

Impact of the sensitivity to changes of Σ

Whenever our covariance matrix changes by a certain amount, we recompute the
weights for the ES and SD portfolio. We study what is the impact on asset al-
location, P&L and maximum drawdown when the barrier for the changes in the
covariance matrix is 5% or 10%. For the SD portfolio, the weight allocations are
very close for δΣ = 5% or 10% and the resulting P&L are respectively 4.22 and 4.12.
But for the ES portfolio, we get quite different results that we will see now.

As expected, when the sensitivity in the changes of Σ increases, the number of
rebalancing in the portfolio increases as well. For a 5% sensitivity, it results in a
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Table 28: Historical data description.
Asset Class Description

SPX Index Equity US - SP500
RAY Index Equity US - Russell 3000
DAX Index Equity Germany - DAX
UKX Index Equity UK - FTSE 100
NKY Index Equity Japan - Nikkei 225
EEM US Equity Equity Emerging Markets - iShares MSCI Emerging Markets ETF
USDEUR Curncy FX USD/EUR
USDGBP Curncy FX USD/GBP
USDJPY Curncy FX USD/JPY
USDCNY Curncy FX USD/CNY
FXJPEMCI Index FX EM FX
LUATTRUU Index Bonds US - Bloomberg Barclays US Treasury Total Return Unhedged USD
BUSY Index Bonds US - Bloomberg US Treasury Bond Index
SPBDUBIT Index Bonds US - S&P U.S. Treasury Bill Total Return Index
FTFIBGA Index Bonds UK - FTSE Actuaries UK Conventional Gilts All Stocks Index
GEDL Index Bonds Germany - BofA Merrill Lynch Diversified Germany Bond Index
BGER Index Bonds Germany - Bloomberg Germany Sovereign Bond Index
BRIT Index Bonds UK - Bloomberg U.K. Sovereign Bond Index
BGSV Index Bonds Bloomberg Global Developed Sovereign Bond Index
BEMS Index Bonds Bloomberg USD Emerging Market Sovereign Bond Index
BEUR Index Bonds Bloomberg Eurozone Sovereign Bond Index
BUSG Index Bonds Bloomberg US Government Bond Index
BPJN Index Bonds Bloomberg Japan Sovereign Bond Index
BLCSV Index Bonds EM Local Markets
HYG US Equity Bonds US High Yield
BJPN Index Bonds Bloomberg JPN
LUMSTRUU Index Mortgage US Mortgage
XAU Curncy Commodities Gold
OIL US Equity Commodities Oil
BCOM Index Commodities Bloomberg Commodities Index
DJCI Index Commodities Dow Jones Commodity Index
SPGSCI Index Commodities S&P GSCI (Goldman Sachs Commodity Index)

Table 29: Influence of the sensitivity of the relative change in σ.

δΣ = 5% δΣ = 10%

Number of rebalancing 47 24
P&L 3.063 0.0775
Max drawdown -1.08 -1.02
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Table 30: Performance of three asset portfolio.

ERCES ERCσ Mean Variance Equally Weighted

P&L 3.15 4.12 2.87 5.80
Max drawdown -1.08 -0.68 -0.66 -0.85

rebalancing of the portfolio roughly every week. We also observe that it has a big
impact on the P&L: the P&L drastically improves when the sensitivity goes to 5%.
Concerning the maximum drawdown, the impact is not very significant. We also
observe that the weight allocations are different between the ES and SD portfolios:
it means that those two risk measures are not capturing the same things. Indeed,
we expect the ES portfolio to be grasping the tail dependence between the assets
while the SD portfolio will not.

Change in the parameters of the copula

Each time δΣ hits the barrier, we re-estimate the parameters of the copula. What
we can see is that, when we recalibrate, the changes in the correlation matrix of the
copula are between 1% and 16%, and the degree of freedom moves between 3.5

and 17.5.

Performance Comparison
We compare the performances of the portfolio when we rebalance the portfolios
when δΣ ≥ 5%

On the one hand, the SD performs very well against all the other portfolios: its
P&L is between the MV and the EW portfolio, and its maximum drawdown is very
similar to the MV portfolio and much better than the EW one.

On the other hand, the ES portfolio has a P&L in between the MV and the EW
portfolio, but its maximum drawdown is much worse. With this portfolio, we were
expecting to capture the tail dependence between the assets and specifically avoid
this kind of drastic losses. One explanation could be that our t-Copula is not cap-
turing the tail dependence between the assets. Indeed, the t-Copula is symmetrical
- which means booms and crashes will have the same tail dependence - and only
has one degree of freedom for all assets: this may be a problem if we want to have
different tail dependences between the assets.
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Table 31: Influence of the sensitivity of the relative change in σ.

δΣ = 5% δΣ = 10%

Number of rebalancing 56 26
P&L 0.026 0.022
Max drawdown -0.0075 -0.0056

Table 32: Performance of 31 asset portfolio.

ERCES ERCσ Mean Variance Equally Weighted

P&L 0.026 0.033 0.022 0.030
Max drawdown -0.0075 -0.0057 -0.0035 -0.0159

6.1.2 All asset case

We now consider the case when we have 31 assets from different markets (com-
modities, FX, stocks, bonds).

Impact of the sensitivity to changes of Σ

Here, we consider the impact on asset allocation, P&L and maximum drawdown
when the barrier for changes in the covariance matrix is 5% or 10%.

Again, as expected, when the sensitivity in Σ increases, the number of rebal-
ancing increases too. The P&L are are quite close, but the maximum drawdown is
worse when the sensitivity increases.

Change in the parameters of the copula

Performance Comparison
We compare the performances of the portfolio when we rebalance the portfolios
when δΣ ≥ 5%

The risk parity portfolio we have built using ES is in between the MV and EW
portfolios in terms of performance (regarding P&L and maximum drawdown). The
SD portfolio outperforms the EW in both returns and risk. However, we would
have expected the ES portfolio to have a much lower maximum drawdown com-
pared to the SD portfolio. Indeed, the SD portfolio only takes into account the
covariance matrix of the returns in its construction, but the covariance matrix does
not capture the tail dependence between assets. On the other hand, the ES port-
folio construction is supposed to take into account the tails when we compute it.
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One of the possible explanation is that the t-Copula that we used to model the de-
pendences between assets does not really capture the different tail dependences
between the assets.

6.1.3 Conclusion

In this section, we wanted to see how our ES and SD risk parity portfolios per-
formed when we run them on real data. Our dataset was composed of different
categories of assets such as stocks, bonds, commodities or currencies. We assumed
that the underlying copula was a t-Copula with ARIMA GARCH and we estimated
the parameters of the copula and the marginals using the first five years of the data.
Then, we used the last year to see how the portfolios behaved. Every time there
was a significant change in the covariance matrix of the returns, we re-estimated
the weight allocation in the portfolios and the parameters of the copula.

What we observed is that the performance of the SD portfolio is much better
compared to the EW portfolio (it has higher returns and lower risk). In comparison
to the MV portfolio, it has higher returns but lower risk. Since the SD portfolio
is only based on the covariance matrix, we expected such results - except the fact
that the SD outperforms the EW portfolio in both returns and risk. However, the
performances of the ES portfolio are a bit different. In term of returns, it is between
the EW and the MV portfolios. But we were expecting this risk portfolio to capture
the tail dependence between the assets, and thus avoid drastic losses. This is not
what we observed. Indeed, in the case of three assets, it is the portfolio which
has the maximum drawdown. In the case of 31 assets, even though its maximum
drawdown is better than the EW portfolio, it is worse than the SD one. A possible
cause to this is that the ES portfolio does not capture the tail dependence between
the assets. This may be because the copula we are using is not fit to capture the real
tail dependence. It would be interesting, for instance, to test this portfolio when we
use a skewed t-copula with different degrees of freedom for each assets to model
the dependence.

7 Conclusion

In this project we investigated the performance of risk parity portfolios for vari-
ous risk measures, most notably standard deviation and expected shortfall, in an
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attempt to explain their real-world performance. Several interesting features were
discovered.

In the simulation environment it is clearly shown how the standard deviation
based risk parity portfolio is fairly robust - indicating that it would be ideally suited
for a buy-and-hold strategy. The expected shortfall portfolio is more dynamic, re-
quiring frequent trades and often completing closing out positions. This seems to
indicate that a buy-and-hold strategy would also be inappropriate for risk parity
portfolios based on other risk measures more complex than the standard deviation,
and could provide an explanation for the poor performance of these portfolios in
the real-world stress period.

The performance of the expected shortfall and standard deviation based risk
parity portfolios in the simulation environment, even in the most realistic case,
did not match the performance when using the real-world data. The changing
correlation and degrees of freedom of the estimated t-copula could indicate that
a time-varying model of the return interdependence is needed. And, as shown,
the current copula framework does not allow for changing tail dependence, which
would definitely affect the performance of the expected shortfall portfolio.

Finally, although the backtesting indicated that our most realistic simulation en-
vironment is not realistic enough, this in itself actually provides the most explana-
tory power for the performance of risk parity portfolios in the real-world: correctly
modelling the changing interdependence of the underlying returns is very complex
and computationally demanding.
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Figure 24: Shrinkage estimate vs. sample estimate illustration
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Figure 25: Daily Logarithmic Returns.

Figure 26: Sample ACF and PACF of Returns.
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Figure 27: Sample ACF and PACF of residuals of ARMA(1,1) model.

Figure 28: Quantile-Quantile plots comparing the assumptions of Standard Gaus-
sian and Student’s t distributed residuals.
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Figure 29: Sample ACF and PACF of the squared residuals.

Figure 30: Realised volatility, changes in Sigma and Rho.
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Figure 31: Asset allocation through time with 5% sensitivity.

Figure 32: Asset allocation through time with 10% sensitivity.
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Figure 33: Parameters of copula through time.

Figure 34: Realised volatility, changes in Sigma and Rho.

64



Figure 35: Asset allocation through time with 5% sensitivity.

Figure 36: Asset allocation through time with 10% sensitivity.
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Figure 37: Parameters of copula through time.
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1 Introduction

A financial crisis is an event during which a given system becomes unstable, and
is subject to abrupt and considerable change. Crises place stress on a system, and
are often characterised by the detrimental effects they can have; indeed, those with
sizeable exposure to a system experiencing a crisis may be temporarily or perma-
nently harmed as a result. These considerations are particularly relevant to finan-
cial systems and the corresponding markets. The three primary types of crisis in
finance are banking crises, currency crises, and stock market crises – each of which
may impact the values of assets in the money markets, bond markets, and equity
markets. In light of this, it would be of great benefit to a long-term investor to have
an early warning system whereby they can reliably anticipate a crisis, and which
would allow them to adapt their investment strategy appropriately.

The prior research on this topic by Grasselli (2013) and Vermersch (2013) has yielded
an early warning system comprising a set of crisis indices. These indices gauge the
possibility of a future crisis within a defined period. As the index values change
over time, they can be used to adjust the asset allocation of an investor’s portfolio.
Typically, the goal of using early warning systems to adjust the asset allocation is to
maximise the gains (minimise the losses) in the value of the portfolio, although it is
possible to apply different goals within the same framework. The central premise
underlying the development and use of an early warning system as part of an in-
vestment strategy is that crises in financial markets are intrinsically linked to the
behaviour of economic variables, see Grasselli (2013) and Vermersch (2013). More-
over, the behaviour of economic variables in the present has some non-trivial pre-
dictive ability regarding the emergence of financial crises in future. For example, a
higher lending rate is an indicator for a potential financial crisis, as this may lead
to funding problems for companies. We can observe from Figure 1 that the level of
lending rate in the United States issues some accurate signal for its actual crises.

Demirgüç-Kunt and Detragiache (1998) lists several determinants indicators for
banking crises. Kaminsky et al. (1998) proposed the signals approach as a way to pre-
dict (or, at least, anticipate the possibility of) a crisis. Under this approach, several
economic variables serve as crisis indicators. When they exceed certain thresholds,
the signals issued by indicators suggest the possibility of future crises. The optimal
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Figure 1: The monthly average of the SP500 index price (blue) and the US lending
rate (red) from 2000 to 2010.

levels for these thresholds are found by ensuring that false signals (Type I and Type
II errors) are as infrequent as possible, and that other measures of the quality of in-
dicator performance, such as the average time between the first signal being issued
and the subsequent crisis emerging, are relatively high. Drehmann and Juselius
(2014) continued in a similar vein as Kaminsky et al. (1998) in order to learn more
about banking crises in particular. Two important aspects of that research are the
use of signal persistence as another measure of the quality of an indicator, as well
as the conclusion that there are no unique or optimal combinations of indicators in
the signals approach.

The research report by Grasselli (2013) points to several examples of economic vari-
ables that precede crises, some of which are given below for illustration:

• changes in international reserves, current account balance, or exchange
rates can lead to currency crises;

• changes in real interest rates or GDP growth rates can lead to banking crises;
and

• changes in lending rates, current account balance, or GDP growth rates can
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lead to stock market crises.

Naturally, these variables, and many others included in the subsequent sections of
this report, are amenable to use as indicators in the signals approach. However,
making investment decisions on the basis of so many indicators is difficult. As
such, the indicators are transformed and aggregated in order to produce crises in-
dices for each type of crisis. These indices effectively summarise the information
from the indicators regarding possible future crises.

The idea behind using crisis indices in investment strategy is that the possibility
of a future crisis should alter how an investor would allocate their portfolio in the
present. For a given initial portfolio, a strategy that integrates crisis indices in-
volves using the observed crisis index values at each time step to change the asset
allocation, with the degree of adjustment being a function of the type of crisis that
may occur in future. To illustrate the benefit of using crisis indices in setting an
investment strategy, we focus on three asset classes, rather than particular assets;
these are cash, bonds and equities. Historical data are used to calibrate the param-
eters of the portfolio allocation function, based on the objective of maximising the
portfolio return.

In this report, we present the application of the signals approach to a large col-
lection of economic variables in Section 2, which includes an evaluation of each of
these variables as indicators under this approach. Section 3 shows how these indi-
cators have been used to construct crisis indices for banking, currency, and stock
market crises. In Section 4, we present an implementation of investment strategies
that incorporate with crisis indices, as well as the interim results obtained when
optimising the parameters for the investment strategies. Finally, we include a com-
parison of the crisis index-based investment strategy and a benchmark investment
strategy, and draw conclusions regarding the efficacy of the crisis index-based in-
vestment strategy.
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2 Early signals for financial crisis from economic indicators

Early signals for financial crises can be used to predict the occurrence likelihood of
economic recessions. In reality, regulators are interested in considering these early
signals so as to formulate policies. Market speculators will seek these information
for a potential future crisis in order to make profitable investment decisions. As-
set managers will optimise their portfolio allocations by avoiding the prospective
risks as well. In the literature investigating the early signals for financial crises,
two major methods are presented: the logistic regression method and the signals
approach, see Kaminsky et al. (1998), Grasselli (2013) and Vermersch (2013). The
essence for both methods is identical, which is to find the relationship between the
early running economic indicators and the financial crisis based on historical data
of the indicators.

The method of logistic regression is widely utilised in the literature. However,
the signals approach offers certain advantages over the logistic regression method.
One of the disadvantages for the logistic regression is that it does not provide the
ranking information of all the input indicators. However, a ranking can achieve
for the indicators in the signals approach using different performance measures.
Moreover, among the performance measures, the signals approach provides the
approximate leading time before the crisis. This can be beneficial for decision mak-
ing by the regulators and financial market participants. On the other hand, the
logistic regression model will fail if there is a data period inconsistency for all the
indicators, which may be caused by missing data. The usual method in the logistic
regression model is to proceed with the interpolation algorithm in order to fill the
gaps. However, the interpolation sometimes will miss some good signals or cap-
ture the wrong signals, which cause further inaccuracy for the approximation. In
the signals approach, we treat the data indicator by indicator, which will solve this
problem caused by missing data.

2.1 Definition of a crisis

In order to model the probability of the occurrence of a financial crisis, one has
to present its definition. A financial crisis defined on the fulfilment of subjective
criteria. In the following context, we define the various kinds of crises:
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• The occurrence of a currency crisis is that the annual depreciation of the cur-
rency exceeds 15%;

• The occurrence of a banking crisis is that bank runs lead to the closure, merg-
ing or takeover by the public sector of one or more financial institutions;

• The definition of stock crises is often done using the running maximums of
the stock indices or the returns:

1. The CMAX definition of a stock crisis, which involves calculating the fol-
lowing:

CMAXt =
Pt

max(Pt−24, ..., Pt−1, Pt)
.

where Pt−i is the share price at time t − i. With the mean and standard
deviation of CMAX series, one defines a stock crisis when the CMAXt drops
below the n standard deviations from its mean.

2. A alternative definition is to examine the following return series:

Returnt =
Pt − Pt−1
Pt−1

.

Similarly, we compute the mean and standard deviation of the returns
time series. A stock crisis is defined by the fact that the returns index
drops below n standard deviations from the mean.

2.2 The signals approach

As mentioned previously, the signals approach involves tracking the monthly val-
ues of a large set of economic indicators over time. It is necessary to analyse a
transformed variable of the economic indicator rather than the level of the indica-
tor itself. This is because the units of measurement for some indicators differ for
different countries, and also there may be seasonality in the time series data. One
of the transformations for the indicators is to perform a percentage change with its
value in the same month of the previous year. For example, this can be done for
quantities such as GDP, exports and imports. As an example, we plot the original
level of the import value of South Africa and its percentage change in Figure 2 and
3. It may also be useful to consider the second difference percentage changes of
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Figure 2: The monthly average of the JSE index price (blue) and the import (red)
from 2000 to 2010.

Figure 3: The monthly average of the JSE index price (blue) and the transformed
import (red) from 2000 to 2010, where the transformation is the percentage change
with the same month last year.
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some variables. This provides the rate at which the indicator is increasing or de-
creasing. The second difference percentage changes are again obtained with the
percentage changed data. For example, one of the variables that are considered in
this way is GDP acceleration, which is the second differencing of GDP levels. In
some cases, where it is also important to consider the de-trended level of the eco-
nomic indicators, such as the inflation rate and the exchange rate. We list all our
available indicators and their corresponding transformation in Table 1.

Table 1: The 33 indicators we consider and their corresponding transformations.
Indicator Transformation Indicator Transformation

Current account PC Current account acc. SD
Current account/GDP(USD) PC Domestic credit(NC) PC

Domestic credit(USD) PC Domestic credit/GDP(USD) PC
Deposit rate DT DT Deposit rate PC

Exchange rate(SDR) DT DT exchange rate(SDR) PC
Exchange rate(USD) DT DT exchange rate(USD) PC
Exports/GDP(USD) PC GDP(USD) PC

GDP acc. SD Imports/GDP (USD) PC
Industrial production PC Industrial production acc. SD

Inflation DT DT Inflation PC
Lending rate DT DT Lending rate PC

Lending rates/deposit rates DT M2(NC) PC
M2 acc.(NC) SD M2/Reserves(NC) PC

M2(USD) PC M2(USD) acc. SD
M2/Reserves(USD) PC Real interest rate DT

Reserves(NC) PC Reserves(USD) PC
Reserves(SDR) PC

For some indicators, it is of interest to monitor whether the value of the indicator is
above a certain threshold in the upper end of the distribution of values, while for
other indicators it is of interest to monitor whether the value lies below a threshold
in the lower tail of the distribution. For example, the percentage change of GDP
going too low would be an indication of a crisis, while on the other hand having
imports going too high could signal the possibility of a crisis.

Another parameter which needs to be chosen is the window of time over which
the signals will predict whether there will be a crisis or not. This is termed as the
signalling horizon, and is chosen to be a 24 month period in all our numerical ex-
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amples with signals approach. The motivation for this choice is that an indicator
could reasonably be able to predict a crisis to a maximum of this length of time into
the future.

We now define quantities that will be important to assess how good a variable
is at predicting the occurrence and the leading time of a financial crisis. If a vari-
able exceeds its threshold level and this is followed by a crisis within 24 months,
this is classified as a good signal. On the other hand, if there is no crisis in the 24
months following the signal, this is called a bad signal. We consider the following
contingency table:

Crisis No Crisis
(within 24 months) (within 24 months)

Signal Issued A B
No Signal Issued C D

where:

A : Number of months in which the variable issued a good signal,

B : Number of months in which the variable issued a bad signal,

C : Number of months in which the variable failed to issue a signal,

D : Number of months in which the variable did not issue a signal.

The best variables would be those where B = C = 0 and A > 0, D > 0. With these
four quantities, we can construct statistics that summarise the performance of each
variable in predicting the occurrence and average leading time of the crises:

• The ratio
A

A+ C

gives the proportion of good signals issued out of the total number of good
signals that could have been issued. The higher this quantity, the better the
variable is at signalling a forthcoming crisis.

