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Preamble
The first Financial Mathematics Team Challenge (FMTC) took place in the June-July Winter
Break at the University of Cape Town in 2014. Since it was the first time we had attempted
it, we had little idea of what to expect. Fortunately, the event proved to be much more
successful than we had hoped for, so we decided to forge on with a second edition in 2015.
Our vision had always been to see if we could create an annual event.

The purpose of the FMTC is for South African postgraduate students in Financial and
Insurance Mathematics to have the opportunity to focus (ostensibly without distraction) on
a topical, industry-relevant research project, while simultaneously developing links with
international students and academics in the field. An allied aim we have is to bring a
variety of international researchers to South Africa to give them a glimpse of the dynamic
environment that is developing at UCT in the African Institute of Financial Markets & Risk
Management. One of the goals of the FMTC is for students to learn to work in diverse
teams and to be exposed to a healthy dose of fair competition.

The Second Financial Mathematics Team Challenge was held from the 2nd to the 14th
of July 2015. The challenge brought together five teams of Masters and PhD students from
Switzerland, South Africa and the UK to pursue intensive research in Financial Mathemat-
ics. Each team worked on a distinct research problem during the twelve days. Professional
and academic experts from France, Switzerland, South Africa, and the UK individually
mentored the teams; fostering teamwork and providing guidance. Once again, the stu-
dents applied themselves with incredible dedication and exemplary vigour.

This years research included topical projects on expected shortfall in a multi-currency
framework, the accuracy of the Rebonato formula for swap rates and swaption volatilities in sin-
gle and multi-curve models, linear commodity models with unspanned stochastic volatility, Basel
III Tier 2 capital pricing models, and multivariate risk measures for margin computations. These
were either proposed directly by our industry partners or chosen from areas of current rel-
evance to the finance industry. In order to prepare the teams, guidance and preliminary
reading was given to them a month before the meeting in Cape Town. During the final two
days of the challenge, the teams presented their conclusions and solutions in extended sem-
inar talks. The team whose research findings were adjudged to be the best was awarded
a floating trophy. Each team wrote a report containing a critical analysis of their research
problem and the results that they obtained. This volume contains these five reports, and
will be available to future FMTC participants. It may also be of use and inspiration to
Masters and PhD students in Financial and Insurance Mathematics. The second Financial
Mathematics Team Challenge added to the success of the first, and we are already planning
its third version.

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

This paper is concerned with risk management, and addresses two themes within
this topic. The first is the risk measure expected shortfall; the second is a financial
environment with multiple currencies.

Expected shortfall is one of a number of prevalent risk measures. While it is
not as prevalent as the pre-eminent value-at-risk measure, it has some theoretical
advantages over its rival. These – described below in detail – have increased in-
terest in expected shortfall from both academics and practitioners, and is therefore
certainly good fodder for research in risk management.

Risk management in the presence of multiple currencies is also of increasing
relevance. Risky entities have, generally speaking, become more globalised and
international. Regulators need to supervise these entities, and are motivated to
provide regulations in a more global and universal manner. We investigate risk
measurement in a multiple currency environment by specifying models. These
models’ parameters are estimated from equity and exchange rate historical time-
series. The parameters are then manipulated and the effects measured and inter-
preted. We show how the presence of multiple currencies has implications for risk
measurement, and systematically study these implications.

The rest of the paper is organised as follows. Section 2 reviews some litera-
ture apposite to our focus. Here we make some key definitions and establish a
foundation to continue. Section 3 pertains to modelling; we describe the models
we use and their estimation and implementation details. Section 4 addresses the
matter of aggregation currency. We show that choice of currency in which one mea-
sures expected shortfall makes a difference to the calculation, and we study the
sign and size of this discrepancy. Section 5 introduces our second sub-problem;
that of capital composition: following some papers in the literature review, we sup-
pose that risk-free assets of different currencies can be added to risky positions to
make them acceptable (a notion defined in Section 2), and examine the effects of this
composition. Section 6 concludes.

2 Literature Review

This being a study on expected shortfall and its application in a multi-currency
framework, it is vital that a clear description of this and related risk measures is
given. The risk measure value-at-risk (VaR) has been prevalent in industry since
the mid-1990s. It was recommended by both the Basel Committee on Banking Su-
pervision in Europe and the Securities and Exchange Commission in the US for the
first time in 1995 (Jorion, 1996). It has been maintained in spite of much criticism,
largely because of its conceptual simplicity, as well as it being relatively straightfor-
ward to compute and apply (Yamai and Yoshiba, 2002). Acerbi and Tasche (2002)
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define the VaR of a financial position X with

VaRα(X) = − inf{x ∈ R : P[X ≤ x] > α},

where α is the chosen level of significance. Note that X does not represent losses,
as is occasionally the convention, but rather the final profit-and-loss random vari-
able, and we are accordingly interested in its left-hand tail. The minus sign on the
definition allows the VaR figure to be in terms of losses, and a larger VaR to repre-
sent larger risk. Note also that the left tail would be found by setting, say, α = 0.05,
rather than the occasionally used α = 0.95.