• Similarly,
B

B +D

gives the proportion of the bad signals issued out of the total number of bad
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signals that could have been issued. The lower this quantity, the better the
variable is at signalling a forthcoming crisis.

• The ratio of the previous two results gives the noise-to-signal ratio (NSR):

NSR =
B/(B +D)

A/(A+ C)
.

• The percentage of crises detected (PCD) represents the proportion of the total
number of crises for which there was at least one signal in the 24 months
preceding the crisis.

• The probability of a crisis conditional on a signal from the variable:

Pc|s = P (crisis|signal) =
A

A+B
. (1)

• The unconditional probability of a crisis:

Pc = P (crisis) =
A+ C

A+B + C +D
. (2)

If the variable is good, then (1) would be higher than (2).

While calculating the above results, one can also calculate the following quantities:

• The average lead time (ALT), which is the average number of months before
a crisis when the first signal is issued by the variable.

• The persistence of a variable, which represents the average number of signals
issued in the 24 month window prior to the crisis.

2.3 The optimal percetile

The optimal percentile for each variable is chosen so as to have a balance between
having too many false signals, which occurs if the threshold value is too close to
the mean, and the risk of not giving a warning signal when a crisis is likely, which
occurs if the threshold is too far into the tails of the distribution of the variable of
interest. In Grasselli (2013) and Vermersch (2013), the optimal threshold for each
indicator is obtained by finding the percentile of the values of the indicator that
led to a minimum noise-to-signal ratio (NSR). We obtain the optimal percentile by
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minimising the NSR and maximising the probability of detecting a crisis (PCD) si-
multaneously.

To achieve the objective, we rank different percentiles for each variable based on
their corresponding NSR and PCD measures. To perform this ranking of the per-
centiles, we transform the NSR and PCD measures so that the transformed perfor-
mance measure is in the similar scale range and same directionals with respect to
performance. We perform the following transformations:

N̂SRk =
max(NSRk)−NSRk

max(NSRk)−min(NSRk)
;

P̂CDk =
PCDk −min(PCDk)

max(PCDk)−min(PCDk)
,

where the max and min are taken over all possible percentile levels.

The optimal percentile is the percentile level with the highest values of the sum
of N̂SR and P̂CD. The optimal percentile for a specific indicator will be the same
across all the countries in the sample, but the threshold value for each country will
depend on the distribution of the variable for that country.

2.4 Aggregated performance measure

As the four performance measures show that some of the indicators outperforms
the rest as early warning signal issuers from different perspectives, it is natural to
construct a aggregated performance measure for each indicator by its transformed
NSR, PCD, PER and ALT. The aggregated performance measure is constructed by
the following steps

(S1) We transform our four original performance measures to re-scale their range
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among [0, 1] as follows, so that they are comparable.

NSR∗k =
max(NSRk)−NSRk

max(NSRk)−min(NSRk)
, (3)

PCD∗k =
PCDk −min(PCD)

max(PCDk)−min(PCDk)
, (4)

PER∗k =
PERk −min(PERk)

max(PERk)−min(PERk)
, (5)

ALT∗k =
ALTk −min(ALTk)

max(ALTk)−min(ALTk)
, (6)

where the max and min are taken over the set of different indicators.

(S2) We determine our aggregated performance measure by the average of NSR∗,
PCD∗, PER∗ and ALT∗ as follows

Performancek =
NSR∗k + PCD∗k + PER∗k + ALT∗k

4
. (7)

The aggregated performance measure can be utilised to rank our indicators.

2.5 Numerical results

We present here the results of our signals approach for banking, currency and stock
market crises, where the data is the monthly indicator data from 1960 to 2008.
Banking and currency crises data was available for a total of 22 countries, whereas
stock market crises data was available for a larger set of 46 countries. The data was
obtained from Reinhart and Rogoff (2013), Reinhart and Rogoff (2009), the World-
Bank Database and the IMS Database.
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Table 2: Indicators for banking crises based on monthly data for 22 countries from 1960 to 2008.
A B C D PCD NSR PER ALT Percentile Performance

Reserves (USD) 581 1337 1694 5994 0,822 0,714 7,217 16,848 20 0,816
M2 acc. (NC) 402 1079 1738 5011 0,889 0,943 4,769 18,498 18 0,763
Reserves (SDR) 541 1406 1770 6037 0,784 0,807 6,696 16,708 20 0,761
Inflation (level) 562 1271 1713 5634 0,501 0,745 5,886 19,056 80 0,716
GDP (USD) 460 507 1845 6856 0,595 0,345 5,720 15,436 10 0,700
GDP acc. 392 1253 1912 6094 0,835 1,002 4,407 17,772 17 0,695
Exchange rate (SDR) 378 317 1933 7340 0,348 0,253 4,166 18,082 7 0,657
Exchange rate (USD) 359 336 1952 7321 0,301 0,282 3,857 17,967 7 0,619
Lending rates/deposit rates 332 529 922 2518 0,484 0,656 4,695 16,198 80 0,589
Inflation PC 300 592 1975 6109 0,679 0,670 3,127 15,649 90 0,582
Lending rate (level) 302 232 1127 3186 0,425 0,321 4,366 14,903 89 0,574
Current account 408 741 1304 3291 0,569 0,771 4,339 15,123 20 0,550
Real interest rate 226 149 1454 3525 0,404 0,301 3,655 15,053 93 0,550
Current account/GDP (USD) 408 741 1304 3291 0,563 0,771 4,310 15,130 20 0,547
M2 (USD) 288 374 1858 5802 0,485 0,451 3,392 15,106 8 0,543
Exports/GDP (USD) 340 1481 1935 5848 0,712 1,352 3,893 17,016 19 0,540
Reserves (NC) 298 952 1977 6379 0,629 0,991 3,729 15,747 13 0,529
Imports/GDP (USD) 207 454 2098 6677 0,518 0,709 2,198 14,977 93 0,459
M2/Reserves (NC) 387 1252 1723 4826 0,592 1,123 3,406 15,107 20 0,458
Current account acc. 164 462 1544 3555 0,658 1,198 1,754 16,449 11 0,452
Domestic credit (USD) 172 178 2047 6346 0,329 0,352 2,139 14,356 4 0,434
Exchange rate (USD) PC 352 1309 1959 6144 0,420 1,153 4,167 15,551 17 0,431
Deposit rate PC 265 510 1343 3044 0,408 0,871 2,983 15,266 15 0,427
Industrial production 104 240 892 3720 0,331 0,580 1,704 15,455 7 0,413
M2 (USD) acc. 90 159 2050 5967 0,583 0,617 0,926 12,874 3 0,384
Lending rate PC 187 417 1134 2917 0,389 0,884 2,135 14,814 13 0,372
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Table 3: Indicators for currency crises based on monthly data for 22 countries from 1960 to 2008.
A B C D PCD NSR PER ALT Percentile Performance

Imports/GDP (USD) 866 642 3206 4722 0,676 0,563 5,405 17,140 84 0,866
Inflation (level) 749 446 3087 4898 0,410 0,427 5,023 18,598 87 0,810
GDP (USD) 763 305 3375 5225 0,472 0,299 5,015 14,857 11 0,758
M2 acc. (NC) 628 1017 2745 3840 0,763 1,125 3,704 18,171 20 0,733
Reserves (USD) 601 365 3520 5120 0,568 0,456 3,913 14,720 10 0,705
Reserves (SDR) 543 338 3642 5231 0,576 0,468 3,736 14,898 9 0,702
GDP acc. 709 1224 3421 4297 0,736 1,291 3,954 17,499 20 0,684
M2 (USD) 539 291 2910 4582 0,481 0,382 3,262 13,213 10 0,613
M2 (USD) acc. 265 232 3144 4625 0,640 0,614 1,746 15,282 6 0,609
Current account acc. 394 578 1895 2858 0,505 0,977 2,415 18,149 17 0,597
Exchange rate (SDR) 303 103 3972 5590 0,186 0,255 2,354 17,424 4 0,592
Inflation PC 413 397 3315 4851 0,504 0,683 2,918 14,808 91 0,589
Reserves (NC) 433 334 3688 5151 0,399 0,580 2,750 14,772 8 0,559
M2/Reserves (NC) 313 261 3089 4525 0,390 0,593 1,878 14,626 7 0,506
Industrial production 222 225 1385 3124 0,217 0,486 1,846 16,311 9 0,503
Current account 458 691 1841 2754 0,410 1,007 2,659 15,654 20 0,499
Deposit rate (level) 274 101 1971 3008 0,223 0,266 1,792 14,093 93 0,486
Exchange rate (SDR) PC 639 921 3541 4663 0,254 1,079 3,518 15,981 16 0,477
Deposit rate PC 306 364 1807 2685 0,282 0,824 1,743 16,596 13 0,465
M2/Reserves (USD) 240 168 3162 4618 0,338 0,498 1,482 13,664 95 0,458
Lending rate (level) 281 157 1359 3050 0,149 0,286 1,621 13,591 91 0,432
Lending rates/deposit rates 312 549 1109 2331 0,200 0,868 1,849 15,638 80 0,404
Exchange rate (USD) 73 29 4202 5664 0,116 0,298 0,630 14,524 1 0,392
Domestic credit (USD) 173 90 3429 5051 0,265 0,364 1,174 11,370 3 0,379
M2 (NC) 526 1140 2923 3733 0,215 1,534 2,948 16,847 20 0,368
Current account/GDP (USD) 166 237 2133 3208 0,342 0,953 0,947 14,413 7 0,364
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Table 4: Indicators for stock market crises (CMAX definition) based on monthly data for 46 countries from 1960 to 2008.
A B C D PCD NSR PER ALT Percentile Performance

Exchange rate (SDR) 1325 1288 5487 17955 0,356 0,344 5,145 19,841 10 0,820
M2 (USD) acc. 1304 2763 4406 11878 0,812 0,826 4,814 16,937 20 0,780
Exchange rate (USD) 965 810 5847 18433 0,316 0,297 3,806 18,689 7 0,713
GDP acc. 952 2023 5238 14678 0,769 0,788 3,498 16,108 13 0,680
GDP (USD) 1286 1931 4908 14811 0,590 0,556 4,670 13,331 14 0,655
Exports/GDP (USD) 1081 3073 4942 12811 0,739 1,078 3,739 16,698 19 0,631
Lending rate (level) 1171 1881 3271 8931 0,347 0,660 4,510 16,563 80 0,620
Current account 1009 2002 3818 8228 0,508 0,936 3,803 17,595 20 0,606
Industrial production 986 1701 3442 8766 0,528 0,730 3,773 15,325 18 0,598
Current account/GDP (USD) 972 1923 3729 7858 0,492 0,951 3,689 17,651 20 0,592
Imports/GDP (USD) 701 1058 5287 14831 0,517 0,569 2,579 15,916 92 0,583
Inflation PC 741 1259 5438 14733 0,578 0,656 2,796 15,325 91 0,581
Lending rate PC 1015 1926 3278 8495 0,416 0,782 3,794 16,142 20 0,568
Real interest rate 937 2178 3475 8989 0,316 0,918 3,459 18,983 80 0,559
M2 acc. (NC) 679 1556 5032 13049 0,647 0,896 2,494 16,178 11 0,558
Current account acc. 620 1328 4193 8868 0,687 1,011 2,355 16,765 13 0,555
Reserves (USD) 663 997 5812 16364 0,432 0,561 2,343 13,546 7 0,476
Inflation (level) 800 1013 5466 15444 0,313 0,482 2,685 13,471 92 0,467
Deposit rate PC 521 930 3985 10737 0,337 0,689 2,034 15,208 9 0,440
Domestic credit (NC) 977 3336 5209 12041 0,398 1,374 3,350 16,899 20 0,421
Exchange rate (USD) PC 526 988 6057 17356 0,292 0,674 1,890 14,752 6 0,407
Reserves (SDR) 390 583 6299 17082 0,313 0,566 1,366 14,232 4 0,398
Lending rates/deposit rates 526 1279 3461 8618 0,331 0,980 1,904 16,178 87 0,390
Reserves (NC) 411 787 6064 16574 0,347 0,714 1,525 13,790 5 0,372
M2 (USD) 407 421 5365 14343 0,304 0,404 1,406 10,685 4 0,337
Domestic credit (USD) 421 653 5765 14718 0,310 0,624 1,456 12,094 5 0,329
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Table 5: Indicators for stock market crises (Returns index definition) based on monthly data for 46 countries from 1960
to 2008.

A B C D PCD NSR PER ALT Percentile Performance
GDP acc. 1654 2692 6247 12298 0,831 0,858 4,731 17,573 19 0,786
Exchange rate (SDR) 1558 1321 7217 15959 0,368 0,431 5,194 18,747 11 0,771
M2 acc. (NC) 1475 2586 5826 10429 0,779 0,984 4,322 18,214 20 0,736
M2 (USD) acc. 1496 2571 5812 10472 0,770 0,963 4,348 17,211 20 0,714
Inflation (level) 1982 2556 5998 12187 0,473 0,698 5,781 16,227 80 0,711
M2/Reserves (USD) 1552 2439 5580 10374 0,592 0,875 4,969 17,280 80 0,701
Exchange rate (USD) 1231 804 7544 16476 0,344 0,332 4,328 16,496 8 0,689
Current account acc. 1193 1655 5085 7076 0,729 0,998 3,436 18,288 19 0,676
Exports/GDP (USD) 1449 2932 6166 11360 0,722 1,078 4,107 17,311 20 0,662
GDP (USD) 1614 2288 6298 12736 0,549 0,747 4,703 14,806 17 0,642
Deposit rate (level) 1538 1636 4752 8787 0,368 0,642 4,951 15,295 81 0,626
Exchange rate (SDR) PC 1351 2234 7338 14580 0,432 0,855 3,979 15,783 14 0,567
Domestic credit (USD) 1320 2123 6450 11664 0,480 0,906 3,442 15,046 16 0,529
M2/Reserves (NC) 1422 2569 5710 10244 0,516 1,006 3,418 15,182 20 0,521
Industrial production 1148 1827 4758 7162 0,539 1,046 3,101 15,362 20 0,510
Real interest rate 1167 1948 4714 7750 0,361 1,012 3,608 16,075 80 0,496
Domestic credit/GDP (USD) 1120 2831 5996 9806 0,356 1,423 2,923 19,412 20 0,451
M2 (NC) 1260 2851 6126 10305 0,371 1,270 3,601 16,465 20 0,450
Lending rates/deposit rates 1020 1618 4518 6728 0,402 1,053 2,520 15,591 81 0,439
Inflation PC 317 350 7541 13963 0,446 0,606 0,993 13,184 97 0,427
Imports/GDP (USD) 472 607 7117 13681 0,378 0,683 1,379 14,007 95 0,424
Domestic credit (NC) 1224 3089 6546 10704 0,383 1,422 3,214 17,325 20 0,423
Exchange rate (USD) PC 647 867 7760 15653 0,351 0,682 1,990 13,207 6 0,422
Reserves (SDR) 419 554 8054 15327 0,318 0,705 1,291 14,477 4 0,405
Reserves (NC) 481 717 7761 14877 0,330 0,788 1,473 14,637 5 0,403
Current account 477 580 5817 8183 0,373 0,873 1,332 14,936 7 0,399
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3 Crisis indices – the aggregated indicators

The previous results show that some indicators outperform others. The signal ap-
proach only gives a measure to rank all the indicators, however, one can hardly jus-
tify the likelihood of a crisis based on the measure of a single indicator. Therefore,
we will combine all the indicators to give a crisis index for each of the financial
crisis, which can be utilised to build a early warning system for the prospective
crises. We define the aggregated index for a specific crisis in country i at time t by

I(i)(t) =
∑
k∈K

wks
(i)
k (t), (8)

where wk is the country and time independent weight for the k−th indicator, and
s
(i)
k (t) is the numerical value for the k−th indicator in country i at time t.

3.1 The aggregation of indicators

With the aggregated performance measures, we are able to calculate the weight of
indicator k in the corresponding crisis index, which is given as

wk =
Performancek∑

`∈K
Performance`

. (9)

It is obvious that
∑

k∈Kwk = 1 is satisfied.

The series of numerical value is calculated in the following steps,

(L1) Generate the histogram of indicator k in country i with historical data. Cal-
culate the optimal threshold and obtain the signal trigger level L(i)

k .

(L2) Discretise the domain[
inf
t>0

{
P

(i)
k (t) : P

(i)
k (t) ≥ L(i)

k

}
, sup
t>0

{
P

(i)
k (t) : P

(i)
k (t) ≥ L(i)

k

}]
, (10)

into 10 uniform intervals with grid point

t0 < t1 < · · · < t10
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where

t0 = inf
t>0

{
P

(i)
k (t) : P

(i)
k (t) ≥ L(i)

k

}
,

t10 = sup
t>0

{
P

(i)
k (t) : P

(i)
k (t) ≥ L(i)

k

}
.

(L3) For indicators with upper thresholds, assign

s
(i)
k (t) = `+ 1 if P

(i)
k (t) ∈ [t`, t`+1) , for ` = 0, 2, · · · , 9. (11)

For indicators with lower thresholds, assign

s
(i)
k (t) = 10− ` if P

(i)
k (t) ∈ [t`, t`+1) , for ` = 0, 2, · · · , 9. (12)

With steps in (S1) to (S2) and (L1) to (L3), we are able to evaluate the numerical
value for each indicator in a specific country over time. In essence, the numerical
value can be treated as a refinement of the procedure used to define a signal: rather
than assigning 1 for all the signal issuance, we distinct the strength or weakness for
all the signals by scoring them between 0 and 10.
With the formula

I(i)(t) =
∑
k∈K

wks
(i)
k (t), (13)

one can come up with the crisis indices for banking, currency and stock crises.
We plot the crisis indices for United Kingdom as follows
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Figure 4: The monthly crisis indices for banking, currency and stock crises of
United Kingdom from 1960 to 2008.

Meanwhile, we also list the major economic recessions in United Kingdom from
1960 to 2008 as follows:

Years crisis

1973 - 1975 Mid-1970s recessions
1980 - 1981 Early 1980s recession
1990 - 1991 Early 1990s recession

2008 Great Recession

We can observe from Figure 4 that the crisis indices of United Kingdom issue useful
signals for the forthcoming crisis.

3.2 Transformation of crisis indices

Apart from the United Kingdom, we do the same experiment for the United States
and South Africa. The crisis indices are given in Figure 5 below.
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Figure 5: The monthly crisis indices for banking, currency and stock crises of the
United States (left panel) and South Africa (right panel) from 1960 to 2008.

It is can be observed that the paths of our crisis indices are rough, which can hardly
be used for developing trading strategies or run further simulations. Therefore, we
need to filter the rough process to make the it smoother. We denote our banking,
currency and stock crisis index of country i at time t by I(i)b (t), I(i)c (t) and I

(i)
s (t),

i.e. we have I(i)x (t) where x = b, c or s. We proceed the filtering I
(i)
x (t) with the

following steps:

(R1) We take the moving average of I(i)x (t) with rolling window k
(x)
1 :

Ĩ(i)x (t) =
1

k
(x)
1 + 1

k
(x)
1∑
j=0

I(i)x (t− j);

(R2) We then take the difference of Ĩ(i)x (t):

∆Ĩx(t) = Ĩ(i)x (t)− Ĩ(i)x (t− 1);

(R3) Next, we take the moving average of I(i)x (t) with rolling window k
(x)
2 :

∆̃(i)
x (t) =

1

k
(x)
2 + 1

k
(x)
2∑
j=0

I(i)x (t− j);

(R4) Finally, we take a weighted sum of ∆̃
(i)
x (t) to form the transformed crisis in-
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dices B(t), C(t) and S(t) for banking, currency and stock crisis, respectively:

B(t) =
1

10

18∑
j=9

∆̃b(t− j),

C(t) =
1

10

18∑
j=9

∆̃c(t− j),

S(t) =
24∑
j=0

∆̃x(t− j)f(j),

where f is a non-negative function peaked in the middle with

24∑
j=0

f(j) = 1.

For example, f can be the following function

f(j) =

{
j, for 0 ≤ j ≤ 12,

25− j, for 13 ≤ j ≤ 25.

We take the United Kingdom as an example and observe the transformation step
by step from Figure 6 to 9. It is easy to observe that the path is smoother compared
with the original crisis indices.

Figure 6: The transformed Ĩx(t), which is taking the moving average with rolling
window for k1 = 12.
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Figure 7: The transformed ∆Ĩx(t), which is taking the difference.

Figure 8: The transformed ∆̃x(t), which is taking the moving average with rolling
window for k2 = 9.
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Figure 9: The transformed B(t), C(t) and S(t).
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4 Asset management based on early warning signals

The primary aim of integrating the signals approach and the use of crisis indices
into an investment strategy is maximising portfolio gains (minimising portfolio
losses). Here we develop a trading model that determines the monthly optimal
portfolio allocations needed to achieve this aim, based on the values of the crisis
indices.

Vermersch (2013) cautions against a major shortfall during the development of
such a model, namely, a forward-looking model that takes future data into consid-
eration as part of its calibration. One could, for instance, erroneously use all of the
data up to and including the present day to backtest the model, as if this data was
accessible at any time during the simulation. Mathematically, this is tantamount
to conditioning on a filtration Ft to predict future values, from some present time
s < t. In order to avoid this, we use two sets of historical data from disjoint periods
to calibrate and then test our trading model.
The theoretical development of the model is outlined in section 4.1, and the numer-
ical results obtained from implementing and testing our model are given in section
4.3.

4.1 Linear trading model

We develop a model based on a portfolio comprising three asset classes: cash,
bonds, and equities. We denote the proportion of the portfolio allocated to each
asset class at time t as

c(t) : cash, e.g. 3M treaury bills,

b(t) : bonds, e.g. 10Y government bonds,

e(t) : equities, e.g. FTSE index.

These proportions are subject to the following constraints:

c(t) + b(t) + e(t) = 1,

0 ≤ c(t) ≤ cmax,

0 ≤ e(t) ≤ emax,
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where we have set

cmax := 75%,

emax := 50%.

The linear trading model is proposed in Grasselli (2013) and Vermersch (2013). It is
specified by the change in the proportions held in each of the three asset classes, as

∆c(t) = F1 ·B(t) + F2 · C(t) + F3 · S(t), (14)

∆e(t) = G1 ·B(t) +G2 · C(t) +G3 · S(t), (15)

∆b(t) = −∆c(t)−∆e(t), (16)

where the last equation ensures that the portfolio is self-financing. B(t), C(t), and
S(t) are, respectively, the values at time t for the banking crisis, currency crisis, and
stock market crisis indices. For simplicity, we consider the case with

F2 < F3 = 0 < F1, (17)

G := G3 < G1 = G2 = 0. (18)

4.2 Trading models with risk preferences

We extend the linear trading model to include investor risk preference with respect
to each asset class. This is incorporated by defining functions fi(x) and gi(x) for
i = {1, 2, 3} and setting

∆c(t) = F1 · f1(B(t)) + F2 · f2(C(t)) + F3 · f3(S(t)), (19)

∆e(t) = G1 · g1(B(t)) +G2 · g2(C(t)) +G3 · g3(S(t)), (20)

∆b(t) = −∆c(t)−∆e(t), (21)

and retaining the simplifying conditions given in 17. The convexities and concavi-
ties of the functions fi(x) and gi(x) determine the risk preferences of the investor.

Our first variation of such a trading model is that which exhibits linear risk prefer-
ence for banking-related and currency-related risks, and (relative) risk aversion for
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stock-related risks. This is given by

∆c(t) = F1 ·B(t) + F2 · C(t), (22)

∆e(t) = G · (eαS(t) − 1), (23)

∆b(t) = −∆c(t)−∆e(t), (24)

where α is determined by the level of risk aversion of the investor. Similarly, we de-
fine a trading model that exhibits (relative) risk-seeking behaviour for stock-related
risks, given by

∆c(t) = F1 ·B(t) + F2 · C(t), (25)

∆e(t) = G · log(S(t) + 1), (26)

∆b(t) = −∆c(t)−∆e(t). (27)

Note that the second model may be defined using a power function g3(x) = xα,
with α denoting the level of risk aversion, if desired.

4.3 Numerical results

We proceed by calibrating and testing our models for the United Kingdom. As
representative of each asset class, we use 3-month treasury bills for cash, 10-year
government bonds for bonds, and the FTSE 100 Index for equities. For all model
calibration, we use January 1982 as the starting month, as this is the first month
from which we have all of the required market data. All data used are monthly
data. Without loss of generality, for the stock market crisis index, we use the defi-
nition by return.

For the purspose of comparison, we construct a benchmark portfolio that follows
a naive diversification strategy, that is

c(t) = e(t) = b(t) =
1

3
, ∀t. (28)

Maintaining the above allocations requires the benchmark portfolio to be rebal-
anced monthly. As such, it is comparable to our trading models. Furthermore, the
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initial allocation for each of our trading models is

c(0) = e(0) = b(0) =
1

3
. (29)

The model parametersF1, F2, andG, as well as the parameters k(x)1 , k
(x)
2 (x ∈ {b, c, s})

in Section 3, are obtained by maximising the value at the end of the calibration pe-
riod of a portfolio with initial allocation given by 29. The calibration period runs
from January 1982 to December 1999.

4.4 Backtesting results

From the calibration exercise, we obtain the following optimal parameter values:

Table 6: Calibrated parameter values for three trading models with calibration pe-
riod Jan. 1982 - Dec. 1999

Banking crisis Currency crisis Stock market crisis
k1 k2 F1 k1 k2 F2 k1 k2 G

Linear 5 5 7.154 24 11 -2656.510 8 8 -3.334
Risk-averse 24 6 1301.847 19 8 -2298.340 6 1 -70.816
Risk-seeking 25 10 171.065 20 7 -871.323 10 10 -82.290

The backtest of the trading models using the calibrated parameters is shown be-
low. The graph indicates that over the calibration period, all three trading models
outperform the benchmark in terms of portfolio value. In addition, the portfolio
that is traded using the relatively risk-seeking trading model provides the great-
est overall return, followed by that using the linear trading model. The portfolio
traded using the relatively risk-averse trading model provided the second-lowest
overall return, with the benchmark portfolio generating the lowest overall return.
These results are in line with our expectations, as they are taken from the backtest:
since the model parameters having been optimised for each trading model, our ex-
pectation is that the risk-seeking trading model produces the highest overall return
in the backtest, and so on.

4.5 Out-of-sample results

We use the period of January 2000 to December 2010. As we are investigating
the use of the signals approach and crisis indices in long-term asset management,
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Figure 10: Backtesting performance for our linear trading model.
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Figure 11: Backtesting performance for our risk-seeking model.
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Figure 12: Backtesting performance for our risk-averse trading model.

the length of this period is of appropriate length for evaluating the efficacy of our
trading models. Using the parameters derived from the calibration, the out-of-
sample test yields the following results:
We find that the relatively risk-averse trading model and relatively risk-seeking
trading model perform best (in that order), with the linear trading model perform-
ing similarly to the benchmark.

Up until shortly before the beginning of 2008, when most of the portfolios achieve
their highest values (as seen by the vertical reference line), the relatively risk-seeking
trading model produces the highest portfolio value. Moreover, it significantly out-
performs the other trading models, as well as the benchmark. In the context of a
bull market, this would be expected. Furthermore, the other portfolios based on
our trading models perform similarly to the benchmark.

Between 2008 and 2010, all of the portfolios undergo reductions in value. As ex-
pected, the portfolio based on the relatively risk-seeking trading model experiences
the largest losses, losing most of the value it previously held in excess of the bench-
mark portfolio. In contrast, although the portfolio based on the relatively risk-
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Figure 13: Out-of-sample performance for our linear trading model.
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Figure 14: Out-of-sample performance for our risk-seeking trading model.

31



Time
2000 2002 2004 2006 2008 2010 2012

P
or

tfo
lio

 v
al

ue

85

90

95

100

105

110

115

120

125

130

135

Benchmark
Risk-averse

Figure 15: Out-of-sample performance for our risk-averse trading model.

averse trading model loses some value in the first part of 2008, it actually increases
in value while all of the other portfolios drop to their respective troughs. This
shows that the relatively risk-averse trading model performs significantly better
relative to the benchmark and other trading models during bear markets; again,
this is in line with our expectation. Finally, in terms of the overall result over the
trading period from January 2000 to December 2010, it is the relatively risk-averse
trading model that performs best, followed by the relatively risk-seeking trading
model.
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5 Conclusion

With the historical indicator and crisis data up to 2010, we are able to rank the
leading economic indicators for banking, currency and stock crises with four per-
formance measures. We list the top five indicators for three types of crises as fol-
lows:

Table 7: Top five indicators.
Banking crises Currency crises Stock crises (CMAX) Stock crises (Return)

1 Reserve (USD) Import/GDP (USD) Exchange rate (SDR) GDP acceleration (USD)
2 M2 acceleration (NC) Inflation M2 acceleration (USD) Exchange rate (SDR)
3 Reserve (SDR) GDP (USD) Exchange rate (USD) M2 acceleration (NC)
4 Inflation M2 acceleration (NC) GDP acceleration (USD) M2 acceleration (USD)
5 GDP (USD) Reserve (USD) GDP (USD) M2

The leading indicators make sense for the corresponding crises in economics as
well. For example, rising inflation and decreasing reserves can lead to prospective
currency crises. Our model could provide more empirical results for the study of
the relationship between the economic direction and macro-indicators.

With the four performance metrics, a early warning system by the crisis indices
with economic indicators is established. Regulators can adopt such a early warning
system to monitor the economic environment and establish suitable protections for
potential financial crises. On the other hand, speculators or asset managers can ad-
just their portfolio positions based on this early warning system, which can avoid
the severe loss due to the occurrence of a crisis.

We also develop our asset management strategies based on our crisis indices. With
our risk-seeking trading algorithm, one can gain more profits compared with the
risk-averse algorithm and linear algorithm. However, the risk-seeking algorithm
will suffer the largest maximum drawdown when the economic scenario turns bad.
Compared with risk-seeking strategy, our risk-aversion strategy is able to preserve
our loss when the economic scenario turns bad, while it will lead to lower prof-
itability in good economic scenarios, though it can still outperform our benchmark
trading strategy. With our models, the investor can determine the choice of portfo-
lio adjustments based on their risk profile, which offers more flexibility.
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1 Introduction

One of the major considerations practitioners make in choosing a pricing model is
its practicality. It would be of no use to have a model that prices market instru-
ments correctly if calculating prices with such a model takes (say) a week. These
considerations have often lead practitioners to choosing simpler models instead
of more complex models that could better describe the observed market prices.
The first goal of the project is to solve one such practical consideration: calibration
speed.

Choosing a simpler, parsimonious model also has its own disadvantages; one
such disadvantage is parameter instability. Having calibrated a model at a par-
ticular time point, it is desirable that the model parameter values do not change
drastically at a later date, since otherwise, the model assumptions (that the param-
eters are constant) would be violated (see work by Schlögl (2015) on classifying
different forms of model risk). The second aim of this project is to propose a model
for interest rates that is not susceptible to parameter instability while being quick
to calibrate using the solution to the first problem.

Intuitively, model calibration means choosing the model parameters that ‘best’
reproduce the market prices of certain instruments. These instruments — often
called the calibration instruments — are usually chosen to be highly liquid assets
whose prices are easily accessible. A criteria to penalize deviations from the prices
is chosen, called a cost function, and the parameters are chosen to minimize this cost
function. This optimization procedure is usually slow, and has at times resulted in
practitioners discarding some potentially good models.

To be more precise, let Qmkt = {Qmkt1 , . . . , QmktN } be a set of market prices for the
instruments to be used for calibration. If M = M(θ) is a pricing model that depends
on the parameters θ = (θ1, . . . , θn), we denote the corresponding model prices of
the securities by (Qθ1, . . . , Q

θ
N ). We can then view calibration as finding θ ∈ Rn that

minimizes the cost function

θ∗ 7→ Cost(Qmkt, Qθ
∗
).
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From an abstract viewpoint, calibration defines a mapping Θ : RN −→ Rn that
gives the parameters θ for each vector of market prices Qmkt. We will call the
mapping Θ the calibration function. The idea behind this project is to estimate the
calibration function “offline” (i.e., before the model is used for live trading), so that
during live trading, the process of calibration reduces to simple, quick function
evaluation of the market prices to give the relevant parameters. Taking ideas from
Hernandez (2016) we will approximate Θ using Neural networks.

2 Calibration

2.1 General calibration methodology

The calibration of a model involves determining the parameters for that model that
‘best’ fit the market data. Calibration can be thought of as an inverse problem asso-
ciated with the pricing of a financial derivative, where in the theoretical situation,
all prices are known and the calibration problem is solved by fitting parameters to
a model so that is reproduces the known market data. Calibration thus allows for
the pricing of less liquid instruments or more complex instruments.
Let M = M(θ) be a market model that depends on the parameters θ. Assume that
the model M has n parameters that need to be calibrated using a set of N mar-
ket instruments whose (true) market prices are given by Qmkt1 , . . . , QmktN . We will
denote the corresponding model prices by Qθ1, . . . , Q

θ
N . The choice of instruments

to use for calibration is not trivial and arguments can often be made for the inclu-
sion or exclusion of a particular quote (instrument) based on, for instance, liquidity
concerns or avoiding over-fitting to a particular maturity region. The general prin-
cipals ensure instruments are chosen to include the important maturity dates of
the underlying cash flows as well as choosing actively traded instruments. At the
money options are most often used as calibration data.
Previously it was stated that the model parameters are chosen to best fit the market
data. The concept of ’best’ is evaluated by a cost function Cost(·, ·). This cost func-
tion quantifies the distance between quotes obtained from the model and market
quotes. This distance can be likened to an error term. This is intuitive as we want
our model to be able to price accurately. The goal of calibration, therefore, involves
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finding those model parameters i.e. solving for θ such that the distance between
the model and market quotes is minimised. This is done by determining a cost
function Cost(·, ·) and using an optimisation scheme to determine the parameters
θ that minimise this cost function.
There is a choice of which cost function to implement. This is often influenced
by the practical concern of reducing calibration time. The cost function Cost(·, ·)
usually takes the form of some weighted average of each difference between the
market quote and the model quote. If calibration is done to N market quotes pos-
sible cost functions include Larsson (2015)

Cost
(
Qθ, Qmrkt

)
=

N∑
i=1

wi

∣∣∣Qθi −Qmrkti

∣∣∣p , (1)

Cost
(
Qθ, Qmrkt

)
=

N∑
i=1

wi

∣∣∣∣Qθi −Qmrkti

Qmrkti

∣∣∣∣p , (2)

Cost
(
Qθ, Qmrkt

)
=

N∑
i=1

wi

∣∣∣lnQθi − lnQmrkti

∣∣∣p , (3)

where i = 1.....N , Qθi is the quote obtained from the model with parameters θ and
Qmrkti is the quote obtained in the market. p must be greater than one and weights
wi are positive.
We will not argue here for the use of one cost function over another. We will use
one of the common formulations being the weighted sum of squares formulation
to illustrate a cost function.

Cost
(
Qθ, Qmkt

)
=

N∑
i=1

wi

(
Qθi −Qmkti

)2
. (4)

Solving for the parameter set θ to minimise the cost function using an optimisation
technique yields

θ = argmin
θ∗∈S⊆Rn

Cost
(
θ∗, {Qmrkt}

)
. (5)

Optimisation schemes that are commonly used to solve for the parameter set θ in
minimising the cost function Cost are Newton’s method, Bisection method and the
method of Gradient Descent.
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The calibration problem can now be seen as a problem with N arguments and n

outputs where Θ is the calibration function that maps the much larger data set N
onto a smaller output vector of size n, the calibrated parameters, i.e.

Θ : RN 7→ Rn. (6)

Calibration is currently done on-line alongside active trading, as N can often be
quite large using optimisation techniques on-line poses challenges to the speed and
accuracy of the calibration of models. This presents a good use case for a neural
network where the calibration problem can be reduced to finding a neural network
to approximate Θ, this is introduced in the next section.

2.2 Some examples of calibration

2.2.1 The Black-Scholes model

Consider the Black-Scholes model under the pricing measure. Assume that Qmrkt

is the price of a European call option issued on an asset St with time to maturity T ,
strike K and has a price process

dSt = rStdt+ σStdWt. (7)

Here W is a Wiener process, r is the interest rate and σ is the volatility of St.
Although options are priced in terms of volatility we assume the implied volatility
is the non-observable parameter in the model that needs to be calibrated i.e. θ = σ

The model price Qθ of the option at time t and todays price St is

Qθ = StΦ (d1)−Ke−r(T−t)Φ (d2) , (8)

where

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

(9)

d2 = d1 − σ
√
.T − t (10)

In this simple example the parameter θ is calibrated to one option quote Qmrkt.
Therefore, to calibrate the Black Scholes model for one option quote we want to find
the parameter θ such that the cost function Cost = (Qθi −Qmrkti )2 is minimised. In
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this example N = 1 as one option quote is used. The minimum of the cost function
is zero, therefore, Qθ = Qmrkt or more clearly

StΦ (d1)−Ke−r(T−t)Φ (d2) = Qmrkt (11)

where d1 and d2 are defined in Eq.12 and 13. In this example, calibrating to one
option quote allows Eq. 14 to be solved directly for θ which is the implied volatil-
ity σ. If calibration is done using a set of N market quotes instead, an optimisation
scheme would be necessary to minimise the cost function and solve for the un-
known parameter θ

Cost =

N∑
i=1

wi

(
Qθ(τi)−Qmrkt(τi)

)2
(12)

θ = argmin
θ∈S⊆Rn

Cost
(
Qθ,Qmrkt

)
(13)

Θ : RN 7→ R1 (14)

where i = 1.......N and Qθ and Qmrkt are vectors of model and market quotes. Θ

is the calibration function that maps the set of N quotes to output the unknown
parameter. This is a single parameter calibration example where Eq.16 consists of
one unknown parameter θ and can be solved using an optimisation scheme..

2.2.2 The Heston model

The Heston model is a stochastic volatility model. It assumes volatility is not con-
stant as under the Black-Scholes model but allows volatility to follow a random
process.
The Heston model assumes the underlying asset follows a stochastic process with
stochastic variance υt.
The underlying asset and volatility progression is characterised by the following
risk-neutral dynamics Crisostomo (2015)

dSt = rStdt+
√
υtStdW

1
t (15)

dυt = α(ῡ − υt)dt+ η
√
υtdW

2
t (16)

dW 1
t dW

2
t = pdt (17)
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where

• St is the price of the underlying asset;

• r is the risk free rate;

• υt is the variance at time t;

• ῡ is the long-term variance;

• α is the rate of variance mean-reversion;

• η is the volatility of the variance process;

• W 1
t ,W 2

t are the correlated Wiener processes with correlation coefficient ρ.

One of the main advantages of the Heston model in addition to stochastic volatility
is that the price of European options can be estimated using a quasi-closed form
valuation formula involving characteristic functions Crisostomo (2015).
Availability of closed-form solutions is particularly useful in calibration where many
plain vanilla option repricings need to be done in order to find the optimal parame-
ters. The Heston model has five unknown parameters θ = {υ0, ῡ, α, η, ρ} that need
to be calibrated. As stated in section 1, the goal of calibration is to find the set
of parameters θ through an optimisation scheme that minimises the cost function
Cost(·, ·). This is now more complicated than calibrating the Black-Scholes model
as there are far more parameters to calibrate. The cost function and optimisation
are the same as those depicted in Equation (15) and (16), however, the calibration
function is

Θ : RN 7→ R5 (18)

as there are now 5 unknown parameters to calibrate.
By calibrating the parameters of the Heston model an evolution for the underlying
asset that is consistent with the market prices of plain vanilla options is obtained.

2.2.3 The Hull-White model

The Hull-White model is a model of interest rates. It is a no-arbitrage model that
fits today’s term structure of interest rates. It is able to translate the evolution of
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interest rates onto a tree or lattice so interest rate derivatives such as swaptions can
be valued by the model Gurrieri et al. (2013).
The model is a short rate model with dynamics

drt = (θ(t)− αrt)dt+ σdWt (19)

where α is the mean reversion parameter and σ is the volatility. Both are constant
parameters and are shared across all market quote inputs. θ(t) is chosen to replicate
the current market yield curve y(t). The yield curve is an exogenous factor which
is the φ of the model while τ of the model will include properties of the options
such as day-count convention and maturity.
The Hull-White model can be used to price any vanilla interest rate derivative,
swaptions will be used here for illustration.
Swaption prices are quoted as implied volatilities in the market. The market price
of the swaption is obtained from inputing the implied volatility into Black’s For-
mula. This is needed in order to compare the market quote with the model quote
for calibration. The Hull-White model has two parameters that need to be cali-
brated, θ = {α, σ}. In order to calibrate the Hull-White model the same principles
are followed as outlined above: market quotes are obtained from the market such
as swpation prices with varying maturities and tenors, the cost function is deter-
mined to quantify the distance between the market quotes and the model quotes
and an optimisation scheme is chosen to minimise the cost function by solving for
θ. The problem is then

(α, σ) = Θ
({
Qmrkt

}
; {τ} , y(t)

)
. (20)

The calibration function can be viewed as a function that maps the input market
quotes of size N and outputs calibrated parameters α and σ Gurrieri et al. (2013)

Θ : RN 7→ R2 (21)

2.3 Challenges of on-line calibration

Calibration at trading desks is currently done on-line. This means calibration is
done in real time while active trading is taking place, therefore, the speed at which
a trader can calibrate their model and output a price is an essential considera-
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tion. The speed at which parameters can be calibrated largely informs the choice of
model used by practitioners. This could result in forgoing the more accurate model
for a simpler model whose parameters can be calibrated faster.
Calibrating on-line decreases the time allowed for debugging certain pressure points
within the calibration function, thereby, making on-line calibration more risky.
Most of the pressure points involve the chosen optimization scheme and ensuring
a global minimum is found. These optimization challenges can be refined using
off-line calibration without affecting the speed or accuracy with which live trades
can be executed.
The aim of this paper is to eliminate the calibration speed consideration from in-
forming the choice of model by taking the calibration of parameters off-line using
neural networks. This is introduced in the next section.