Expected shortfall, the risk measure of focus in this paper, is given its technical
definition in terms of VaR by setting

ESα[X] = −E[X|X < −VaRα(X)].

The above definition is useful as it allows easy comparison with VaR. It highlights
the fundamental difference between the two measures – VaR gives the minimum
loss that is expected given that the worst quantile occurs, whereas expected short-
fall gives an average of the losses that would occur over and above this level.

It is obvious that summarising the risk of a position or risk into a single number
is a very useful thing to do, if the summary is an intelligent and appropriate one.
This would greatly aid risk managers and regulators, for example, who require
heuristics and rules to apply to complex and dynamic environments. However,
as is well known, it is impossible to fully summarise the risk of a position with a
single measure, and this leads into a discussion of the shortcomings of each mea-
sure. The above definitions show the first of the basic problems with VaR – given
that large losses do occur, the extent or size of these losses are not quantified. In
the light of recent financial crises, this problem holds a lot of weight. The second
prominent issue with VaR is that it is not sub-additive (Artzner et al., 1997, 1999).
This problem can be expressed mathematically as follows, in that the following
does not necessarily hold true:

VaRα(X + Y ) ≤ VaRα(X) + VaRα(Y ).

The classic example of VaR failing sub-additivity involves two independent risks
that yield losses only 4% of the time, and zero otherwise. The VaR0.05 of one of
the these individually is clearly zero, and, while the distribution of the combined
position is not immediately obvious, it is intuitively clear that a loss, and therefore
a positive VaR, will occur at the 5%-quantile. In words, according to VaR, the risk
of a sum of positions is not necessarily less than the sum of the individual risks,
which contradicts the idea of diversification. As a result, the use of VaR in risk
management may not encourage diversification of risk, and in some cases may
motivate against it (Acerbi and Tasche, 2002) (Embrechts et al., 2015). Generally
speaking, expected shortfall does account for the magnitude of tail-risk, and, in
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particular, obeys sub-additivity. In fact, it meets the more stringent condition of
coherence. The idea of a risk measure being coherent was introduced by Artzner
et al. (1997, 1999). The four properties that a risk measure must satisfy in order for
it to be coherent are presented below. In what follows, the mapping ρ : V → R
is a risk measure, with V being a space of random variables representing financial
positions, with X,Y ∈ V :

1. Sub-additivity: X,Y,X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

2. Positive Homogeneity: X ∈ V, a > 0, aX ∈ V ⇒ ρ(aX) = aρ(X)

3. Monotonicity: X ∈ V,X ≥ 0⇒ ρ(X) ≤ 0

4. Translation Invariance: X ∈ V, a ∈ R⇒ ρ(X + a) = ρ(X)− a.

Expected shortfall satisfies these properties, including sub-additivity, and is
thus coherent. A proof of the sub-additivity of expected shortfall is available in
the Appendix of Acerbi and Tasche (2002).

In addition to the positive/negative and α versus (1 − α) convention choices,
there are definitional issues surrounding expected shortfall. This point is addressed
thoroughly by Acerbi and Tasche (2002), who delineate a number of related notions
such as conditional VaR, worst conditional expectation, and tail conditional expec-
tation. These largely depend on whether, and in what combination, the inequalities
in our above definitions are strict or not. Acerbi and Tasche (2002) develop a robust
and general definition of expected shortfall, given by

ESα[X] = −α−1(E[XI{X≤xα}] + xα(α− P[X ≤ xα])),

where xα is the α-quantile of X (in fact, the lower quantile, which they carefully
define). This definitional issue is important when there are discontinuities in the
underlying loss distribution, and the robust definition is necessary to guarantee
coherence in general. In this paper we consider continuous distributions, though,
and do not require great sensitivity to this issue.

Also prominent in the literature, Föllmer and Schied (2002) extend the idea of
risk measure coherence to risk measure convexity. The main idea here is that the
risk of a position may change in a non-linear fashion as the size of the position
changes. Föllmer and Schied (2002) present the situation where the conditions of
sub-additivity and positive homogeneity are relaxed to a weaker property of con-
vexity, defined, for λ ∈ [0, 1], by

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

Convexity is related to sub-additivity and is readily interpreted in terms of diversi-
fication, but the positive homogeneity property is relaxed. This might be appropri-
ate and necessary when explicitly modelling liquidity risk, where positions are not
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assumed to scale in a simplistic way. VaR is not a convex measure of risk, whereas
expected shortfall, being coherent, is.

The idea of ’acceptance sets’ - a set of acceptable financial positions - is central
to the mathematical literature on risk measures. We draw here from the seminal
paper of Artzner et al. (1999). For a particular circumstance, we can imagine a
subset of all possible random variables (representing positions) that are considered
acceptable (because, perhaps, a business has policy that defines acceptability, or
alternatively, a regulator might simply define what is acceptable), and we call this
setA. If one starts with such a set in mind, it can induce a risk measure ρ by setting

ρA(X) = inf{m|m+X ∈ A}.

The interpretation here is thatm is a a deterministic amount needed to shift the risk
into the acceptance set. Certain conditions on A ensure that the infimum exists.
Conversely, one can induce an acceptance set from a particular risk measure by
defining

Aρ = {X|ρ(X) ≤ 0}.

This interpretation – acceptability being synonymous with the risk measure not
exceeding zero – is essential to Section 5 and will be expanded there. Because of
translation invariance (with coherent risk measures in mind), making a position ac-
ceptable can simply involve adding an amount of a risk-free asset (a deterministic
amount) until the risk measure is equal to zero.

The correspondence between risk measure and acceptance set is very impor-
tant in the mathematical literature, as authors such as Artzner et al. (1999) will
make assumptions or prove results on one side of the correspondence and explore
the implications on the other. We do not rely heavily on the very formal mathe-
matical framework, and so the above summary is sufficient for our more practical
purposes.

If a particular zero-coupon bond is assumed to be truly risk-free, the effect of
including this pay-off in a position is simply a deterministic shift of the distribu-
tion. But if there is more than one currency in a model, deterministic amounts can
be paid out in each currency, and not be deterministic when denominated by an-
other currency. The question then arises as to whether adding risk-free assets in
several currencies might lead to greater efficiency in capital management. Another
question that arises in this context is the effect of measuring the risk in terms of
different currencies (i.e., allowing different currencies to denominate the position).
It turns out that expected shortfall varies depending on the currency used to de-
nominate the position (the aggregation currency), and, in fact, Artzner et al. (2009)
show that this incompatibility exists for all coherent risk measures. VaR, on the
other hand, has been shown to be currency-invariant, in that the acceptability of a
financial position does not depend on the aggregation currency (Koch-Medina and
Loubet, 2014).
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While we are not aware of literature studying the composition of risk-free as-
sets of different currencies, Koch-Medina and Loubet (2014) have studied the issue
of aggregation currency. They present a one-period, dual-currency theoretical ex-
amination of the currency or exchange rate risk that arises in the situation where
a financial position is made up of foreign and domestic assets. They question the
contribution of currency risk to the total risk of a portfolio. In order to do this
they separate currency risk into translation and structural risk, where translation
risk arises purely from the need to translate assets or liabilities of a position into
one currency for risk aggregation, and structural risk is the general uncertainty of
where the exchange rate will lie. They present a theoretical framework for captur-
ing structural risk. Their highly theoretical study will be well accompanied by our
much more practically-oriented one.

Before developing a framework to study these two issues of aggregation cur-
rency and capital composition, we end the section with some general remarks on
expected shortfall and risk measurement, based on our review of the literature.

Research regarding the robustness of risk measures is becoming increasingly
well-developed. Soon after its introduction as an industry standard, Jorion (1996)
heeded the risks associated with VaR estimates and proposed a methodology to
analyse estimation error and improve accuracy in the estimation of VaR. As the
suitability of VaR has come under question, the method of reaching a VaR figure
has been addressed in detail. Embrechts et al. (2013) presented a thorough exami-
nation of theoretical bounds for the estimation of VaR when the dependence struc-
ture between various sources of risk are unknown. This research has since been
extended to other risk measures, most notably expected shortfall (Embrechts et al.,
2015). The idea of robustness for a risk measure is crucial for its usefulness in regu-
lation and business practice, while aggregation-robustness specifically relates to a
risk measure’s insensitivity to the dependence structure of the underlying risk fac-
tors (Embrechts et al., 2015). Under their own definition of aggregation-robustness,
expected shortfall was found to display a narrower spread of uncertainty than VaR
in the face of model uncertainty. However, it has been noted that under different
definitions of robustness, there are contrasting views in the literature as to which
of VaR and expected shortfall are more robust (Embrechts et al., 2014).

The Basel Committee on Banking Supervision (BCBS, 2012) specified a move
towards expected shortfall as the risk measure used in practice. The operational
challenges of the move were acknowledged but believed to be outweighed by the
need to better account for risk of extreme negative cases (tail-risk). In an academic
response to the change in regulatory recommendations (Embrechts et al., 2014), the
unfavourability of the back-testing process for expected shortfall compared with
that for VaR is cited as a crucial challenge. See Acerbi and Székely (2014) for a dis-
cussion on back-testing expected shortfall in contrast to VaR. Due to this practical
disadvantage, as well as the currency (in)variance that is addressed directly in this
paper, expected shortfall’s superiority over VaR as a risk measure remains unclear,
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despite its theoretical advantages. The practical implementation of expected short-
fall as a risk measure is addressed in detail in this research, and hence what follows
will provide insight into the ongoing evaluation of its performance.

3 Modelling

We focus on a parametric/distributional approach to estimating risk measures. See
Coleman and Litterman (2012) for a thorough treatise on the different methods.

We therefore need to introduce the models we use in our estimates of expected
shortfall, as defined in the previous section. After outlining the models and pro-
viding their discretisation schemes, we will address their estimation, and finally
give a few details about the expected shortfall computation.