3 Neural networks

3.1 Basics

Neural networks aim to imitate the highly connected structure of neurons in the
brain. The neural networks used in computing are more aptly called artifical neural
networks (ANNs).
Neurons receive signals or information from other neurons through input branches
called dendrites. The neurons choose whether or not to pass on the signal or alter
it.

Figure 1: Structure of a neuron. Available at: http://biomedicalengineering.yolasite.com/neurons.php

The underlying motivation for neural networks is the Universal Approximation
Theorem which states that any function, f , may be approximated by a weighted
combination of some non-linear function, ψ, of the scalar product of f ’s inputs
with some weights.
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Theorem 3.1 (Universal Approximation Theorem). Let ψ : R → R be a fixed
activation function1 and N be a positive integer. For every continuous function
f : [0, 1]N −→ R and every ε > 0, there exist a positive integer m and vectors
{wi : i = 1, . . . ,m}, β and b such that

sup
x∈[0,1]N

∣∣f(x)− fNN (x)
∣∣ < ε,

where

fNN (x) =

m∑
i=1

βiψ(wTi x+ bi), x ∈ [0, 1]N .

3.1.1 Gradient descent algorithm

The gradient descent algorithm is a first order linear optimisation algorithm for
finding the minimum of a function. It is a simple and robust algorithm which
causes the parameter which is being optimised to move in the opposite direction
to the sign of the gradient. It is implemented by repeating the following until con-
vergence:

ωk+1 = ωk − ηJ ′(ωk)

. Where J(ω) is the function to be minimised. See figure for further intuition.

Figure 2: Sketch of gradient descent w.r.t. one parameter. [Available at: https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html]

In neural networks, we use gradient descent to minimise the error or loss function
while training, where the loss function is defined as a function of the difference
between the neural network’s output or estimate and the true output.

J(ω) := `(fNNω (x), f(x))

1non-constant, continuous and bounded
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The gradient descent algorithm is one of the most commonly used optimisation
methods when training neural nets. More specifically, extensions of the gradient
descent algorithm which have been created to achieve faster convergence and have
higher likelihood of avoiding local minima. One extension is the stochastic gradi-
ent algorithm which iteratively updates the weights by calculating the derivative
with one training example at a time. Other methods, such as Adam and Nadam,
use ”momentum” in a sense where learning is sped up where the gradient is con-
sistent and slows down where it fluctuates. We used the latter which implements a
jump of the parameter and calculates the gradient at that point to make a correction
(Dozat (2016)).

3.1.2 Feedforward neural networks

A feedforward neural network is one where inputs move from the input layer,
through the network, to the output layer with no return. This is also sometimes
referred to as forward propagation. A feedforward neural network is usually one
that has been trained to minimise the error on a training set.
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1

a
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2

a
(2)
3

a
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The structure of a neural network includes input and output layers of various di-
mensions with potentially multiple hidden layers. Above we consider a network
with one hidden layer for simplicity, two input units and one output. Weights are
applied to the input units and sent to the neurons in the hidden layer which receive
them as a linear combination and apply an activation function, g.
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This activation function stems from the Universal Approximation Theorem. This
activation function is required to be differentiable to apply the backpropagation
algorithm and non-linear, as if it wasn’t, a network with many hidden layers with
all but one linear activations could be represented by a network with one hidden
layer or none if the activation functions are all linear.
A variety of activation functions exist, a common one being the sigmoid or logistic
activation function and others such as ELU, ReLU and SoftPlus. As a side note,
using the sigmoid function with only an input layer and output layer of one di-
mension equates to logistic regression. In the training of the Hull-White mixture
model, a variety of activation functions were used in the same vein as Hernandez
(2016).
The activated units a(2) are passed through the network just as the input units
were until the output layer which will give us an estimate ŷ of the function being
approximated.

3.2 Training with backpropagation

3.2.1 Supervised learning

Neural networks are used to solve supervised learning problems where each obser-
vation forms a pair of input and output objects. This is opposed to unsupervised
learning where there is no observable response variable, where methods such as
PCA, clustering and self-organising maps are used to identify patterns and struc-
ture in the data.
Neural networks can be trained to infer the function between input and output
objects, and thus do well in supervised learning problems especially with compli-
cated functions and high dimensional data.

3.2.2 Training

In training a neural network, we use a training set of paired input and output
examples such as {(−→x 1, y1), . . . , (

−→x m, ym)}, where −→x i is a vector as in the previous
network.
The estimated outputs of the −→x i’s are ŷ and are compared to the actual responses
yi by calculating the loss function. In the neural networks that were trained the
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mean squared error was calculated and minimised as

J(Ω) =
1

2m

m∑
i=1

(ŷi − y)2,

where Ω are the weights of the neural network.

3.2.3 Backpropagation

The goal is to minimise the loss function J with respect to the weights ω of the neu-
ral network, we thus need the following derivative to utilise the gradient descent
algorithm and an application of the chain rule yields

∂J

∂ω
(2)
jk

=
∂J

∂z
(2)
j,i

∂z
(2)
j,i

∂ω
(2)
jk

for the weights applying to the hidden layer in the simple network considered
earlier. Of course we also need take the derivative of the loss with respect to the
weights applying to the output layer, again using the chain rule.
The backpropagation algorithm works by first calculating the errors between the
estimated and actual output object for each training example,

δ
(3)
i = ŷi − yi.

These errors are then propagated backwards along the branches by multiplying
them by the weights in the same way that forward propagation was done, how-
ever without applying the activation functions. This allows us to get the errors at
each node as follows.
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It can be shown that,

∂J

∂z
(l)
j,i

= δ
(l)
j,i

∂z
(2)
j,i

∂ω
(2)
jk

= xk,i

∂z
(3)
i

∂ω
(3)
k

= a
(2)
j,i

=⇒ ∂J

∂ω
(2)
jk

= δ
(2)
j,i xk,i and

∂J

∂ω
(3)
k

= δ
(3)
1,i a

(2)
j,i

and this allows us to use back-propagation to minimise the loss function by updat-
ing the weights as per the gradient descent algorithm.

3.2.4 Hyper-parametrisation

One thing to consider is how many times to pass through the training set and up-
date the weights. This corresponds to setting the number of epochs while training
which is the number of times a forward and backwards pass of the training set is
completed.
This is a so called hyper-parameter of the network, more specifically while train-
ing. There are many ways to parametrize neural networks, not only by number of
neurons and layers.
Other hyper-parameters include performing forward and backward passes on sub-
sets of the data, this is done by setting the batch size, or alternatively by specifying
the number of forward and backwards pass in one epoch (number of iterations).

3.3 The Python Keras machine learning library

Keras is a high-level Python library and is rather seen as a deep-learning neural
networks interface. It operates on top of either TensorFlow (C++), Theano (Python)
or Microsoft Cognitive Toolkit (C++/CUDA, previously known as CNTK).
In constructing the neural networks in this report, TensorFlow was used as the
backend for Keras. TensorFlow is an open-source machine learning library devel-
oped by Google and it provides an end-to-end machine learning framework for
Keras to use, although it does provide its own Python API.
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3.3.1 The Keras sequential model

The sequential model is a class of neural networks in Keras which is a linear stack
of layers. It supports the constructing of usual ANNs as well as convolutional
neural networks (basically 3-dimensional networks), amongst others.
The first step in the construction is to specify an input shape by creating the first
hidden layer and specifying the input object dimensions.Layers are added sequen-
tially to build the network, specifying the number of neurons and activation func-
tion for each layer. The model is then compiled by configuring the learning process.
This is done by specifying the optimizer (e.g. Nadam) and the loss function (e.g.
MSE). Once fitted on a training set, the model can be used to predict on new data.
A graphical illustration of this is shown in the next section.

3.3.2 Toy example: European call option

The following is a very simplistic example where we apply a neural network to
learn the calibration function between the option price and implied volatility. Op-
tions trade on volatility in the market, making this application somewhat redun-
dant, however the point is to show how a network learns a simple calibration func-
tion before applying it to the Hull-White mixture model, as well as to show the
construction using the Keras sequential model.

• Consider a vanilla call option priced at t0 with parameters

T = 1

K = 130

S0 = 100

r = 0.0

• The Black-Scholes model price is C(St) = StΦ(d1)−Ke−rTΦ(d2)

• Suppose we want to calibrate the Black-Scholes model with one option price.
This equates to finding the implied volatility of the option.

• In our toy example we want to train a neural network to learn the Black-
Scholes formula, so that we can input a price to get the implied volatility.

• The structure will have 4 hidden layers with 64 neurons in each and the sig-
moid activation function for all hidden layers.
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• The loss function was specified as MSE and the optimizer used was Nadam.

• Used 100 000 training examples and 500 epochs with a cross-validation split
of 90% / 10%.

The following python code is used to construct the neural network using the Keras
sequential model where prices and vols used to fit the model are the 100 000 train-
ing examples.

x dim = 1 # d imens i on o f incoming d a t a
exponent = 6
network = Sequent ia l ( )
network . add ( Dense (2∗∗ exponent , input dim=x dim ) )
network . add ( Act iva t ion ( ’ sigmoid ’ ) )
l a y e r s = 4
for i in range ( layers −1) :

network . add ( Dense (2∗∗ exponent ) )
network . add ( Act iva t ion ( ’ sigmoid ’ ) )

network . add ( Dense ( 1 ) )

network . compile ( l o s s = ’ mean squared error ’ , opt imizer= ’Nadam ’ )

network . f i t ( pr i ces , vols , epochs = 500 , v a l i d a t i o n s p l i t = 0 . 1 , verbose =0)

With a relatively simple calibration function and a large training set, we expect the
neural network to approximate the function perfectly. This it does for volatilies
(y-axis) less than 1 as can be seen in the following figure.
For higher prices (x-axis) and volatilities, the predicted values (green) on a test set
(blue) diverge away from the actual recorded responses. This is due to no training
occurring for higher volatilities and prices and thus the neural net cannot accu-
rately predict the function for these values. This highlights a shortcoming of neural
nets which is the reliance on a large training set which spans the entire parameter
space.
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Figure 3: Performance of the network on a random test set. Estimated volatilities (green),
actual implied volatilities (blue), x-axis = prices, y-axis = implied volatilities.

4 Applications to interest rate models

We now begin our discussion in spirit of the work done by Andres Hernandez
(2016) on this particular model. As stated previously, the aim of the project is to
provide a method that will perform the calibration significantly faster regardless
of the model considered. This, in turn, removes calibration speed as a factor when
considering a model’s practicality.

4.1 Single-factor Hull-White model

The model being dealt with in this paper is the single factor Hull-White interest
rate model. In its most generic formulation, it belongs to the class of no-arbitrage
models that are able to fit today’s term structure of interest rates. It is our goal to
calibrate its parameters by means of an Artificial Neural Network.
The Hull-White model is given as :

19



drt = (β(t)− αrt)dt+ σdWt (22)

Here, the parameters of the model are θ, α and σ. Here, θ(t) represents the level
of mean reversion and is a function of time determining the average direction in
which r moves, and is chosen such that the movements in r are always consistent
with today’s zero coupon yield curve. α represents the speed of mean reversion,
governing the relation between short and long rate volatilities. Finally, σ repre-
sents the annual standard deviation of the short rate (i.e. volatility) θ is calculated
from the initial yield curve describing the current term structure of interest rates,
whereas α and σ are assumed to be constant, and will be estimated using the Arti-
ficial Network Network.
Hence, the problem can then be given by:

(α, σ) = Θ
({
Qmkt

})
(23)

4.1.1 Basic procedure

This section aims to highlight the simple procedure used when calibrating the Hull-
White model using Neural Networks.
The following points provide an overview of the steps used in Andres Hernandez’s
procedure:

• Obtaining the historical data of the instruments used in the calibration pro-
cedure

• Calibrating the model to set up a time series of (α, σ) and β(t)

• This data then undergoes pre-processing, and we generate many combina-
tions of parameters

• We input all our data into a large matrix containing prices and parameters,
which then serve as the input for the neural network

• Once, the neural network has been sufficiently trained, we then use out-of-
sample data to test the neural network and compare to market values
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4.1.2 Understanding the data set

The calibration instruments used in this setup were 156 swaptions(equally weighted).
The historical data collected primarily comprised of ATM volatility quotes for GBP
from January 2nd, 2013 to June 1st, 2016. The reason ATM swaptions were con-
sidered were possibly due to these options being the most liquidly traded in the
market. However, In-the-Money and Out-of-Money swaptions could have also
been considered. The option maturities were 1 to 10 years, plus 15 years and 20
years. The swap terms from 10 to 10 years, plus 15 years,20, and 25 years.
For the yield curve, the 6M tenor LIBOR curve was used, bootstrapped using a
monotonic cubic spline interpolation of the zero curve, and built on top of the OIS
(Overnight Indexed Swap) rate curve, which was also part of the data set. In order
to have a consistent set of data , yield curves are always constructed using the yield
rates of a set of homogeneous instruments. For bond yield curves for example, this
means in particular that one always uses instruments from the same issuer or, if
it is a sector curve, from issuers which belong to the same sector. But building a
yield curve from classic coupon bonds would create a curve which suffers from a
number of inconsistencies. Thus, for example, two bonds with the same maturity
but a very different duration, will not have the same yield. Also, two identical
coupons belonging to two bonds with different maturities will not be discounted at
the same yield, whereas they generate the exact same cash flow. To overcome these
problems, one constructs a zero-coupon yield curve from the prices of these traded
instruments. As a reminder, the zero-coupon rate is the yield of an instrument
that does not generate any cash flows between its date of issuance and its date of
maturity. The technique used to achieve this is called bootstrapping, a term which
describes a self-contained process that is supposed to proceed without external
input. This method is based on the assumption that the theoretical price of a bond is
equal to the sum of the cash flows discounted at the zero-coupon rate of each flow.
In this particular case, only FRA’s and swaps were used to bootstrap the curve.
When served as an input to the neural network, the yield curve was discretely
sampled at 44 point: 0, 1, 2, 7, 14 days; 1 to 24 months; 3 to 10 years; plus 12, 15, 20,
25, 30, 40 and 50 years.
The cost function considered here was the weighted average of all the differences
between the market provided quote and model-provided quote. As per standard
practice, a Levenberg-Marquardt local optimizer was used to minimize this cost
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function.
The calibration was then done twice, with two different starting points:

• A default starting point with α = 0.1 and σ = 0.01 was chosen

• As a second starting point, the calibrated parameters from the previous day
(using the default starting point) were also used.

The results from the default calibration are as shown below :

Figure 4: Parameters estimated by default calibration.

4.1.3 Training set generation

Once the calibration history is available, the training set can then be generated in
the following way :

• Obtain errors for each calibration instrument for each day (i.e. Market price -
Model price)

• Since the parameters are positive, proceed to take the natural log on the cal-
ibrated parameters. This ensures that the distance between the sizes of the
parameters is significantly reduced.

• The next step involves re-scaling yield curves, parameters and errors to have
a mean of 0 and a variance of 1

• Apply dimensional reduction via PCA to yield curve, while keeping param-
eters for given explained variance (99.5%)
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• Calculate covariance of rescaled log parameters, PCA yield curve values and
errors

• Generate random normally distributed vectors consistent with given covari-
ance structure as found previously

• Then, an arbitrary reference date is selected from the set used for covariance
estimation

• Finally, obtain implied volatility for all calibrations and apply random errors
to the results, hence we now have a set of prices adjusted for the sampled
errors

4.2 Hyper-parameter optimisation

In the context of machine learning, hyperparameters are parameters whose values
are set prior to the commencement of the learning process. By contrast, the value
of other parameters is derived via training. In this case, the number of neurons,
the number of layers, the activation function are all examples of hyper-parameters.
For the hyper-parameter optimization, the sample set was divided into three parts:
60% served as the training set, 20% served as the cross-validation set and the last
20% served as the testing set. The training was the set used during inter-epoch
training, while the cross-validation set was primarily used to measure inter-epoch
improvement. The testing set was then used to find the most suitable configura-
tion, with comprised the model corresponding to the minimum error. The fitting
of the hyper-parameters does not imply any problems for the actual testing done
later.
The optimization was a mixture of grid and manual search, with a truncated grid
search over the number of layers, neurons per layer, the learning rate for a RM-
SProp optimizer, and a drop-out tate, that was set equal for all layers, including the
output layer.
Once the best set of hyper-parameters was selected, different activation units were
tried, including a ReLU (Rectified Linear Unit) and an ELU (exponential linear
unit). The ELU provided the most improvement for the model.
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Having generated a sample of 150,000 samples, the hyper-parameter optimization
led to the feed-forward neural network as given in the figure below:

Figure 5: FNN with 4 hidden layers, each layer consisting of 64 neurons.

A standard 500 epoch was used for the purpose of training the neural network.
Differnt variations of Convolutional Neural Networks were tried, however, none
were a match for the best FNN. However, when the number of calibration instru-
ments are significantly increased, CNN’s could become more useful.
Two different neural networks were trained using the sample set generated with
the previously estimated covariance matrix. The first sample used 40% of the his-
torical data whereas the second sample set used 73% of the historical data. For
training purposes, the sample set was split into two once again - 80% for the train-
ing set and 20% for cross-validation. The testing set was the historical data itself,
which then served as backtesting for the model.

4.3 Observations and conclusions

The procedure used by Hernandez led to several interesting results. One of the
major observations was that of the trained model. It was observed that it behaved
well only for a period of 6 months to a year beyond the period which was used for
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the covariance estimation.
As seen below, we can observe that the out-of-sample back testing shows good
behaviour for a year post correlation estimation period. After that, the model pro-
duced several inaccuracies in the results.

Figure 6: Correlation up to June 2014.
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Figure 7: Correlation up to June 2015.

The performance degradation after the one year period, however, is not prob-
lematic, as one could simply re-train the model every 2-3 months, and still re-
main within acceptable bounds. In essence, what was learnt that sampling from
a parametrized correlation structure, could extend the lifespan of a trained model.

4.4 The mixture model

As seen in the previous section, the model parameters are very unstable. As a
remedy to this, we now consider a slight generalization to the standard Hull-White
model. Consider the two Hull-White models (on a space (Ω,F , (Ft)t≥0 ,P)):

dr
(1)
t = (β1(t)− α1r

(1)
t ) dt+ σ1 dWt

dr
(2)
t = (β2(t)− α2r

(2)
t ) dt+ σ2 dWt.

We will assume that the short rate r is a mixture of the two, in the sense that

P(rt ≤ x) = πP
(
r
(1)
t ≤ x

)
+ (1− π)P

(
r
(2)
t ≤ x

)
,
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where π ∈ [0, 1] is a fixed parameter. In particular, this implies that the price of ev-
ery instrument is simply a convex combination of the prices under the two models.

To calibrate this model using standard techniques is not feasible in real time, so
we used the neural network approach to estimate the calibration function Θ. We
still have the same set-up (in terms of data):

• N = 156 + 44 = 200 input prices (swaptions + yield curve)

• n = 44 + 4 + 1 = 49 parameters to estimate. These are α1, α2, σ1, σ2, π and
β1(t) (or, equivalently, β2(t)) at 44 maturities.

• Hence, the calibration function is now

Θ : R200 −→ R49,



SWO1

SWO2

. . .

yield(0)

yield(1)

. . .


7→



α1

α2

σ1

σ2

π

β1(0)

β1(1)

. . .


To estimate Θ using neural networks, we modified the training data that was pre-
viously used in training the calibration function for the single Hull-White model.
This involved joining pairs of prices and parameters.

After training the model with 150000 training examples, we calculated (for each
day) the average differences in implied volatility from the model and from the
market:

AVG volatility error =
1

156

156∑
i=1

|Qmkti −QNNi |.

Note that the prices Q are expressed in terms of implied volatilities. Here is a
diagram that shows this error, both for normal calibration using QuantLib (red)
and our neural network (blue). As can be seen from the diagram, the two errors
are almost identical. The time series for the estimates of π, α1 and σ1 are also given
below.
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Figure 8: Parameter stability.