3.1 The models

The Constant Elasticity Variance (CEV) model is a stochastic volatility diffusion
model, which was introduced by Cox and Ross (1976) and is characterised by the
following SDE:

dSt = µStdt+ σSαt dWt,

where µ, σ, α are constant parameters, and {Wt, t ≥ 0} is a standard Wiener pro-
cess.

The model presents the following simple relationship between local volatility
and stock prices:

σ(S, t) = σSα−1.

Here, (α − 1) is the so-called elasticity of return variance with respect to price.
In the case of 0 < α < 1 , there is an inverse relationship between volatility and
price. This is the leverage effect; the tendency for volatility to increase when asset
price falls. Conversely, when α > 1, we will observe an inverse leverage effect,
where volatility of a stock rises as its price rises. Because of this, and also because
of negative bias in volatility skewness, the α > 1 case is not given much interest.

Several empirical investigations approved the fact that the variance of stock
returns and stock prices have a strong inverse association (Schroder, 1989). In par-
ticular, Beckers (1980) and Christie (1982) studied the CEV option pricing model,
where they found that variance elasticities are generally negative and concluded
that CEV model could describe market price behaviour much better than the Black-
Scholes model (introduced below).

It is a well-known fact in practice that the probability density function is usually
defined by higher kurtosis (known as being leptokurtic) and by a heavy decay of
tails (Cont, 2001). Therefore, the case 0 < α < 1 is considered more realistic, since
it can produce a fatter left tail.
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An Euler method can easily be specified for the CEV model. It consists of the
following algorithm: Ŝt0 = St0 for i = 0, ..., n− 1:

Ŝti+1 = Ŝti + µŜti∆t+ σŜαtiεi
√

∆t,

where εi are i.i.d. standard Gaussian random numbers, and ∆t = ti+1 − ti.
However, in our problem we will use the Student t-distribution (instead of the
Gaussian), which is an example of a distribution with fat-tails, where the param-
eter degrees of freedom allows control over heaviness of the tail (at the limit of
infinite degrees of freedom, the distribution converges to the standard Gaussian).
We choose this in order to capture the stylised fact of heavy-tail (Cont, 2001). Then
our discretised scheme is simply adjusted thus:

Ŝti+1 = Ŝti + µŜti∆t+ σŜαtiTi
√

∆t,

where Ti are t-distributed random variables.
In summary, it can be said that our CEV model captures the stylised facts of the

leverage effect and heavy-tails. Note that we are not concerned with some stylised
facts – Cont (2001) shows that there tends to be gain/loss asymmetries in return
data, but we are not concerned about the gain side of the distribution, and can
lower the importance we place on this stylised fact.

The Black-Scholes-Merton (BSM) model is a special case of the CEV model with
α = 1, that is, when stock prices follow Geometric Brownian Motion (GBM):

dSt = µStdt+ σStdWt,

and the local volatility is constant:

σ(S, t) = σ.

The BSM model was developed originally by Black and Scholes (1973) and Mer-
ton (1976). In the next sections, the BSM model (also applied to the exchange rate) is
referred to as our basic model. The CEV model, and the mean-reverting log-normal
and Heston models (yet to be introduced) are more complex models that will be
used thereafter in an aim to more realistically capture the stock- and exchange rate-
dynamics.

In what follows, a mean-reverting log-normal diffusion model, which evolves
according to the following SDE, is presented:

dXt = a(b−Xt)dt+ σXtdWt,

where b > 0 is a long run mean, a > 0 is a reversion speed, σ is the volatility
coefficient and {Wt}t≥0 is a standard Wiener process.
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The GARCH(1,1) model, which is the discrete version of the above model, is
popular for derivatives pricing and widely used in general modelling of the fi-
nancial market (Zhao, 2009). In particular, it was investigated and suggested for
modelling the foreign exchange market (Erdemlioglu et al., 2013).

The Euler-Maruyama discretisation scheme for the mean-reverting log-normal
model is given by the following:

X̂ti+1 = a(b− X̂ti)∆t+ σX̂tiεi
√

∆t,

where εi are i.i.d. Gaussian random numbers.
The Heston model is a stochastic volatility model describing a joint process

between stock price and volatility. The general Heston model assumes that the
asset price is described by the following SDE:

dSt = µStdt+
√
νtStdW

S
t ,

where µ is the drift of the stock process and instantaneous squared volatility νt
is defined by the CIR process:

dνt = k(θ − νt)dt+ σ
√
νtdW

ν
t ,

where dWS
t , dW

ν
t come from correlated Brownian Motions with correlation co-

efficient ρ∈ [−1, 1]; k > 0 , θ > 0 is a mean reversion rate and level respectively;
σ > 0 is a volatility-of-volatility (Heston, 1993).

If the parameters satisfy the following Feller condition, then the mean-reverting
square-root dynamics for the volatility will remain strictly positive:

2kθ < σ2.

The Heston model captures the stylised facts of volatility clustering and the
leverage effect. Moreover, volatility is mean-reverting.

The Euler discretisation scheme for the Heston model is defined by the follow-
ing algorithm:

Ŝti+1 = Ŝti + µŜti∆t+
√
ν̂tiŜtiε

s
i

√
∆t

ν̂ti+1 = ν̂ti + k(θ − ν̂ti)∆t+ σ
√
ν̂tiε

ν
i

√
∆t

where εSi is a standard normal random variable that has correlation ρ with ενi .
Even if the Feller condition is met, one may need to adopt a truncation or reflection
scheme in the discrete implementation to preclude negative values going into the
square-root volatility.
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3.2 Estimation

The models require parameter estimates. Historical estimation of parameters is an
extremely large topic, and there are many methods from which one can chose.

Firstly note that historical estimation is quite different from calibration to pre-
vailing market data. The former, which is what we attempt here, takes averages, in
a certain sense, over a period of history, which is assumed to have some stationary
properties. The real-world measure is necessarily involved. Calibration to prevail-
ing prices does not involve a period of history, but instead determines the value
of risk-neutral parameters assuming the model is correct. Some of the real-world
and risk-neutral parameters are common, so the two approaches can sometimes be
combined (the circumstances of the modelling entity will dictate whether this ap-
proach is taken). Here, however, we focus on the historical approach, and do not
have any derivative price information as an input.

We estimate the BSM models in the standard and straightforward way; we take
daily log returns of the relevant series and estimate their mean and volatility, and
then convert these to parameter estimates using the classic solution to the Geo-
metric Brownian Motion stochastic differential equation. Correlations are straight-
forward to estimate; the standard formula is applied to the daily log returns. We
provide the estimates in the next sub-section.

The CEV and Heston models are more difficult to estimate. Both models are
used primarily for derivative pricing and hedging, and therefore the literature ad-
dresses their calibration more heavily. The primary method to estimate the Hes-
ton model, in the absence of derivative price information, is Markov Chain Monte
Carlo (Cape et al., 2015). Implementing such an approach has proven to be beyond
the scope of this paper, and we were unable to develop an alternative method. We
will at least mention some of the experiments we would like to have performed
using the Heston model, had we estimated the model suitably.

The CEV model, having fewer parameters, can be estimated with a simple
method-of-moments approach. As described above, including the degrees of free-
dom of the t-distributed increments, there are four parameters to estimate. We can
therefore equate the first four moments by manipulating the four parameters. The
moments are not known in closed-form, so they need to be estimated by Monte
Carlo. The sampling errors in each computation that a numerical solver employs
are a challenge to any optimisation algorithm, and it requires many different initial-
isations to ensure avoidance of local minima. As seen below, we end up achieving,
if not the true global minimum, a very close fit to the first four moments. We used
a sum of squared percentage differences as the objective function to be minimised.
The mean-reverting currency model only has three parameters, so a close fit to four
moments is not possible, but using the same objective function, and a number of
different initialisations, a reasonable fit is attained (these are shown below).
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3.3 Computation

There are straightforward numerical estimates for both VaR (simply the standard
quantile estimator), as well as, expected shortfall (which then simply involves av-
eraging the sample points in the empirical tail). See Nadarajah et al. (2014) for an
outline of some of the numerical details here in a variety of parametric environ-
ments.

In the case of a BSM-modelled stock, the VaR and expected shortfall are known
in closed-form. We can test our Monte Carlo coding algorithm by comparing our
estimates with their target. Both measures appear to converge at roughly the same
rate. Their two different natures (expected shortfall has some averaging, while VaR
is simply based on order statistics) make this difficult to discern a priori. Note also
that errors from the discretisation scheme are also present, because the closed-form
values are of course based on the full continuous model.
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Figure 1: Monte Carlo convergence test

Besides applying antithetic samples (all of the random innovation terms are
symmetric around zero and this is therefore easy to do), no other numerical tech-
niques are necessary to ensure that the Monte Carlo is fast and accurate enough to
make the estimation feasible.

Our fundamental data includes three time-series, with daily entries over a pe-
riod of just over four years. Two of these are stock prices, which we refer to as
LDNS1 and NYS1, which are denominated in different currencies. We refer to the
currency of the second as domestic, and use this as our primary denomination ba-
sis. The third series, ER, is the exchange rate: the amount of domestic currency
needed to purchase one unit of foreign. We treat the series in an abstract fashion
and do not consider the underlying economics in an explicit way.

Our estimated parameters are displayed in the Tables 1, 2 and 3 below.
Table 4 shows the moments of the CEV estimation procedure. With four de-

grees of freedom, we achieve a very close fit between the empirical first four raw
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Table 1: Basic (BSM) model parameter estimates

µ σ ρ(LDN1, ·) ρ(NY1,·) ρ(ER,·)
LDN1 0.1424 0.1676 1 0.0422 0.0268
NY1 0.1299 0.1865 0.0422 1 -0.0125
ER 0.0084 0.0743 0.0268 -0.0125 1

Table 2: CEV model parameter estimates

µ σ α ν

LDN1 0.1351 0.1398 0.9101 3.7988
NY1 0.1362 0.0899 0.9410 6.5102

moments and the (Monte-Carlo-estimated) ones implied by the model. The fit for
the currency model is of course not as close, but we show something of a reasonable
fit.