These graphs show parameter stability, as the changes in the values of the param-
eters are small (in absolute and relative terms).
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Figure 9: Parameter stability.

Figure 10: Parameter stability.
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1 Introduction

Mean-variance portfolio optimisation, pioneered by the work of Markowitz (1959)
and further extensively studied by others has for a long time been one of the most
active areas of research in the intersection of finance and mathematics. In particu-
lar, its relevance in practice for portfolio managers makes a precise understanding
crucial.

One of the most used frameworks in which mean-variance optimisation is per-
formed is the CAPM and extensions like Fama-French. By imposing structural
assumptions on asset returns, these models allow to estimate the high dimensional
covariance matrix by performing a linear regression on the time series of asset
returns. However, what CAPM and related models have in common with other
mean-variance portfolio optimisation models is that they take expected returns and
covariance matrices as given input, not incorporating parameter estimation uncer-
tainty. In addition, these models make assumptions on underlying distributions
and time homogeneity, both which can be in contradiction to market observations.

These issues lead to the notion of model uncertainty as discussed (among others)
in Schlögl (2016) where different types of these uncertainties are presented (see fur-
ther down for a more comprehensive overview). In an ideal world, where model
assumptions are not violated by empirical data, the covariance matrix does not
change with time and hence an optimal portfolio once computed would stay op-
timal as time progresses. Empirical data however rejects these homogeneity as-
sumptions which makes it necessary to re-balance the portfolio after a period of
time.

A novel idea to address these points was made in Glasserman and Xu (2014) where
relative entropy is introduced to unify uncertainty - multivariate in nature when
considering portfolios of multiple assets - in a single number. This allows one to
develop a unifying framework to quantify model risk. One of the applications of
this approach was mean-variance optimisation itself. As Glasserman and Xu show,
in the context of mean-variance optimisation, the concept of relative entropy has a
preserving property regarding normality assumptions.
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In the context of this project we seek to address the following points, building on
the results of Glasserman and Xu:

• Given historical data, what would be a reasonable method to choose the level
of uncertainty formulated by relative entropy?

• After what time should one re-balance portfolios given that the used model
assumes homogeneity?

• How do different estimators perform and how do they influence the level of
uncertainty needed to protect against model changes in the data?

We begin by shortly presenting the classical case and stating the CAPM framework
used for the estimation of the covariance matrix as an alternative to the sample co-
variance matrix estimator. We continue with presenting the mathematical frame-
work of the robust version of mean-variance optimisation. As this project is mainly
empirical in nature, we proceed by presenting the methodology we developed to
investigate the questions raised above. In addition we attempt to explore the na-
ture of estimated relative entropies of asset return distributions to each other. This
is implemented in order to answer the question of which portion of the uncertainty
level comes from parameter estimation error that in theory can be eliminated by
considering large enough amounts of data and which portion comes from model
risk beyond parameter estimation risk. This we complete by stating and discussing
the numerical results we got from the implementation of our approach using actual
market data.
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2 Background

2.1 Introductory background

A common approach in asset management is Mean-Variance portfolio optimisa-
tion, also known as Modern Portfolio Theory (MPT). This approach was first laid
out by Markowitz (1959) as an optimisation problem in the following form. Con-
sider a random vector X ∈ RN (e.g. yearly relative returns per asset) and a mea-
surable function family V (X)a ∈ R indexed by sum a ∈ A where A is the set of
admissible parameters. Mathematically, we can formulate our problem as solving

max
a∈A

E [Va(X)] .

In the context of the Mean-Variance portfolio optimisation, the above problem is
further specified by setting

A :=

{
a ∈ RN :

∑
i

ai = 1

}
,

and Va(x) := a>x − λ
2a
>xx>a. As one can easily see this translates into the max-

imisation problem

max
a∈A

(
a>µ− λ

2
a>Σa

)
,

where a is a N × 1 vector of portfolio weights which sum to one allowing for nega-
tive entries corresponding to short selling, µ is theN×1 vector of expected portfolio
returns, Σ is the N ×N covariance matrix of returns, and the parameter λ denotes
the risk aversion preference of an investor. This equation expresses the trade-off
between expected portfolio return and portfolio variance. A maximisation of this
equation therefore represents the best trade off between return and variance for a
given level of risk aversion for the investor.

A standard assumption associated with this methodology is that all estimates of
expected returns, variances and covariances are known and exact. However, many
empirical studies have shown that estimates often deviate from their exact values
which makes sense by the very nature of point estimators, leading to an error in
the portfolio optimisation process. This is indeed true for all statistical estimates.
However, investors often consider these values to be indisputable which should be
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viewed as a naive viewpoint, as estimation risk has not been appropriately consid-
ered. Causes of estimation risk include:

• inappropriate choice of estimation method;

• inappropriate choice of data, with regards to its source, frequency and time
window ;

• lack of stationarity;

• random sampling error;

• inaccurate data; and

• insufficient data.

The impact of estimation risk on portfolio optimisation is well known, and at-
tempts at incorporating this risk into portfolio selection have been made. The
literature surrounding these methods is summarised as part of this report, with
the associated strengths and limitations. The main focus of our report is with the
robust approach to portfolio optimisation suggested by Glasserman and Xu (2014)
due to its ability to adjust for incorrect estimation of the distribution of returns.

The method of choosing a relative entropy budget, or η, is not specified by Glasser-
man and Xu (2014). This paper suggests that the size of this budget should corre-
spond with the confidence associated with the estimated parameters, as parameters
with higher estimation risk would require a higher entropy budget. In this paper,
we solely concentrate on quantifying the risk associated with estimating the covari-
ance matrix. As Ledoit and Wolf (2003) points out, the estimation of the covariance
matrix is vital to controlling the risk associated with portfolio selection. Hence, the
choice of estimation method is considered in order make an informed choice of η
that allows for appropriately robust portfolio optimisation.

In Glasserman and Xu (2014), the authors do not specify a method to derive a level
of uncertainty against which one wants to make the considered target robust. This
report therefore aims to address this point and present an implementation of the
relative entropy metric proposed by Glasserman and Xu (2014) that quantifies es-
timation risk associated with portfolio Mean-Variance optimisation. In addition,
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it suggests a Mean-Variance portfolio optimisation methodology that accounts for
worst case estimation error at a given confidence level which is linked to the co-
variance estimation method. Finally, the suggested robust optimisation procedure
is implemented using various methods to estimate the covariance matrix of returns.
A similar study conducted by Nghiem (2015) on the optimisation of beta and its ef-
fect on the CAPM model implies the time period can have a significant effect on the
estimated value. Therefore, each method is compared over various time windows,
in an attempt to further refine the portfolio optimisation process.

2.2 Mean-Variance portfolio theory

Mean-Variance portfolio theory was developed by Markowitz (1952,1959) as a method
for constructing an investment portfolio that provides a maximum return for spec-
ified level of risk. Alternatively it provides the portfolio with the minimum level
of risk given a specified return. The measure of risk is defined as the variance.
Mean-Variance portfolio theory relies on several assumptions according to Bodie
et al. (2014):

• All expected returns, variances and covariances of assets are known.

• Investors base all their decisions on values of expected return and variance.

• Investors are non-satiated and risk-averse.

• All investors are exposed to a single-step fixed time period.

• There are no taxes or transaction costs.

• The short-selling of assets is possible, with no maximum investment limits.

The return of the portfolio rp is calculated by summing over the returns of all in-
dividual assets ri held in a certain proportion xi. The proportions is subject to the
constraint that the weights must sum to one, i.e. in the introductory setting, the
vector x = (x1, . . . , xN )> plays the role of a. Portfolio returns are computed as

rp =
N∑
i=1

xiri = x>r, r := (r1, . . . , rN )>.

The expected return of the portfolio is given by:
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Ep = E[rp] =

N∑
i=1

xiEi = x>E,

again with Ei = E [ri] and E = (E − 1, . . . , EN )>. The variance of the portfolio’s
return is computed by:

σ2
p = Var (rp) =

N∑
i=1

x2
i cii +

N∑
i=1

∑
j 6=i

xixjcij ,

where cii = σ2
i = Var (ri) and cij = ρijσiσj is the covariance of assets i and j.

The method of Lagrangian multipliers can be used to determine the optimal portfo-
lio. This method seeks to optimise the following equation by taking partial deriva-
tives of the xi, λ and µ and setting these to zero, which can then be solved simulta-
neously:

W =
∑
i

∑
j

cijxixj − λ(
∑
i

Eixi − Ep)− µ(
∑
i

xi − 1)

Through varying the levels of expected return, an efficient frontier is produced
on the E-σ plane. Along this curve is where all rational investors will invest as
it contains all efficient portfolios.The chosen portfolio is then subject to the risk
appetite of the investor Bodie et al. (2014).

2.3 CAPM

The Capital Asset Pricing Model was originally developed in 1967 by William
Sharpe, John Lintner and Jan Mossin to further develop portfolio optimisation. The
model explains the relationship observed between the expected excess return of a
financial asset and the systematic risk level of the market as a whole and is consid-
ered one of the most important models in modern financial economics (Nghiem,
2015).
The total risk of a financial asset can be decomposed into two parts, systematic risk
and firm-specific risk. Firm-specific risk can be avoided or removed through the
process of diversification; which is to hold a wide range of assets both by sector and
industry. However, the same technique cannot be undertaken for systematic risk.
As a result, an asset-risk premium is required as compensation for bearing system-
atic risk. The risk premium or excess return can be calculated as the difference of
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the return of an asset and the risk-free rate Nghiem (2015).
The CAPM model is a single risk factor model, with the world market portfolio
representing the risk factor taken into consideration. The world market portfolio
consists of all available financial assets in the market held in proportion to the mar-
ket share/capitalisation of each financial asset. Therefore, since the world market
portfolio is considered to be the most diversified portfolio, there should be a pro-
portionality between the expected risk premium of the world market portfolio and
the expected risk premium of the individual financial asset measured by the betas
Nghiem (2015).
The following assumptions are considered to underlie the CAPM model according
to Bodie et al. (2014):

• The market experiences perfect competition. This implies there are many
investors present in the market with each investor’s total wealth representing
a negligible amount compared to the total wealth of all investors.

• All investors have a single fixed identical holding period.

• Investors are able to borrow or lend at a fixed, risk-free rate and can only
invest in publicly traded financial assets.

• There are no taxes or transaction costs.

• All investors are considered to be rational Mean-Variance optimisers. As well
as analysing securities in a consistent manner and holding an identical eco-
nomic outlook of the world.

Under the CAPM framework, the expected return on an asset i is given by:

E[ri] = rf + βMi (E[rM ]− rf ),

where rf is the risk-free rate of return, ri is the return on asset i, rM is the return on
the world market portfolio, βMi = Cov (ri, rM ) /σ2

M is the systematic risk of asset i
relative to the world market portfolio and σ2

M is the variance of the return on the
world market portfolio.
The world market portfolio has been defined as consisting of all available finan-
cial assets in the world. However this portfolio cannot be directly observed and
therefore an estimate for βMi is required. An index I is introduced as a proxy for

11



the world market portfolio Bartholdy and Peare (2005). Time series regression is
undertaken to obtain such an estimate:

rit − rft = αi + βIi (rIt − rft) + εit

For t = 1, ..., t0 where rft is the risk-free return at time t rIt is the return on index I
at time t,βIi = Cov(ri,rI )/σ2

I is the systematic risk of asset i relative to index I , σ2
I

is the variance of the index and εit is a white noise error term Bartholdy and Peare
(2005). If the CAPM equation always holds we consider assets are fairly priced,
the αi should be zero indicating that CAPM always holds. A positive αi indicates
an asset is undervalued and is earning a higher excess return than expected. It is
considered overvalued and earning a lower excess return than expected if an αi is
negative Nghiem (2015).
Both Mean-Variance portfolio theory and CAPM assume that exact estimates of ex-
pected returns and the variance/covariance matrix of returns are available. These
assumptions are challenging as it is extremely difficult and near impossible to
achieve this with a high degree of accuracy Morin (1994). This project seeks to
move away from the assumption that exact estimates are available and rather al-
low the estimates to vary, optimising the worst case outcome at a given level of
confidence.

2.4 Model risk

Model risk is the risk practitioners face by using a model which produces incorrect
outputs and reports and then basing their decisions on these inaccurate informa-
tion. Categories of model risk include how appropriately practitioners use their
models, irrespective of model choice, as well as the ability of market data to be fit-
ted by the relevant model. To understand and manage model risk a comparison of
models has to be undertaken through some notion or measure.
The sources of model risk have recently been classified within four aspects by
Schlögl (2016):

1. Type 0: Parameter uncertainty is the first type of model risk. Through the
statistical estimation of model parameters a statistical error bound on these
parameters will be realised. The accuracy and confidence in model outputs is
effected by this uncertainty. The sensitivity of the model to incorrect param-
eter specifications is also considered a type 0 risk.
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2. Type 1: Calibration error is the second type of model risk. The calibration
error is the potential for the model to be unable to fit a full set of market
observations. The Black/Scholes models inability to capture a volatility smile
is a simple example of Type 1 model risk. The inability of the model to reprice
market observations on a given day thus contradicts the model assumptions.

3. Type 2: The third type of model risk is induced by the recalibration of the
model and the resultant change in the parameters. As time passes the model
needs to undergo recalibration to ensure an accurate fit as possible. An as-
sumption of fixed model parameters will then be violated through the poten-
tial daily changes.

4. Type 3: The final type of model risk refers to the error resulting from model
dynamics not matching the true empirical state variable dynamics. Type 3
model risk is thus a violation of the model assumptions.
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3 Theory

This section is meant to give a short representation of the different theoretical meth-
ods necessary to implement our approach. We do not aim for a full discussion but
rather restrict ourself to the most basic version of what is needed.

3.1 Relative Entropy

The first step is to give an overview of relative entropy. We then continue with
establishing the relation to Mean-Variance portfolio optimisation.

3.1.1 Introduction to Relative Entropy

We start to introduce Relative Entropy, which provides a notion of distance be-
tween two probability measures. We denote f as the reference density and any
other density is denoted as f̃ . Even though relative entropy could be defined for
measures that do not have a density, it suffices for our purposes to stay in the set-
ting where densities exist.

Definition 3.1. Likelihood Ratio: Let f and f̃ be two density functions. We define
the Likelihood Ratio of f and f̃ as

m :=
f̃

f
1{f>0},

where we assume {f > 0} = {f̃ > 0}.

In the sequel, we will without loss of generality assume f > 0 as one can always
reduce the state space to the support. We can now prove the following lemma.

Lemma 3.2. The Likelihood Ratio m is a Radon-Nikodym derivative .

Proof. Let X be a random variable with density f and V (X) be some function of
X . We have that:

E[m(X)V (X)] =

∫
m(x)V (x)f(x)dx =

∫
V (x)f̃(x)dx = Ẽ[V (X)]
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Definition 3.3. Relative Entropy: Let m be the likelihood ratio between f and f̃ .
We define the Relative Entropy R(f, f̃) between f and f̃ as

R(f, f̃) := E[m logm] =

∫
f̃(x)

f(x)
log

f̃(x)

f(x)
f(x)dx.

Though R(f, f̃) effectively acts as a measure of ’distance’ between two densities,
it is not symmetric and is therefore not a metric. However, it does have some de-
sirable properties that are inherent to metrics. For example, R(f, f̃) = 0 if and
only if f = f̃ with respect to f . Using Jensen’s inequality, one can also verify that
R(f, f̃) ≥ 0.

Relative Entropy coincides with Kullback-Leibler divergence, which is used in Bayesian
Statistics to quantify how much information can be gained from collecting addi-
tional data. This involves measuring the entropy between the posterior and the
prior distribution. In the case of risk measurement, Relative Entropy can hence be
interpreted as a measure of the amount of information needed to make a perturbed
distribution preferable to the reference distribution.

3.1.2 Relative entropy in relation to Mean-Variance portfolio optimisation

Glasserman and Xu (2014) present the relative entropy criterion as a mean to quan-
tify model risk. It is our aim to address the question of how much model risk in
means of relative entropy should be considered. This method attempts to account
for a misspecification of the covariance matrix for a given ”distance” away from
the true value, given by relative entropy. As we stated before, relative entropy
is a measure of the required additional information that would make a model f̃
preferable to a nominal model f .

R(f, f̃) = E[m logm] =

∫
f̃(x)

f(x)
log

f̃(x)

f(x)
f(x)dx,

where m is the likelihood ratio m = f̃/f . In order to consider a certain range of
deviation away from the nominal model f , we consider a relative entropy budget
given by η. In other words, any likelihood ratio that satisfies E[m logm] < η must
be considered. Glasserman and Xu (2014) convey how Mean-Variance portfolio
optimisation can be written in the form:
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inf
a

(
− E

[
a>X − γ

2
a>(X − E(X))(X − E(X))>a

])
.

The uncertainty associated with the distribution of returns is constrained to the
uncertainty of the covariance matrix, therefore we assume the mean returns vector
is correct. The optimisation problem considering this uncertainty becomes:

infa supm E
[
mVa(X)

]
= infa supm

(
− E

[
m
(
a>X − γ

2a
>(X − E(X))(X − E(X))>a

)])
,

s.t. E[mX] = µ.

As in Glasserman and Xu (2014),the worst case likelihood ratio for some θ > 0

given a constrained mean returns vector satisfies:

m∗ ∝ exp

(
θγ

2
a>(X − µ)(X − µ)>a

)
.

The optimal a can be found under these conditions by solving for fixed theta the
following optimisation problem:

a∗(θ) = arg inf
a∈A(θ)

1√
det(I − θγaa>Σ)

+ a>µ.

The corresponding relative entropy budget is then:

η(θ) =
1

2

(
log(det(ΣΣ̃−1)) + tr(Σ−1Σ̃− I)

)
.

This is the only proposed method that accounts for data that is unrepresentative
of the true distribution of returns. An extension to this work is to account for the
misspecification of the mean returns vector. This robust optimisation using dif-
ferent methods of estimating the covariance matrix along with a methodology of
choosing η without knowing the true covariance is the focus of this paper.

3.2 Estimation methods

All the estimation methods considered impose the following assumptions:

• Stock returns are independently and identically distributed (iid);

• Weak stationarity of returns;
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• The number of stocks are finite.

The assumption that stock returns are iid is problematic, but this is a common as-
sumption among covariance estimators that cannot be avoided. The stationarity
of returns is also problematic. Relatively short time periods must be considered
for this to hold. However, if the time period considered is too short, there is not
enough data for a good estimate, increasing estimation error. It is therefore an op-
timisation problem to choose the correct time window.

In order to introduce model reliant covariance estimators, we will discuss each one
in the context of CAPM. This is the commonly used model for model reliant covari-
ance estimators, and as this paper focuses on proof of concept, it is not necessary
to extend this to other models.

3.2.1 Sample covariance matrix estimation

The sample covariance matrix for n observations of random variables {x1, x2, ..., xN},
is defined as:

Σ =

[ σ1,1...σ1,N

...
. . .

...
σN,1...σN,N

]

where each element can be calculated by:

σi,j =
1

n− 1

n∑
k=1

(xjk − xj)(xik − xi).

This is an unbiased estimator that converges to the true covariance matrix as n →
∞. However, this type of estimator is known to perform poorly in high dimen-
sions. When the dimension to sample ratio, N/n, is too big, the estimated matrix
is numerically ill-conditioned. Therefore, operations such as inversion can amplify
the estimation error further. Large sample sizes are required to avoid this issue. In
order to counteract the ill-conditioning of the sample estimator, model constrained
covariance estimation is considered.
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3.2.2 Beta covariance matrix estimation

In this section we show how to calculate the estimate of the covariance matrix im-
plied by the CAPM. The estimator requires the calculation of the β coefficients in
the CAPM; which may be derived using either the method of ordinary least squares
or the maximum likelihood method. We begin by describing the former.

3.2.3 Ordinary Least Squares

To estimate coefficients of the linear regression model, the Ordinary Least Square
(OLS) method is implemented. The OLS methods seeks to minimise the the sum of
squared residuals. This method therefore provides us the following estimates for
alpha and beta:

β̂ = Cov(ri − rf , rI − rf )/var(rI − rf ) = Cov(r, rI)/σ
2
I

α̂ = rI − rf − β̂(r − rf )

where the ”hat” implies that the calculated value is an estimate.

To compute the OLS regression the above formula can be expressed in matrix form.

Let y be a vector containing all returns of the form ri - rfi, let X be a 2 × n matrix
with a column of ones and a column of rI - rfi, let θ be a column vector contain-
ing α and β and let ε be a column vector with two white noise terms. Thus the
regression in matrix form is:

y = Xθ + ε.

This provides us with an OLS estimate of:

ˆθols = (X>X)−1X>y,

where X> denotes the transpose of X . The estimate found above is the best linear
unbiased estimator according to Markov’s theorem if certain assumptions cannot
be rejected Nghiem (2015). This method is favourable as it is simple in concept as
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well as computation. However it has a disadvantage in that the method does not
consider the distribution of the variables when the coefficients are estimated. This
results in an assumption of the distribution being required in order to evaluate the
quality of the estimations Nghiem (2015).

Ledoit and Wolf (2003) show the method of calculating the covariance matrix from
the estimated β values:

Σ̂ = σ2
00ββ

> + ∆,

where σ2
00 is the estimated variance of market returns and ∆ is a diagonal matrix

containing the residual variance estimates.

This method of estimation is biased, but well structured and stable, because of the
model imposed on returns.

3.2.4 Maximum Likelihood method

Maximum Likelihood estimation uses the likelihood function in conjunction with a
statistical model to estimate the models parameters. Given n samples (x1, x2, .., xn),
the likelihood function is given by:

L(θ) =
n∏
i=1

f(xi|θ),

where f(x|θ) is probability density at x given that θ is the parameter that describes
the distribution (e.e. the mean and variance of a normal distribution). This implies
that a distribution must be imposed on the model in question in order to find this
estimator.
Maximising this therefore gives the most likely value of θ, assuming we have
drawn from a distribution of type f .

In the context of CAPM, which we will use for estimating θ as defined in the OLS
section, we assume that errors are normally distributed with mean 0, and some
variance σ2. The approach for maximum likelihood estimation under these condi-
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tions is given by Nghiem (2015).

L(θ, σ) =
n∏
i=1

N(yt|xt, θ, σ2) = (2πσ2)−n/2 × exp

{
−1

2σ2
(y −Xθ)>(y −Xθ)

}
.

This can be maximised in order to obtain an estimator of:

θ̂mle = (X>X)−1X>y.

This is the same as the Ordinary Least Squares estimate under these conditions. We
therefore only consider the OLS method in this paper.

3.2.5 Shrinkage estimator

Ledoit and Wolf (2003) proposed a linear combination of the sample covariance
matrix and a covariance matrix structured by a model. The aim of this style of es-
timator is to add the structure of a model estimated covariance to the accuracy of
sample covariance. The resulting estimator is more accurate than either, with a bet-
ter structure than the sample covariance. In the context of CAPM, we use a weight
called the shrinkage intensity, or α between 0 and 1, resulting in an estimator in the
form:

Σ̂Shrink = α× Σ̂CAPM + (1− α)× Σ̂Sample.

Using the CAPM model in this context is beneficial by being a single factor model,
which allows consensus when estimating the optimal α. The optimal alpha can be
found through the quadratic loss function derived by considering Frobenius norm
of the difference between the shrinkage estimator and the true covariance matrix
(Ledoit and Wolf, 2003):

L(α) = ||α× F + (1− α)× S − Σ||2,

where F = ΣCAPM and S = ΣSample The resulting risk function can be minimised
to give the optimal shrinkage intensity, α∗ by:

α∗ =

∑N
i=1

∑N
j=1 V ar(sij)− Cov(fij , sij)∑N

i=1

∑N
j=1 V ar(fij − sij) + (φij − σij)2

,
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where fij is the element of ΣCAPM in the ith row and jth coloum, sij is the element
of ΣSample in the ith row and jth coloum. This can be represented in the form:

α∗ =
1

T

π − ρ
γ

+O

(
1

T 2

)
where

π =
∑N

i=1

∑N
j=1AsyV ar(

√
Tsij);

ρ =
∑N

i=1

∑N
j=1AsyV ar(

√
Tfij);

γ =
∑N

i=1

∑N
j=1(φij − σij)2;

T = ”samples per stock”.

However true α∗ depends on the true distribution of the variables, and is therefore
unobservable. The estimation of the shrinkage intensity is also given by Ledoit and
Wolf (2003):

α̂∗ =
(p− r)c

T
,

where

p =
N∑
i=1

N∑
j=1

pij

pij =
1

T

T∑
t=1

[(xit −mi)(xjt −mj)− sij ]2.

Here, xit is the tth sample of stock i and mi is the mean of stock i. Further

r =
N∑
i=1

N∑
j=1

rij .

Here we have for i 6= j:

rij =
1

T

T∑
t=1

(
sj0s00(xit −mi) + si0s00(xjt −mj)− si0sj0(x0t −m0)

s2
00

×

(x0t −m0)(xit −mi)(xjt −mj)− fijsij
)
,

where m0 is the sample mean of market returns and si0 is the sample covariance of
stock i’s returns with the market.
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Finally, again for i 6= j we have
rii = pii,

c =
N∑
i=1

N∑
j=1

cij ,

cij = (fij − sij)2.

This closes this section and we can now continue with presenting our concrete
approach to the previously presented problem.
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4 Methodology

In this section we present our approach to the question of how to quantify a rea-
sonable entropy budget. We start by shortly describing the data we used for our
numerical experiments.

4.1 Data description

The data used in this project, which has been sourced from EOD Data, focuses on
stocks that are listed on the NASDAQ Stock Exchange. Our period of interest be-
gins on the 1st of January 2010 and ends on the 17th of December 2015. Due to
exchange-related activity such as listing and de-listing, the number of stocks regis-
tered on the NASDAQ changes over this window of interest. As a result, we have
only considered stocks that were listed on the first day of our investigation win-
dow (1 January 2010), till the last day (17 December 2015). This decision allows us
to calculate covariances on every day since there are daily returns for each day.

There are around 1300 stocks that have been listed throughout the entire window
of interest. These are far too many stocks, however, for us to compute an invertible
covariance matrix. To address this problem, we selected the top 38 stocks that are
contained within both our data set and the NASDAQ-100 index, ranked by alpha-
betical order.

We use the NASDAQ Composite Index as the proxy for our market portfolio. We
feel it contains a more diverse group of NASDAQ-listed stocks than the NASDAQ-
100 for example; a characteristic that the market portfolio must have. Moreover,
the Composite Index excludes instruments that are not listed on the NASDAQ, un-
like the S&P500 Index. Though the NASDAQ Composite Index values have been
dividend adjusted, we have not managed to adjust our stock data for dividends.
We did not deem it necessary to make such adjustments because dividends are re-
leased relatively infrequently compared to the size of our data and most stocks do
not share cum dividend dates. Since the main focus of this paper involves esti-
mating covariances, our estimate will therefore not suffer from a damaging level
of correlation arising from dividend payouts. Some data was missing from EOD
Data and so to reconcile the Index’s data and the EOD Data we removed excess
data points relating to the index.
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Finally, the Dollar-denominated LIBOR was chosen as risk-free rate. This data was
downloaded from

https://fred.stlouisfed.org/categories/33003/downloaddata.

4.2 Relative entropy budget using time series

For any given estimator of the covariance matrix, we find an estimate, called Σ̂φi

using some time period φi. We then wish to see how other estimates of the covari-
ance matrix may be different from this estimate, due to estimation risk. We also
wish to asses the effect of this difference on our optimised portfolio. We may esti-
mate, for a different time period τi, a second estimate of the covariance matrix. We
call this Σ̂τi .

We may then calculate η given that we have a notion of stationarity of the covari-
ance matrix, using the two estimates of Σ̂φi and Σ̂τi , as proposed by Glasserman
and Xu (2014). We call this relative entropy ηi, which is calculated below:

ηi =
1

2

(
log (det(Σ̂φiΣ̂τi

−1
)) + tr(Σ̂φi

−1
Σ̂τi − I)

)
.

This therefore gives the smallest possible η that would have accounted for the de-
viation of Σ̂τi from Σ̂φi . In this way, we may construct a series of {η1, η2, ..., ηn},
corresponding to the time periods {τ1, τ2, ..., τn} and {φ1, φ2, ..., φn}. In order to
then find the most appropriate η to use for portfolio optimisation, we take the η
corresponding to the α quartile. This η would have made our optimisation robust
against α deviation away from Σ̂τi . Now that we have chosen an η, we can apply it
to the robust Mean-Variance portfolio optimisation suggested by Glasserman and
Xu (2014).

4.2.1 Time window and frequency of data

In order to compute the estimates of the covariance matrix, we must first choose
our data. We my consider choosing a lot of data, which would give us a stable
estimate of the covariance matrix. However, this covariance matrix may no longer
represent the true distribution of returns, as it includes too much past data. The
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stationarty of the data therefore must be balanced with the estimation error that
results from having too little data. We must also consider frequency of data that
should be used. Bartholdy and Peare (2005) do an empirical study on both of these
parameters in relation to estimating β’s for the CAPM model. It was found that
there was a significant differences in estimation for both of time window and fre-
quency of data. They find that using a higher frequency of data (i.e. daily returns
rather than monthly returns) introduces noise into the data, which reduces the ef-
ficiency of the estimates (Bartholdy and Peare, 2005). Due to limited data available
in this study, we however only consider daily returns in order to allow for suffi-
cient data for stable parameter estimation. We do however consider time window
by comparing η trends for different time windows. In other words, we calculate
the relative entropy budget using a time series for different lengths of time win-
dow. We may then compare the results to see how this parameter influences η
estimation.

4.2.2 Gap between time periods τi and φi

As we are estimating the covariance matrix for two different time windows, the ef-
fect of gap between the time windows on the estimated relative entropy needs to be
considered. Given an unlimited amount of data, we would discount the possibility
of using overlapping time windows, as sharing data would result in a estimated
relative entropy that does not account for all types of estimation risk. We consider
the case that we use two adjacent time windows. This would minimise the risk
due to non-stationarity of returns, while still fully incorporating the other forms of
estimation risk. However, as we are estimating an η that aims to make our portfolio
robust against all forms estimation risk, which includes non-stationarity, therefore
we suggest this gap should correspond to the amount of data used to estimate the
covariance matrix that will be used for portfolio optimisation. In other words, the
gap between the first day of τi and the first day of φi should be proportional to
the amount of days included in the estimation of the covariance matrix used for
portfolio optimisation. However, due to lack of data, we will consider overlapping
time periods in our estimation of η.

25



4.2.3 Estimated η

The resulting estimated η requires interpretation, as it is not the true value that
would come from knowing the true distribution of returns. We are in essence, cal-
culating the distance between two estimated covariance matrices in the context of
Mean-Variance portfolio optimisation. The resulting η can therefore be thought of
as the budget that, assuming the first estimated covariance matrix is exact, would
have made the portfolio optimisation robust against a case where the second esti-
mated covariance matrix is the real covariance matrix describing returns. There-
fore, the calculated η describes a compounded estimation error from the two co-
variance matrices. This compounded error could cause the matrices to appear fur-
ther apart than they are, resulting in a higher η then would be correct, or they could
appear closer than they really are, resulting in a lower η then would be correct. We
want our η to reflect a worst case budget for estimation error, therefore, we take the
α = 95% quantile to account for 95% of the difference between our two estimated
covariance matrices. We are therefore drawing from the η’s that are calculated
from covariance matrices that appear further apart then they are (the estimation
error has been amplified). Our estimated η therefore may be, in some sense, too
large. However, since we are attempting to account for the worst case estimation
error, we argue that a cautiously large η may be the correct approach. We however
recommend that further studies take this amplified error into account.

4.3 Simulation approach

The approach begins with calculating an estimate for the covariance matrix, using
any given estimation method, called Σ̂φ1 . This estimate is calculated over a fixed
initial time period φ1. This estimate will be used to determine how future estimates
of the covariance matrix may differ as a result of parameter risk which is an element
of estimation risk.
Based on the initial estimate Σ̂φ1 we compute a large number (n = 1000) of Monte
Carlo simulations. In each case we assume the returns ri are multivariate-normally
distributed with known mean µ and variance-covariance matrix Σ̂φ1 . We simulate
the same number of return observations as the length of observations in the ini-
tial time period. From these observations we determine an estimated covariance
matrix Σ̂θ1 using the same method as the original Σ̂φ1 is estimated from.
The time window is then shifted by a specified time step length. The method then
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stores the values of all previously simulated returns that also belong to the new
shifted time window. To ensure an equal number of observations are contained in
both time windows we simulate a number of new returns equal to the length of
the time step per simulation. Based on this new set of observations, with the same
dimensions as the original period, we calculate an estimate of Σ̂θ2i . This covariance
matrix is then used in conjunction with the covariance matrix Σ̂θ1 to calculate a
measure of relative entropy η1i per each simulation.
Therefore once the simulation procedure is complete we will have n values for η
from which we are able to construct a confidence interval. This confidence interval
is found by determining the 95th quantile of the η values.
The procedure then repeats itself shifting again the specified time step. The values
of the second simulation which are to be retained are determined based on the
overlapping time periods between the second and the third window and a further
number of observations are simulated to ensure an equal number of observations
as the initial period. The new covariance matrix Σ̂θ3i is calculated with Σ̂θ1 and thus
the relative entropy η2i is calculated along with the 95th quantile of the η values.
This method continues to be implemented until the final simulated observation
occurs at the time point which is equivalent to the final time point as the data.
When the quantiles of the η values are plotted it is expected that their values will
display an increasing trend as they will share less information. At the point where
they no longer share any information with the original time window it is expected
that a straight line will be observed.
The simulation is able to tested at a number of differing time step lengths to de-
termine the relative η 95th quantiles. This approach thus enables us to observe the
portion of estimation risk that can be assigned directly to parameter risk that the
investor is exposed to.

4.4 Backtesting

In order to test optimal portfolios, we require consistent metrics associated with
portfolio performance and estimation risk. We therefore consider the Sharpe ratio,
which measures the risk adjusted return of the portfolio. This ratio contextualises
how well this portfolio performed in terms of both the important factors in Mean-
Variance portfolio optimisation. We also consider portfolio variance. This provides
a measure of the risk of the portfolio.
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4.4.1 Portfolio calculation

Describe the data in the following form: {t0, ...., test, .., trb1 , .., trb2 , ...., tend} where
test is the time we are estimating the distribution of returns for, and trbi is the ith

portfolio rebalance. We may use the numerical methods in conjunction with the
robust portfolio optimisation optimisation, or a standard naive portfolio optimisa-
tion to choose a portfolio a using a portion of our data up to test. We then hold
this portfolio for the period τ = {test, ..., trb1}. We then rebalance using the same
amount of data as with our first portfolio, but with the data going up to trb1 . We
continue in this way for all the rebalancing times.

4.4.2 Sharpe Ratio

Given some portfolio a calculated at test, we can see it’s realised daily returns over
the period {test, ..., trb1} by multiplying the realised daily returns of the stocks by
the weightings of the stocks in our portfolio and adding them together:

Rportfolio = a×Rstocks.

We can then calculate the excess returns by:

Rexcess = Rportfolio −Rriskfree.

We may then calculate the Sharpe ratio of the portfolio over any period by:

S =
Rexcess
σportfolio

where Rexcess is the average excess portfolio return and σportfolio is the portfolio
standard deviation.

4.4.3 Variance of returns

Given an optimal portfolio, we can calculate the realised portfolio returns, which in
turn allows us to calculate the realised portfolio variance using a standard variance
calculation. We can also calculate the theoretical portfolio variance that we would
expect if the estimated µ and Σ were the true parameters of the returns by:
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σ2
portfolio theo = a>Σ̂returns a

µportfolio theo = a>µ̂returns
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5 Results

5.1 Simulated versus estimated entropy budget time window compari-
son

The covariance matrix for a given length of time windows of 30, 70, 100, and 150
days is estimated. This is then used to estimate an entropy budget using the sim-
ulation method, and the time series method for a given shift between the original
time window and the compared time window. We consider two styles of covari-
ance estimation in sample covariance and CAPM covariance. This result of entropy
budget for the two methods for a given shift is plotted in the figures below. The
blue line represents the estimated entropy budget, and the red line represents the
simulated entropy budget:

Figure 1: Simulated entropy budget vs estimated entropy budget for a time win-
dow of 30 and 70 days for CAPM.
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Figure 2: Simulated entropy budget vs estimated entropy budget for a time win-
dow of 100 and 150 days for CAPM.

Figure 3: Simulated entropy budget vs estimated entropy budget for a time win-
dow of 30 and 70 days for the sample covariance.
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Figure 4: Simulated entropy budget vs estimated entropy budget for a time win-
dow of 100 and 150 days for the sample covariance.

5.1.1 Time window trends and general observations

The first significant trend is the times series budgets are always higher than the
simulated budgets. It is also apparent that relative entropy budget decreases as the
overall time window increases. Thirdly, we notice an overall increasing trend. The
two covariance matrices used to estimate the entropy budget are separated when
the length of the shift exceeds the length of time window. The estimated budget
increases fairly linearly for the period where the two covariance estimates overlap
for both the simulated and time series approaches. When the covariance matrices
are separate, the simulated η’s become flat. Figure 1 and figure 3 display this for
both the CAPM and sample estimate cases. These figures also display high oscilla-
tion for the time series η after the covariance matrices separate.

5.1.2 Trends between sample and CAPM estimation

We can observe a significantly higher simulated budget for the sample estimation
method compared to the CAPM estimation method. The time series estimation
again shows a higher η for the sample estimation compared to CAPM estimation.
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5.2 Backtesting Naive vs Robust

5.2.1 Realised Sharpe ratio

The Sharpe ratios for the Naive and Robust optimal portfolios were calculated.
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Figure 5: Naive Sharpe ratio vs Robust Sharpe ratio.

There are no observable differences between the Sharpe ratios of the Robust and
Naive portfolios. Both center around 0, with a slight bias for negative values.

5.2.2 Realised returns

The realised returns for both the Naive and Robust portfolios are plotted, along
with 95% confidence intervals for the theoretical variance.
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Figure 6: Naive portfolio returns plotted with the theoretical confidence intervals.
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Figure 7: Robust portfolio returns plotted with the theoretical confidence intervals.

The first noticeable trend is the Naive approach results in returns that lie mostly
between -0.2 and 0.2, whereas the Robust approach lies between -0.02 and 0.02. The
Naive case returns are mostly contained inside the theoretical confidence intervals,
whereas the Robust returns have a fair amount of outliers. We can also observe a
much more stable confidence interval for the Robust portfolio.

5.2.3 Portfolio variances

The theoretical portfolio variance calculated with the estimated covariance matrix
is compared to the realised portfolio variance.
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Figure 8: Realised Robust portfolio variance against theoretical portfolio variance.

The realised variance is always higher than the theoretical portfolio variance. In ad-
dition, the realised variance is highly oscillatory, whereas the theoretical variance
remains fairly smooth.
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6 Discussion

6.1 Quantifying random sampling error

As we fix our estimated covariance matrix and mean and use this to generate our
returns, the only type of error experienced by the simulation of η’s via Monte Carlo,
is the error due to random sample error. The simulated η’s are well below the esti-
mated η’s using the time series approach, which is to be expected, as the simulated
η’s only account for sample error, and the time series η’s accounts for all sources of
estimation risk. The required budget to account for all forms of estimation risk is
therefore much higher than the budget required to account for only sampling risk.
This further enforces the need for a portfolio optimisation that is robust to all forms
of estimation risk.

6.2 Choice of estimator

Since the relative entropy budget for both the simulated and time series estimation
methods are smaller for CAPM, we may safely conclude that the CAPM produces
a more stable covariance matrix in the context of Mean-Variance portfolio optimi-
sation. We therefore choose CAPM as our choice of estimator.

6.3 Choice of time window

Given the results of estimated η’s in relation to time window, it can be concluded
that a larger time window reduces the sampling risk. This is in line with expecta-
tions, as a longer time window increases the amount of information available for
estimation. The optimisation procedure does not converge for high values of η,
which leads us to choose budgets lower than 1. This therefore restricts us to the
larger two time windows considered. In addition, our aim is to reduce estima-
tion risk in Mean-Variance portfolio optimisation, so this choice of window aligns
with our goals. We cannot choose the largest window however, as data constraints
would not allow for a long enough series of η’s to choose a stable 95% quantile. In
addition, the largest window would have a large overlap for short re-balancing fre-
quencies, which would miss-represent the amount of estimation risk present. We
therefore choose 100 days as our time window.
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6.4 Choice of re-balancing frequency

It is argued that the re-balancing frequency of the portfolio should correspond to
shift between time windows, as this would give an indication as to the change in
covariance matrices. Again, due to optimisation constraints, we can only choose
entropy budgets smaller than 1. In conjunction with our choice for 100 days as the
time window, we therefore choose a re-balancing period of 20 days, which corre-
sponds to an η around 1.

6.5 Choice of entropy budget

We may therefore choose an entropy budget corresponding to a time window
length of 100, a re-balancing period of 20, the CAPM estimator, and using the time
series approach. Given our choice of entropy budget, we may now assess our ro-
bust portfolio using back testing.