We are almost in a position to study our two sub-problems. In the next section,
we refer to random variables X,E and Y . X is the random variable relating to the
profit-and-loss of an initial investment of 50 units in the NY1 stock, which we call
domestic, for a period of one year (the initial investment is subtracted so that we are
dealing with profit-and-loss rather than a gross final position). E is the distribution
of final exchange rates - the cost of a unit of foreign currency, so that X and E have
the same basis. Y represents profit-and-loss of the foreign stock, denominated in
foreign currency. The initial investment is also 50 units in domestic currency terms,
so that the total position costs 100 domestic units to enter, and the random variable
of the final position, X + Y E, represents the profit-and-loss on this investment in
domestic terms.

Our realisations of X,E and Y are generated by 50 Euler steps over the fixed,
one-year horizon. This relatively small number of steps allows the computation to
be feasible, and is not a concern because we are not especially interested in close
convergence to the continuous-time models (and this exact scheme was used in the
estimation procedure).

4 Aggregation Currency

In this section, we study the issue of choice of aggregation (or numeraire) currency
when calculating expected shortfall. As mentioned in the introduction, expected
shortfall can depend on this choice; in other words, expected shortfall calculated in
the domestic currency, thus

ESα = ESα[X + Y E], (1)
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Table 3: Full ER model parameter estimates

a b σ

ER 2.5273 1.5386 0.1224

Table 4: Matched moments
LDN1 NY1 ER

Empirical Estimated Empirical Estimated Empirical Estimated

Moment 1 0.1309 0.1301 0.1342 0.1323 0.8784 1.0102
Moment 2 0.0264 0.0266 0.0239 0.0249 2.8729 3.0094
Moment 3 0.0060 0.0059 0.0050 0.0052 0.0335 0.0170
Moment 4 0.0016 0.0016 0.0012 0.0012 0.0241 0.0272

is not necessarily equal to the expected shortfall aggregated in the foreign currency,
but still expressed in domestic terms, namely

ES∗α = ESα[X/E + Y ].E0, (2)

where we have followed the conventions of the previous section. In particular, our
risk measures are calculated at the one-year horizon; that is, only the variation at
that point in time, and nothing more frequent, is considered. Note that ES∗α in-
volves the conversion back to the domestic currency (multiplication by E0), so that
the two metrics are comparable in principle (in the next section, expected shortfall
will explicitly be considered as the amount of capital to be added to the position
now – hence the E0 – to make it acceptable). They turn out not to coincide in gen-
eral however, and we study this discrepancy, firstly in the context of our elementary
BSM-type models, and then in the context of our full modelling framework. Specif-
ically, we attempt to identify and isolate particular effects driving the aggregation
discrepancy.

4.1 Basic models and principles

We begin by presenting, in Table 5, expected shortfall calculations using our BSM
models, at a few levels of α.

Table 5: BSM calculations
α 0.01 0.02 0.05 0.1

ESα 20.105 17.479 13.366 9.799
ES∗α 20.296 17.755 13.615 10.064
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Notice firstly that the figures are of the order of magnitude one would roughly
expect, considering an initial investment of 100 – given that we are in the worst per-
centile (α=0.01) of cases, say, we expect to lose 20 units. The low correlation between
the different risks ensures that this is not especially high. Secondly, the discrepancy
between the two aggregation currencies is not negligibly small. This phenomenon,
induced by straightforward and standard modelling, is of different significance to
different kinds of participants, and we elaborate on these perspectives towards the
end of the section. We first attempt to understand the principles at work in this
discrepancy.

Assuming the exchange rate to be constant turns out to be a natural starting
point for the investigation, because expected shortfall does not depend on the
aggregation currency in this case. Constant currency can be recovered from our
model by setting µE and σE to zero, and indeed the aggregation discrepancy can
be seen to vanish in Table 6 (there is no Monte Carlo sampling variation visible
as we have used common random numbers). Here, ES∗α involves an initial cur-
rency conversion and then the exact opposite conversion at the end of the period,
yielding the exact same result as ESα.

Table 6: Constant currency

α 0.01 0.02 0.05 0.1

ESα 19.175 16.347 12.579 9.080
ES∗α 19.175 16.347 12.579 9.080

If, however, the exchange kept deterministic (σE = 0) but allowed to vary with
time (µE 6= 0), an aggregation discrepancy is introduced. Our BSM-type currency
model involves a simple drift µE , which we manipulate in Table 7.

Table 7: Drifting currency

µE -0.1 0 0.0084 0.1

ES0.05 17.819 13.715 13.461 9.297
ES∗0.05 8.985 13.287 13.693 17.264
ES0.05 − ES∗0.05 8.834 0.429 -0.231 -7.966

Notice that our estimated value, µE = 0.0084, recovers our estimate for ES0.05

in Table 5 above. The interpretation of this trend effect is straightforward; if you
(and your model calculating expected shortfall) expect a currency to strengthen, as
in the right-hand side of Table 7, you are better off measuring your risks in terms
of this currency – ES0.05 decreases as we move right in the table, reflecting less risk.