6.6 Naive versus Robust

6.6.1 Implication of Sharpe ratio

There is no clear difference between the Sharpe ratios of the Robust portfolio and
the Naive portfolio. Although we my not conclude that the Robust portfolio per-
formed better than the Naive portfolio, we may conclude that there is no significant
difference in risk weighted performance. However, as the Robust approach aims to
protect against the worst case estimation error, rather than to optimise Sharpe ra-
tio, this is not a negative result. We can conclude that making our portfolio Robust
has not lead to reduced general performance while still possibly protecting against
worse case errors.

6.6.2 Implication of Realised returns

The realised variance of the Naive portfolio is much higher than the Robust portfo-
lio. This is clear through the range of returns for the Naive portfolio being 10 times
larger than the range of the Robust portfolio. This speaks to a higher level of risk
in the Naive portfolio. The large number of outliers for the Robust returns speaks
to the realised variance being larger than the theoretical variance. This could also
be a result of heavy tails, which is a common realisation with returns.
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6.6.3 Implication of Realised variance

This again speaks to the possibility of heavy returns, or underestimated portfolio
variance.
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7 Further Work

7.1 Effect on estimation of mean on Mean-Variance portfolio optimisa-
tion

In order to consider making the Mean-Variance portfolio optimisation robust against
estimation risk of the mean, a optimisation routine connecting relative entropy to
a varying mean is needed. This is necessary since this is the other main parameter
in Mean-Variance framework.

7.2 Confidence interval approach

An ideal method of estimating η would be to link it to the concept of confidence
intervals associated with estimated covariance matrices. As confidence intervals
of an estimator are a measure of estimation risk, a direct link between this and re-
quired model robustness could lead to an elegant choice of η.

Literature associated with the confidence of a covariance matrix estimator is sparse.
A brief summary can be found below:

7.2.1 Sample covariance estimate confidence interval

Sellentin and Heavens (2015) suggest describing the sample estimate of Σ as a
Wishart matrix in order to find the distribution of the estimate. If the true val-
ues of µ and Σ describing a multi-normal random variable, X , are unknown, we
can estimate them using a sample,X0, drawn from the distribution in question. We
can then approximate the the distribution as X ∼ N (µ̂, Σ̂). Using these estimated
values, P (X0|µ̂, Σ̂, N) is a likelihood function with N being the number of samples
inX0. The estimated covariance matrix is a Wishart matrix, because it is of the type
M =

∑m
i=1 YiY

>
i , and therefore has a Wishart distribution in the form:

W(Σ̂ | Σ/n, n) =
|Σ̂|

n−p−1
2 exp[−1

2n Tr(Σ
−1Σ̂)]

2
pn
2 |Σ/n|

n
2 Γp(

n
2 )

where n = N − 1 is the degrees of freedom, and p is the dimension of the matrix.
After a series of further calculations, given that the mean is µ, and the estimated
sample covariance matrix is Σ̂, the likelihood of a p-dimensional data set X0 with
N samples is:
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P (X0 | µ, Σ̂, N) =
cp|Σ̂|−1/2[

1 + (X0−µ)>Σ̂−1(X0−µ)
N−1

]N
2

with

cp =
Γ
(
N
2

)
[π(N − 1)]p/2Γ

(N−p
2

) .
We now know the likelihood that our estimate Σ̂ describes our data. This is not
strictly a confidence, but it does give some indication of how reasonable our esti-
mate is. If there is a method that describes the real confidence interval of a sample
covariance matrix, it is unknown.

7.2.2 CAPM covariance estimate confidence interval

No mention of confidence interval of covariance estimate in the CAPM context was
found. However, it is possible, as with the sample estimator, to describe the CAPM
estimator with a Wishart matrix. We can therefore calculate the likelihood that the
CAPM estimator produced the sample data X0.

7.2.3 Shrinkage covariance estimate confidence interval

No mention of a confidence interval was made by Ledoit and Wolf (2003). It is
possible that the confidence interval could be approximated by linear combination
of the CAPM confidence interval and the sample confidence interval using the es-
timated optimal shrinkage intensity.

7.2.4 Conclusion of confidence interval approach

In order to implement this method calculation of confidence interval of a covari-
ance matrix is required. We also require a link between confidence of the estimator
and η. We leave this for future studies.
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7.3 Extension to other market models

Fama French requires the estimation of several parameters, which requires large
amounts of data, and introduces estimation risk into each parameter. It would
therefore be interesting to test this methodology in conjunction with this model.
Other commonly used model could also be considered and compared.

7.4 Analysis of worst case estimation error data

By considering data where estimation risk is highly prevalent, we are able to judge
the robust portfolio’s design. We use robust optimisation in order to protect against
the worst case of estimation error, rather than to optimise our portfolio in all cases.
Therefore, it makes sense to compare the Robust approach to the Naive using a
sub-sample, that only considers cases where the realised portfolio variance is much
higher than the theoretical portfolio variance, which indicates the presence of high
estimation error.
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8 Conclusion

We have given a proof of concept for a robust version of Mean-Variance portfolio
optimisation using the relative entropy approach by Glasserman and Xu (2014) as
an alternative to naive portfolio optimisation where estimation errors and viola-
tions in model-assumptions are mostly ignored. We have developed a methodol-
ogy to link a multivariate point estimation, namely a high dimensional covariance
matrix of asset returns to an uncertainty level described by a single number, there-
fore unifying the various multivariate uncertainty sources to a common concept.
We have further investigated the performance of portfolios chosen by the new ro-
bust optimality criterion against naively chosen ones.

As we have implemented this approach, we have faced obstacles regarding condi-
tioning properties such as sensitivity of η regarding θ in the interval of interest or
the fact that depending on size and quality of observation data, covariance estima-
tions might become challenging. We have linked these limitations to a choice of
re-balancing time periods and the corresponding empirical estimation of relative
entropy between neighboring time windows of covariance matrix estimation for
re-balancing.

In addition we developed a Monte-Carlo simulation approach to estimate the por-
tion of relative entropy between consecutive covariance estimates1 coming purely
from parameter estimation uncertainty. Finally, we have given a short discussion
of future work of possible extensions to the approach presented in this report.

1For all our estimates, we use a normal approximation.
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9 Appendix

9.1 Related Work

9.1.1 Estimation risk minimisation via better estimators

As there are better estimators of the covariance than the sample covariance, these
can be used in conjunction with the standard mean-variance optimisation process.
The estimation risk associated with the optimisation is lowered because the param-
eters used in the optimisation are better. This will be considered in this paper.

9.1.2 Estimation risk minimisation via bootstrap

Michaud (1989) attempts to adjust for bias in the estimated optimal asset weights
â through averaging bootstrap vectors:

a =
1

N

N∑
i=1

â∗i

where â∗i is the estimated optimal asset weights calculated using the ith bootstrap
sample. The bootstrap samples are drawn with replacement from the full sample.
This approach hopes to reduce the estimation error via reducing the effect of ran-
dom sampling error. However, if the original sample is not representative of the
true distribution, this approach does not reduce estimation error. In addition, if
the sample is heavy tailed, this approach may not reduce sampling error, as the
calculated value will oscillate rather than converging.

9.1.3 Estimation risk minimisation via prior distribution

Lai et al. (2011) adopt an approach that assumes a prior distribution for the mean
and covariance matrix of returns, and formulates mean-variance portfolio optimi-
sation as a stochastic optimisation problem. This approach aims to forecast the
future distribution of returns given current returns, rather than assume stationar-
ity of returns. The Markowitz optimisation for time t+ 1 under these conditions is
described by the following:

max[E(a>Xt+1)− λ Var(a>Xt+1)]
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where Xt+1 are the returns at t + 1. This assumes µ and Σ to have Normal and
Wishart priors respectively. This is solved as in the form of a maximisation prob-
lem:

max
κ

[E(a(κ)>Xt+1)− λ Var(a(κ)>Xt+1)]

with

a(κ) = 1
Ct

Σ−1
t 1 + κ

2λΣ−1
t

(
µt − At

Ct
1
)

An = µ>t Σ−1
t 1

Bn = µ>t Σ−1
t µt

Cn = 1>Σ−1
t 1

where µt is the estimated mean at t, Σt is the estimated covariance at t, and 1 is a
vector of 1’s.

It is also possible to combine this method with bootstrap sampling described above.
This however does not account for the possibility that the true prior distribution
is different from the estimated one. It may reduce the stationarity and random
sampling error, but other forms of estimation error may still be unaccounted for.
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1 Introduction

As is well known, modern option pricing was initiated with the publications of
Black and Scholes (1973) and Merton (1973). The asset price dynamics under the
Black–Scholes framework is assumed to follow a geometric Brownian motion. The
Black and Scholes model assumes that volatility is constant over time. Conse-
quently, the model is not suitable for explaining certain phenomena observed in
option price data, in particular, volatility smiles and skews1. To account for these
features, alternative models have been proposed e.g. local volatility models; Dupire
formula and stochastic volatility models; Heston model and models that incor-
porate jumps; Bates stochastic model with jumps. However, all these proposed
models have shortcomings. For instance, local volatility models have unreason-
able skew dynamics and they underestimate the volatility of volatility. Stochastic
volatilty models (where volatility follows a stochastic process) e.g. the model of
Heston (1993) tend to capture the long-dated skew but struggle to reproduce the
near term skew. While increasingly popular, jump processes suffer too, due to the
flattening of the volatility surface as time to expiry increases. For a basic introduc-
tion to volatility surface modelling we refer to the textbook by Gatheral (2006).

In volatility modelling paradigms there are two persistent stylised facts. The
first one is the presence of long memory features in volatility. Long memory is ex-
hibited in a stationary process if its covariance function decays slowly. The second
stylised fact is the leverage effect: the existence of the negative correlation between
price increments and volatility increments.

Empirical analysis of volatility shows that the log-volatility of historical data
follows processes more like fractional processes. In their model, Comte and Re-
nault (1998) were the first to apply a model driven by a fractional Brownian mo-
tion with Hurst parameter H ∈ [1

2 , 1)†. This modelling framework is known as
the Fractional Stochastic Volatility (FSV) model and is shown to reproduce the long
memory property of the volatility process.

Counterintuitively, Gatheral et al. (2014) demonstrated that price and option
data are more consistent with H ∈ (0, 1

2) and with a mean reversion parameter
for the volatility process kept very small, i.e. short memory. By virtue of this ob-

1Out of the money options are generally priced with a higher volatility.
†If WH represents a fractional Brownian motion with Hurst parameter H , in this case increments

of WH satisfy a long dependence behaviour necessary for describing features such as long memory
and persistence. When H = 1

2
, WH is the standard Brownian motion.

3



servation, increments of WH are negatively correlated which is a necessary fea-
ture for intermittency and anti-persistency; leverage effects are well-taken into ac-
count and the model gives a general interpretation of the volatility dynamics from
high-frequency behaviour in the market. This modelling approach is known as the
Rough Fractional Stochastic Volatility (RFSV) framework.

Even though fractional Brownian motion (fBM) seems to be an appropriate tool
for modelling volatility (at least from empirical observations and statistical tests)
there has been much debate about its applicability for modelling financial deriva-
tives as fBM is not a semimartingle. For example, Rogers (1997) showed that fBM
could not be used as a price process for a risky security without introducing arbi-
trage opportunities. As a result price processes driven by fBM do not satisfy the
property of “No Free Lunch With Vanishing Risk” (NFLVR). However, Cheridito
(2003) showed that fBM could still be used in a price process under certain condi-
tions: proper restriction of the class of permissible trading strategies is necessary to
eliminate arbitrage. Moreover, Jarrow et al. (2009) showed that the semimartingale
property is not a necessary condition for no-arbitrage and were able to construct a
class of processes which are not semimartingales but which remain arbitrage free.

The goal of this study is to investigate the claim that “Volatility is Rough” and
implement the rough volatility framework of Gatheral et al. (2014). From time se-
ries data, this model is shown to account both for the short memory in volatility
and the leverage effect using a fractional Brownian motion. The model provides
computationally tractability, with modelling formulae for the future volatility and
it is shown to perform better than classical predictors such as the Generalised Au-
toregressive Conditional Heteroskedasticity (GARCH) model. This area of research
is still in its infancy in the financial mathematics community. For example, calibra-
tion is still an open problem (see Gatheral et al. (2014)). In this document, we in-
troduce the area of research and then proceed to confirm some of the above recent
findings.

We begin with estimation of the Hurst parameter H from time series of S&P
and NASDAQ realised variance estimates. A short overview of the rough Bergomi
(rBergomi) model is also considered. We then proceed to consider an example of
pricing options via Fourier-based methodologies and Monte Carlo methods under
the rough Heston model (or rHeston model). The pricing implementation is in-
tensive and computationally challenging due to the non-Markovian nature of the
fBM. We then compare our prices from the Fourier-based methodology e.g. Fourier
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inversion, FFT and Lewis (2001) methods, to the Monte Carlo prices. We show the
correctness of the implementation by verifying that the Fourier-based prices fall
within the 95% Monte Carlo confidence bound.

This report is structured as follows. In Section 2.3 we estimate the Hurst pa-
rameter from realised variance data. Section 3 introduces the volatility modelling
paradigms. We also discuss the extensions of the classical Heston model. We im-
plement the Rough Heston model in Section 4. We proceed to show how to price
using Monte Carlo and Fourier methods. To this end, we also show how to simu-
late fractional Brownian motion using two different approaches in Subsection 4.1.
In Subsection 4.2 we introduce the characteristic function needed for the Fourier
pricing approach. Numerical results are generated and compared in Section 4.3.
We then provide a basic calibration of the model to option data on an index. We
conclude the report in Section 6.

2 Fractional Brownian Motion

2.1 Definition

A fractional Brownian motion (WH
t )t∈R is a centred self-similar Gaussian process

with stationary increments such that for all t ∈ R,

E[|WH
t+∆ −WH

t |q] = Kq∆
qH ,

where ∆ ≥ 0 is a small time interval, Kq is the moment of order q > 0 of the
absolute value of a standard Gaussian random variable and H ∈ (0, 1) is the Hurst
parameter which defines the fBM (Gatheral et al., 2014). The Hurst parameter and
its estimation is given more attention in Section 2.3. A fractional Brownian motion
(fBM) with Hurst parameter H = 1

2 reduces to a standard Brownian motion (SBM).
While standard Brownian motion has independent increments, fBM displays

autocorrelation, i.e. it does not exhibit independent increments. The covariance
between an fBM process at times t and s is

E[WH
t W

H
s ] =

1

2
(|t|2H + |s|2H − |t− s|2H). (1)

This covariance implies an autocorrelation function that decays slower at H 6=
1
2 . The autocorrelation function has the slowest decay when 1

2 < H < 1. This
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implies that an fBM process will exhibit longer memory as H gets closer to 1. This
gave rise to Comte and Renault (1998) using fBM to model volatility as a long
memory process, hence their restriction of H ∈ (1

2 , 1). Recently, however, Gatheral
et al. (2014) argues that volatility exhibits shorter memory, hence their restriction
of H ∈ (0, 1

2).

2.2 Simulating Fractional Brownian Motion

To simulate some of the models under consideration in Section 3, we need to be able
to simulate fBM. We mention two methods used for exact simulation of fBM. These
are methods which completely capture the covariance structure of fBM, as opposed
to approximate methods which aim to reduce computation times by approximating
the covariance structure.

The Cholesky Method

Let σ(s, t) be the covariance function of a zero-mean function. Then σ(s, t) is of the
form (1) for fBM2. Then for a discretisation of time in N steps, Σ(s, t)N×N defines
the covariance matrix and a sample fBM path can be generated by multiplying a
vector Z of iid standard normal variates by the Cholesky decomposition of Σ(s, t).
While very simple, the Cholesky method becomes slow (with O(N3) for N points)
and demanding in terms of storage (see Dieker (2004)).

The Hosking (1984) Method

This method is concerned with simulating fractional Gaussian noise (fGn). A sam-
ple fBM path can then be recovered by using a cumulative sum on the generated
fGn sequence. The sequence (Xn)n∈N of fractional Gaussian noise is computed
recursively by computing the conditional distribution of Xn+1 given Xn, . . . , X0.
The required sample is found by generating a standard normal random variable
X0 and calculating the remaining Xn+1 recursively. The conditional distribution is

2Note that σ(s, t) reduces to t− s for standard Brownian motion
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itself Gaussian with mean

µn = c(n)′Σ(n)−1


Xn

...
X1

X0

 , (2)

and variance

σ2
n = 1− c(n)′Σ(n)−1c(n), (3)

where c(n) is an (n + 1)-column vector with elements c(n)k = σ(m,m + k + 1),
for k = 0, . . . , n. The algorithm presented by Hosking (1984) computes Σ(n)−1c(n)

recursively to ensure greater efficiency. A further refined approach to the compu-
tation of Σ(n)−1c(n) is presented in Dieker (2004) and the convergence is given as
O(N2). More methods for exact and approximate simulation of fBM can be found
in Dieker (2004).
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Figure 1: Three sample realisations of fBM, each with 129 points, with Hurst pa-
rameter 0.1, 0.5 (SBM), and 0.9. Each path is generated with the same seed for
comparison purposes.

In Figure 1, we can see that for H = 0.1, WH
t exhibits higher short-term volatil-

ity and lower long-term volatility. In contrast, when H = 0.9, WH
t exhibits higher

long-term volatility and lower short-term volatility.
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2.3 Estimating the Hurst Index

Recall that fBM is a Gaussian process with the property that

E[|WH
t+∆ −WH

t |q] = Kq∆
qH .

Gatheral et al. (2014) verify that the empirical distributions of log-volatility are ap-
proximately Gaussian for various time lags.

Thus, to estimate the smoothness of the volatility process, that is, H , Gatheral
et al. (2014) use the following approach. Suppose that we have access to N discrete
observations of the volatility process σk on [0, T ]. Calculate

m(q,∆) =
1

N −∆

N−∆∑
k=1

| log(σk+∆)− log(σk)|q,

where ∆ ∈ N is the lag.
Note that the m(q,∆) as specified in Gatheral et al. (2014) does not correspond

to the methodology they then use to calculate its value. The definition of m(q,∆)

provided in this report describes their methodology.
Now, assuming that the log-volatility process has stationary increments, then

m(q,∆) can be seen as an estimate of

E[| log(σ∆)− log(σ0)|q] = Kq∆
qH .

Taking logs, we get

logE[| log(σ∆)− log(σ0)|q] = logKq + qH log ∆.

We can then compute m(q,∆) for different values of ∆ for each q and regress
logm(q,∆) against log ∆. The slope of each line of best fit is then an estimate of
qH .

An estimate of the spot volatility processes needs to be used since it is not di-
rectly observable. Gatheral et al. (2014) use precomputed 5-minute daily realized
variance estimates obtained from the Oxford-Man Institute of Quantitative Finance
as a proxy for the S&P and NASDAQ spot variance process. They use data from
3 January, 2000 to 31 March, 2014 and obtain 3540 trading days. Using the same
dates, we instead get 3552 trading days worth of realized variances data.
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Figure 2: The left-hand column displays results for the S&P and the right-hand
column is for the NASDAQ. The top row shows the results from the regressions
of log(m(q,∆)) against log(∆) for different q (indicated in different colours). The
bottom row is a regression of ζq against q.

The results from the regression of logm(q,∆) against log ∆ are displayed in the
top row of Figure 2. For a given q, we have that for both the S&P and NASDAQ,
there is a linear relationship between log ∆ and logm(q,∆).

Let ζq be an estimate of Hq. By regressing ζq against q, we can obtain estimates
of H for the different indices. The plot of ζq against q for both the S&P and NAS-
DAQ indices are shown in the bottom row of Figure 2.

The estimated values for H are displayed in Table 1. The difference in the esti-
mates between our estimates and those of Gatheral et al. (2014) could be ascribed
to differences in our data sets, or perhaps to slight differences in methodology. To
observe the impact of using more data points, the H-index was computed for the
S&P index for various intervals of time, each starting from 3 January, 2000. The full
S&P dataset until 30 June 2017 was used. The results are shown in Figure 3.
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Table 1: Estimates of H for data from 3 January 2000 to 31 March 2014.

S&P NASDAQ

Gatheral 0.142 0.139
Regression 0.122 0.127

2000/01/01 2005/01/01 2010/01/01 2015/01/01
0

0.05

0.1

0.15

Figure 3: The change in H over time for the S&P index (calculated from January
2000).