To the end of analysing the full expressions (1) and (2), we first look at currency
and position interactions (that is, the random variables X/E and Y E and their
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expected shortfalls), and then turn to the addition of the two positions. To make
the comparisons fair, we set E0 = 1 (which eases the exposition) and make the
currency process driftless (to remove the trend effect). Table 8 compares ESα[XE]
and ESα[X/E] for various levels of correlations between the Brownian motions
driving the stock and the currency.

Table 8: Currency correlation

ρX,E -1 -0.5 0 0.5 1

ES0.05[X] 23.628 23.567 23.717 23.744 23.646
ES0.05[X/E] 34.072 30.301 25.553 19.696 11.124
ES0.05[XE] 11.648 20.147 26.121 30.656 34.311

When X and E are well-correlated, the quotient X/E tends to have less vari-
ation (as movements in the numerator tend to be matched by movements in the
denominator) and thus a lower expected shortfall. The intuitive analogue pattern
emerges when comparing X and XE. This currency-correlation effect is one com-
ponent of the aggregation discrepancy. While there are other effects, a positive
correlation between X and E will decrease the risk in X/E and therefore decrease
ES∗α.

Table 9 shows the effect of, all other things equal, converting the same position
to and from a particular currency (when the rate is unit-initialised and driftless to
make the comparison fair).

Table 9: Convexity

σE 0 0.1 0.2 0.3

ES0.05[XE] 23.636 27.777 37.289 47.951
ES0.05[X/E] 23.609 27.056 34.725 43.037
Difference 0.027 0.721 2.564 4.914

Although one might naïively think that multiplying and dividing by exchange
rates that center around one would have the same effect, this ignores the well-
known Jensen’s inequality. The position part of the hyperbolic function is posi-
tively convex, which can be seen to increase expectation and thereby lower the
measured risk. The effect is more pronounced for high variability in the currency.

Before pulling all the effects together, we examine the diversification effect that
arises when measuring a joint position; in other words, we comment on how ESα[X+
Y ] relates to ESα[X] + ESα[Y ] (taking currency out of the picture, in an attempt to
isolate effects). As outlined in the introduction, we require our risk measure to re-
spect sub-additivity, which is to say that the risk of the positions must be less than
or equal to the sum of the individual risks. Equality arises when the risks offer no
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diversification at all, for instance if you add two identical risks:

ESα[X +X] = ESα[2X] (3)
= 2ESα[X] (4)
= ESα[X] + ESα[X], (5)

where the positive homogeneity property is used to move from (3) to (4). Using
expected shortfall as a risk measure, and assuming a model and calculation frame-
work, the diversification between two risks can be measured by how much lower
the combined risk is compared to the sum of two individual ones. This is easily
demonstrated with the BSM models – Table 10 looks at this difference for many
levels of correlation.

Table 10: Diversification effect
ρX,Y -1 -0.5 0 0.5 1

ES0.05[X] 23.697 23.588 23.619 23.644 23.695
ES0.05[Y ] 23.630 23.625 23.684 23.615 23.673
ES0.05[X + Y ] -19.079 13.328 27.940 38.745 47.123
ES0.05[X + Y ] 66.405 33.885 19.363 8.513 0.245
−ES0.05[X]− ES0.05[Y ]

While the dependence structure between the two stocks is very easily controlled
in this context (it is measured by the single coefficient ρX,Y ), there are modelling
and practical situations where things are not so clear. For instance, we wanted to
explore two stocks from the Heston model, where, say, the two volatility processes
are well-correlated. This measure of diversification – the amount of expected short-
fall reduction in the composition – is an interesting one. It is dependent on the risk
measure used, and the underlying modelling, but is a potentially informative way
of summarising the relationship between the two risks.

As an example, let us again consider our ES∗0.05 calculation using the BSM-type
model in Table 5. With the heuristic effects above, we can reconcile the result that
ES∗0.05 > ES0.05. Firstly, µE is positive; exposure to this risk is, all other things equal,
beneficial to your position and will decrease the measure (in this case ES0.05 is
clearly more exposed toE). Reinforcing this, the one estimated negative correlation
induces a currency-correlation effect (because ρXE < 0) and a diversification effect
that both increase the discrepancy of ES∗0.05 over ES0.05.

We might then conceive another set of parameters that would cause the oppo-
site sign of the discrepancy, that is, ES∗0.05 < ES0.05.

The first adjustment we make is to remove currency drift so as to negate the
trend effect; this results in a small reversal of the ordering of the two expected
shortfalls (Table 11). Instead of this, we might reverse the sign of the correlation
between the stock and the exchange rate, as well as amplify it. This results in a
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Table 11: Reversal example

original µE = 0 ρXE = 0.2 µE = 0, ρXE = 0.2

ES0.05 13.307 13.720 14.325 14.641
ES∗0.05 13.664 13.344 12.673 12.434
ES0.05 − ES∗0.05 0.357 -0.376 -1.652 -2.207

much larger reversal of the difference in expected shortfall. The two effects above,
when combined, result in an even greater reversal of the difference.