3 Models

The following section outlines the mathematics behind the models of interest. We
begin by introducing the classical Heston model, which forms the foundation of
the models to follow. We then introduce FSV models of Comte and Renault (1998)
and Gatheral et al. (2014), both of which modify the classical Heston model by
using fBM in place of SBM. Lastly, we consider the rough Heston model of Euch
and Rosenbaum (2016), which is also a modification of the classical Heston model,
and uses fBM.
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3.1 Classical Heston Model

The standard Heston (1993) assumes that the underlying asset price process (St)
follows a Black-Scholes-type stochastic process but with variance modelled stochas-
tically according to a Cox, Ingersoll, and Ross (1985) process. The model also allows
correlation between variance and spot asset returns. We represent the dynamics
of the forward price process S̃t, as is consistent with the literature (see Euch and
Rosenbaum (2016), Euch and Rosenbaum (2017), etc.), but note that other represen-
tations are possible (such as the representation of St under the risk-neutral measure
Q). The dynamics of the classical Heston model are

dS̃t =
√
VtS̃t dWt

dVt = λ(θ − Vt)dt+ λν
√
VtdBt,

(4)

where

S̃t is the forward asset price;
S̃0 = S0e

rT ;
λ > 0 is the mean rate of reversion;
θ > 0 is long-term mean of Vt;
ν > 0 is the “volatility of variance”, which controls the smile; and
V0 > 0 the current variance.

Here, Wt and Bt are two correlated standard Brownian motions with 〈dWt, dBt〉 =

ρdt, which controls the skew. Typically, ρ is negative pointing to the fact that a
decrease in stock price is correlated with an increase in volatility (Albrecher et al.,
2006). This is consistent with the market stylized fact called the leverage effect.
We also require that 2λθ > ν2 to ensure that Vt is always strictly positive. This is
known as the Feller condition (Albrecher et al., 2006).

3.2 Fractional Stochastic Volatility (FSV) Models

Comte and Renault (1998) extended Hull and White’s short-rate model and mod-
elled the log-volatility by replacing the Wiener processes with a fractional Brow-
nian motion (fBM). Comte and Renault (1998) restricted H to 1

2 < H ≤ 1 which
corresponds to the ‘stylized fact’ that volatility has long-memory. However, any
non-zero α induces a process that is no longer a semimartingale (Rogers, 1997) and
thus does not admit an equivalent martingale measure. Despite this, the authors
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use L2 theory of integration for Gaussian processes to show that asset price pro-
cesses maintain the semimartingale property (Comte and Renault, 1996) and thus
do not admit arbitrage.

In contrast, Fukasawa (2017) shows that a stochastic volatility model where
volatility is driven by fBM with Hurst indexH generates an at-the-money volatility
skew of the form ψ(τ) ∼ τH−1/2, where τ is time to maturity. Thus, Fukasawa
(2017) concludes that to generate a market-consistent volatility surface with fBM,
H must be close to zero. This is in contrast to Comte and Renault’s (1998) use of
H ∈ (1

2 , 1).
Following this, Gatheral et al. (2014) went on to show that log-variance behaves

essentially as an fBM with H ≈ 0.1 at any reasonable time scale. Gatheral et al.
(2014) call their model a Rough FSV (RFSV) to underline that, in contrast to FSV,
H < 1

2 .
Regardless ofH , the FSV model used by Comte and Renault (1998) and Gatheral

et al. (2014) for the forward price process S̃t has dynamics

dS̃t =
√
VtS̃t dWt

d log Vt = λ(θ − log Vt)dt+ ξdBH
t .

(5)

The parameters are as in (4), except they are interpreted to apply to log(Vt) and
not Vt, and where BH

t is fBM with Hurst index H .

3.3 Rough Volatility Models

3.3.1 Rough Bergomi Model

In Bayer et al. (2016), the authors extend the model presented in Bergomi (2005).
They assume, without loss of generality, that r = 0. In this instance the forward
price process, S̃t, and the asset price process, St, are equivalent. The rough Bergomi
model has dynamics

S̃t = S̃0E
(∫ t

0

√
VudZu

)
Vu = V0E

(
ηW̃u

)
,

(6)

where η is a scaling parameter, V0 is the variance at time 0 and

W̃u =
√

2H

∫ u

0

1

(u− s)1−αdWs.
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The process
∫ u

0
1

(u−s)1−αdWs is known as the Volterra fractional Brownian motion
with Hurst parameterH = α+ 1

2 . The symbol E(·) denotes the Doléans exponential
and Zu and Ws are two correlated standard Brownian motions. Bayer et al. (2016)
use the Cholesky decomposition Zt = ρWt +

√
1− ρ2W⊥t to express Z in terms of

two independent Brownian motions.

3.3.2 Rough Heston Model

Euch and Rosenbaum (2016) use an alternate representation of BH
t and avoid sim-

ulating fBM directly. They represent the fBM BH
t as an integral with respect to

(standard) Brownian motion Wt as

BH
t =

1

Γ(H + 1/2)

{∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWs

+

∫ t

0
(t− s)H−1/2 dWs

}
.

(7)

This representation of BH
t is known as the Weyl fractional integral (Weyl, 1917)

ofBH
t (forH 6= 1

2 ). The kernel (t−s)H−1/2 in (7) plays a central role in the dynamics
of fBM and thus Euch and Rosenbaum (2016) introduce the kernel (t − s)H−1/2 in
a Heston-like volatility process as

dS̃t =
√
VtS̃t dWt

Vt = V0 +
1

Γ(α)

∫ t

0
(t− s)α−1λ(θ − Vs)ds+

1

Γ(α)

∫ t

0
(t− s)α−1λν

√
VsdBs,

(8)

where the parameters are as defined in (4).

4 Model Implementation

4.1 Monte Carlo

4.1.1 Simulation of Rough Bergomi Model

To simulate a realisation of forward asset price process of (6), we have to discretise
the volatility process and the associated asset price process. The rough Bergomi
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model of (6) can be rewritten as

S̃t = S̃0 exp

(∫ t

0

√
VudZu −

1

2

∫ t

0
Vudu

)
Vu = exp

(
ηW̃u −

1

2
η2u2H

)
.

(9)

Suppose we want to generate n simulations of the rBergomi model withm time
steps. First, note that the Volterra process W̃ has the dependence structure, for
v > u,

E[W̃vW̃u] = u2HG
(v
u

)
,

where

G(x) = 2H

∫ 1

0
((1− s)(x− s))α−1 ds,

with x ≥ 1.
Using this dependence structure, it is possible to generate the process W̃ from

the Brownian process W by constructing its m × m autocovariance matrix. Then
compute L, where L is the lower triangular matrix obtained from the Cholesky
decomposition of the covariance matrix. Generate random normal m × 1 vectors
W and multiply them by L to get m× 1 vectors of updates of the process W̃ .

The Brownian motion Z is simply calculated as

Zt = ρWt +
√

1− ρ2W⊥t ,

where W is retained from the calculation for W̃ and W⊥ is an independent Brow-
nian motion.

Since no closed-form solution for (9) exists in the literature, a simple discretisa-
tion procedure can be used to simulate St and Vu.

4.1.2 Simulation of Rough Heston model

We now turn our attention to the Euch and Rosenbaum (2016) approach for sim-
ulating volatility paths and subsequently forward asset price paths according to
the rough Heston model of Section 3.3.2. To simulate Vt, we discretise time with
∆ = T/10000. For each t, Vt must be computed anew since Vt cannot be written in
stochastic differential form.

The integrals in (8) are estimated using standard quadrature techniques, al-
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though more reliable estimates of Vt can be obtained using, for example, predic-
torcorrector methods. Since fBM is not Markov, efficient Monte Carlo simulation
methods remain an intricate task in the rough volatility context (see Neuenkirch
and Shalaiko (2016)).

Once a realisation of Vt is computed, the forward asset price S̃T , needed to
calculate the payoffs of European options, is easy to compute from (8) as follows

S̃T = S̃T−∆ +
√
VT−∆S̃T−∆(WT −WT−∆)

= S̃T−∆ +
√
VT−∆S̃T−∆

(√
∆Z

)
= S̃T−∆

(
1 +

√
VT−∆

(√
∆Z

))
= S̃0

T∏
t=1

(
1 +

√
VT−∆t

(√
∆Z

))
, (10)

where ∆ is a small time interval, taken as T/10000 in our simulations. An illustra-
tion of a sample realisation of Vt and S̃t is given in Figure 4.

15



0 1 2 3 4 5

time

0

0.1

0.2

0.3

0.4

V
ol

at
ili

ty
 (

S
B

M
)

0 1 2 3 4 5

time

60

80

100

120

140

160

180

A
ss

et
 p

ric
e 

(S
B

M
)

0 1 2 3 4 5

time

0

0.1

0.2

0.3

0.4

V
ol

at
ili

ty
 (

fB
M

)

0 1 2 3 4 5

time

60

80

100

120

140

160

180

A
ss

et
 p

ric
e 

(f
B

M
)

Figure 4: The top row illustrates the typical evolution of the volatility process and
the forward asset price process under the standard Heston model (H = 0.5) while
the bottom row illustrates a typical evolution under the rough Heston model (H =
0.1) as in (8). The parameters used are λ = 2, V0 = 0.4, θ = 0.04, ν = 0.05, ρ = −0.5,
S̃0 = 100, T = 5.

4.2 Characteristic function

The characteristic function in the rough Heston is derived and presented in Euch
and Rosenbaum (2016) is defined as

φxT (u) = E[eiuxT ], (11)

where

xT = log
( S̃T
S̃0

)
,

and S̃T and S̃0 are the forward prices. Euch and Rosenbaum (2016) then assume
an exponential form for the characteristic function with the exponent being affine
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in V0. This implies
φxT (u) = exp(g1(u, T ) + V0g2(u, T )), (12)

where

g1(u, t) = θλ

∫ T

0
h(u, s)ds g2(u, t) = I1−αh(u, t).

The function h(u, t) is the solution to the fractional Riccatti equation

Dαh(u, t) = −1

2
u(u+ i) + λ(iρνu− 1)h(u, t) +

(λν)2

2
h2(u, t), Iα−1h(a, 0) = 0,

where

Dαh(u, t) =
d

dt
I1−αh(u, t), and I1−αh(u, t) =

1

Γ(1− α)

∫ t

0

h(u, s)

(t− s)α
ds,

are the Riemann–Liouville derivative and integral respectively. The fractional Ri-
catti equation is solved using a predictor-corrector approach. Euch and Rosen-
baum (2016) also present a numerical algorithm for solving this differential equa-
tion. Similarly Diethelm et al. (2004) presents a numerical algorithm for evaluating
the fractional integral for g2(u, t).

The following is a summary of these two numerical algorithms.
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Algorithm 1 Predictor-Corrector Approach for Solving FDEs

1: N = desired number of time steps = T
∆

2: a, b = arrays of size N
3: F (u, h(u, t)) = −1

2u(u+ i) + λ(iρνu− 1)h(u, t) + (λν)2

2 h2(u, t)

4: ĥ(u, tn) = estimated value of h(u, t) for 0 ≤ tn ≤ T
5: ĥP (u, tn) = predictor value of h(u, t)
6: for 1 ≤ k ≤ N do
7: a(k) = (k + 1)α+1 − 2kα+1 + (k − 1)α+1

8: b(k) = kα − (k − 1)α

9: end for
10: ĥ(u, 0) = 0
11: for 1 ≤ j ≤ N do
12: ĥP (u, tj) = ∆α

Γ(α+1)

∑j−1
k=0 b(j − k)F (u, h(u, tk))

13: ĥ(u, tj) = ∆α

Γ(α+2)

(
F (u, ĥP (u, tj)) +

(
(j − 1)α+1 − (j − 1− α)jα

)
F (u, 0)

14: +
∑j−1

k=1 a(j − k)F (u, h(u, tk))
)

15: end for

Algorithm 2 Procedure for Approximating Fractional Integral

1: N = desired number of time steps = T
∆

2: ĝ2(u, tn) = estimated value of g2(u, t) for 0 ≤ tn ≤ T
3: c = array of size N + 1
4: c(0) = (1 + α)Nα −Nα+1 + (N − 1)α+1

5: c(N) = 1
6: for 1 ≤ k ≤ N − 1 do
7: c(k) = (N − k + 1)α+1 − 2(N − k)α+1 + (N − k − 1)α+1

8: end for
9: ĝ2(u, tN ) = ∆α

Γ(1+α)

∑N
k=0 c(k)h(u, tk)

Algorithm 2, coupled with a standard quadrature integration method are used
to estimate g2(u, t) and g1(u, t), respectively, used in (12). This then allows for an
estimation of the characteristic function at each discrete time step between the ini-
tial time, t0 = 0 and the maturity time, tN = T . Using this characteristic function,
prices for European call and put options can be estimated using the Gil-Pelaez
Fourier Inversion formula (Wendel, 1961).
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It is well know that the price of a European call option can be written as follows

C(K) = P1S0 −Ke−rTP2, (13)

where
P1 = Qs(ST > K), P2 = Q(ST > K).

Here, Q is the risk-neutral measure under which ST e−rT is a martingale and Qs is
the forward measure defined by the Radon-Nikodyn derivative,

dQs

dQ
=

erT

ST /S0
.

The probabilities P1 and P2 are then calculated using the Gil-Pelaez Fourier
Inversion formula.
Let sT = log(ST ) with corresponding characteristic function φsT (u), then

P1 =
1

2
+

1

π

∫ ∞
0

e−iulog(K)φsT (u− i)
iuφsT (−i)

du,

P2 =
1

2
+

1

π

∫ ∞
0

e−iulog(K)φsT (u)

iu
du.

The characteristic function of xT must be written in terms of the characteristic
function of sT , by first noting that

xT = log
( S̃T
S̃0

)
= log(ST )− log(S̃0)

= sT − s0 − rT.

Then,

P1 =
1

2
+

1

π

∫ ∞
0

eiu(log(S0/K)+rT )φxT (u− i)
iu

du,
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and

P2 =
1

2
+

1

π

∫ ∞
0

eiu(log(ST /K)+rT )φxT (u)

iu
du.

4.3 Results

4.3.1 rBergomi Results

Data could not be sourced to check the consistency of the rBergomi model with the
SPX volatility surface, as Bayer et al. (2016) is able to do. However, Bayer et al.
(2016) use the parameters H = 0.07, η = 1.9 and ρ = −0.9 to fit the SPX volatility
surface for February 4, 2010. These parameters can be used in our model as a
confirmation of our implementation. Computing Monte Carlo estimates of call
option prices and at-the-money implied volatilities yields the results displayed in
the figure below.

Figure 5: Volatility Surface for rBergomi model.

Taking into account that the implementation uses Monte Carlo estimates and
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numerical integration dependent on the size of the time step used, the above figure
could be regarded as a close approximation of Figure 4 presented by Bayer et al.
(2016).

Since data to make comparisons and to confirm our model implementation was
not available, we did not pursue this model any further.

4.3.2 rHeston Results

The results from the characteristic function and Monte Carlo simulation are pre-
sented with an example where a European call option is priced with the following
parameters:

Table 2: Parameters used in the rHeston model.

Parameter Value
α 0.6
λ 2
θ 0.04
ν 0.05
ρ -0.5
T 2
V0 0.04
S̃0 100
r 0.05
∆ 0.01
K 100e−rT

The value of the strike price is chosen such that the call option is in the money.

Figure 6 includes the integrands for P1 and P2 with the given set of parameters.
Both integrands decay to zero relatively quickly. This implies that the bounds of
integration used in the numerical computation need not be too large to still achieve
accurate results. It is also noted that the integrand has no unwanted oscillations
or discontinuities meaning that a standard quadrature integration technique will
produce accurate estimations of the two integrals.
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Figure 6: Integrands for P1 and P2 decay towards zero.

The probabilities P1 and P2 are then calculated using a standard quadrature
technique.

Next, the option prices are calculated at different maturities with varying strike
prices. These prices are then compared with the Monte Carlo prices from Section
4.1. Table 3 summarises this comparison by comparing the characteristic function
pricing with the a 95% confidence interval generated from the Monte Carlo prices
at T = 5. Figures 7 and 8 show characteristic function and Monte Carlo prices at
various maturity values.

Table 3: Results at T = 5.

Strike (K) Fourier Inversion Monte Carlo

Lower bound Value Upper bound

60 37.2771 36.572 37.5901 38.6082
65 34.8865 34.3326 35.3401 36.3475
70 32.6524 31.4751 32.4256 33.376
75 30.5668 29.3683 30.3121 31.2559
80 28.6213 26.8472 27.7506 28.6541
85 26.8077 25.7911 26.7222 27.6533
90 25.1175 24.2847 25.1864 26.0881
95 23.5427 23.4445 24.3528 25.2612
100 22.0756 21.002 21.8548 22.7076
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Figure 7: Call option price differences between characteristic function and Monte
Carlo simulation.
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Figure 8: Call option prices for characteristic function and Monte Carlo simulation.

Figures 7 and 8 show that for almost all strike prices, the characteristic function
prices lie within the Monte Carlo 95% confidence interval. It is to be expected that
better results would have been achieved with larger sample sizes. Due to time
constraints, the sample sizes were limited to 10 000 simulations per strike price.

These prices can be used to generate volatility surfaces using the classical He-
ston model as the benchmark model for calculating implied volatility. Figure 9
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below shows three volatility surfaces for various Hurst indices, one surface repre-
senting the classical Heston model (H = 1

2 ).
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Figure 9: Volatility surfaces for various Hurst indices.

These plots show that as the Hurst index approaches zero, the volatility surface
tends to fit modern volatility surfaces better. This is the key feature that motivates
the modelling of stochastic volatility with fBM.

5 Model Calibration

Recall that calibration is a process of finding the model parameters such that the
prices from the model match as close as possible the prices observed in the market.
Efficient Rough volatility model calibration is still an open problem (see Euch and
Rosenbaum (2017)). The aim of this section is to provide insight on calibration
and to test the analytical tractability of the model. We take a fairly simple and
straightforward approach by minimising the sum of squared differences,

Φ̂ = arg min
Φ

N∑
i=1

(
CΦ
i (Ki, Ti)− Cmkt

i (Ki, Ti)

Cmkt
i (Ki, Ti)

)2

, (14)

with a set of model parameters

Φ = {λ, θ, ν, ρ, ν0}.
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We collected the market prices for call options written on NASDAQ and S&P500.
Market data are as observed on February 14, 2014 and on February 24, 2014.

We proceed to consider a case for call options written on NASDAQ indices. Ta-
ble 4 shows the calibrated Rough Heston model. We investigate cases for different
values of H estimated in Section 2.3. In Figure 11, we show the calibration result.

Table 4: Calibrated parameters: 14 February 2014.

Φ/H 0.5 0.3 0.005
λ 0.460253 0.255436 0.194759
θ 0.388097 0.507656 0.552782
ν 0.999426 0.994158 0.488258
ρ -0.47974 -0.61345 -0.80704
ν0 0.103923 0.09935 0.088725
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Figure 10: Calibration results for various choices of H .
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Table 5: Calibrated parameters: 24 February 2014.

φ/H 0.5 0.3 0.1
λ 1 1 0.527462
θ 0.139935 0.144669 0.188619
ν 0.188603 0.164843 0.278388
ρ -1 -1 -0.82177
ν0 0.070764 0.064327 0.06135
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Figure 11: Calibration results for various choices of H .

As mentioned before, we have used a nonlinear least square approach to fit the
model price to the market price by keeping the Hurst index fixed atH = 0.1, 0.3, 0.5

and then iterate the other parameters such that model price is as close as possible
to the market price. The fit could possibly be improved by considering a global op-
timisation. This work will be explored further to examine the applicability of the
rough Heston model and its tractability. We have noted that the calibration is quite
slow due to the intensive computation of the fractional differential Ricatti equation
in the associated characteristic function using predictor-corrector schemes. An-

26



other improvement could be to rewrite our MATLAB implementation into C++.

6 Conclusion

The main purpose of this work was to review and implement the rough volatility
framework. Inspired by claims that models where the volatility process is driven
by fractional Brownian motion provide an excellent fit to historical data and volatil-
ity surfaces, we began by testing and confirming these hypotheses.

We introduced the volatility modelling paradigms and highlighted key features
associated with fractional volatility models, and their rough versions such as the
rough Bergomi and rough Heston models. We justified the mathematical claim
that “Volatility is Rough” and we replicated most of the econometric analysis in the
paper of Gatheral et al. (2014) with negligible differences, possibly from data mis-
match. We implemented the pricing methodologies using the characteristic func-
tion, by using Fourier inversion3. We also highlighted some important concepts
necessary to implement the characteristic function which are not mentioned in the
literature, e.g. detailed predictor-corrector schemes. We benchmarked our Fourier
pricing implementation against our Monte Carlo approach and our prices fall in
the 95% confidence Monte Carlo bounds.

We went a step further to calibrate the model to observed market data. The
model provided a relatively reasonable fit. The fit could possibly be improved by
applying a global optimisation approach. We noted that due to the complexity
of the characteristic function, with numerous function evaluations, pricing via the
characteristic function is computationally expensive. All the code used for this
project was implemented in MATLAB, and we shall endeavour to rewrite them in
C++ to take advantage of its computational speed.

3We mention here that we have also looked at FFT implementation and Lewis (2001) method.
Although our prices match exactly with Monte Carlo, we opted not to report these methods at this
stage.
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