4.2 Full models

We now consider the CEV model of stock processes, with a mean-reverting log nor-
mal model of exchange rates. As before, we present expected shortfall calculations
in Table 12 for a few values of α.

Table 12: CEV calculations
α 0.01 0.02 0.05 0.1

ESα 5.858 3.835 1.245 -1.025
ES∗α 5.848 4.031 1.448 -0.856

These values might seem surprisingly low (negative, even, for α = 0.1), when
compared to the BSM values, since we would expect the CEV model to produce fat-
ter tails in the portfolio value distribution, and hence to raise the expected shortfall.
This discrepancy might be explained, however, by comparing the (raw) empirical
moments of the one year log return series of the two stocks (LDNS1: 0.0016, NYS1:
0.0012), to those of the BSM (LDNS1: 0.0054, NYS1: 0.0065). It appears that the
actual return series exhibit narrower tails than the BSM. This effect is not present
in the CEV model, since the parameters were chosen so as to match the empirical
moments of the return series.

The introduction of mean reversion in the mean-reverting log normal currency
model augments the convexity effect mentioned previously. In particular, holding
all other parameters fixed, we vary exchange rate volatility and mean reversion
rate. We see in Table 13 that as the mean reversion rate increases, the convexity
effect becomes less pronounced (sampling errors notwithstanding) across different
currency volatility effects. This is because a higher rate of mean reversion reduces,
in effect, the overall volatility of the process, and thus reduces the convexity effect.

As mentioned, we would have liked to have experimented with the Heston
model in particular, but time limitations unfortunately precluded this.
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Table 13: Mean-reverting currency

a σE

0 0.1 0.2 0.3
0.5 ES0.05[XE] 4.621 10.820 22.262 33.747

ES0.05[X/E] 4.735 10.298 20.835 30.764
Difference -0.114 0.522 1.427 2.982

2.53 (estimated) ES0.05[XE] 4.436 6.490 11.754 18.038
ES0.05[X/E] 4.675 6.556 11.262 17.318
Difference -0.239 -0.066 0.492 0.721

10 ES0.05[XE] 4.700 5.175 6.878 9.582
ES0.05[X/E] 4.269 5.004 6.631 9.218
Difference 0.431 0.171 0.247 0.364

4.3 Perspectives

While we have pointed out some of the principles that affect the currency aggre-
gation gap, there are a few different perspectives from which one can view the
discrepancy.

A regulator might be interested in whether, and to what extent, changing the
aggregation currency would have an effect on the entities they supervise. The
above offer some heuristics to answer the question. For instance, if they are con-
sidering a very volatile exchange rate, they will know that the aggregation dis-
crepancy will be large (as it is zero in the constant-currency case), and giving busi-
nesses the option to elect one of the currencies might decrease their apparent risk
measures.

From the point of view of an entity, their goal might be purely cynical, in want-
ing to take as much risk as the fine print of the regulations will allow. As above,
the basic heuristics will probably allow you to identify the favourable currency,
and some basic quantitative modelling will allow you to estimate its magnitude.
On this view, the option to elect your measurement currency can be a valuable one.

An entity will also, of course, be concerned about its own risk management.
What should their reaction be to, for instance, ES∗α increasing but ESα remaining
the same? We could easily think of an combination of factors, using the above re-
sults, that would cause this. It is not completely obvious. An actuarially-based
answer depends on whether the liabilities (in the general sense) are considered to
be denominated in domestic currency; in this case, then ESα is extremely impor-
tant. An international entity might consider its liabilities to be denominated in
many currencies, and might therefore be concerned with both ES∗α and ESα.
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5 Capital Composition

This section addresses the issue of risk capital in the context of a multiple currency
environment.

We have seen that the expected shortfall measurement itself can vary with the
choice of aggregation currency. Once an aggregation choice is made and an ex-
pected shortfall figure calculated, recall from the introduction the important and
often-used interpretation: capital, generally in the form of a risk-free reference asset,
must be added to the position until expected shortfall is zero – that is, until the
position is acceptable.

Adding capital in this way has the simple effect of shifting the risk measure
(so one simply translates – recall the axiom of translation invariance – until one
reaches acceptability), but only when the reference asset corresponds to the aggregation
currency. Suppose we are measuring the expected shortfall of a risk Z (expressed
in the aggregation currency), and, pre-empting the need to make the position ac-
ceptable, we add an amount a in domestic currency and an amount b/E0 in foreign
currency. We then have

ESα
[
Z + a+

bE

E0

]
.

The foreign amount b/E0 is set in this way so that its initial cost in domestic terms
is b. This random variable E is necessary to convert this risk-free investment back
for domestic aggregation. As mentioned, the effect of the domestic capital is pre-
dictable; we have

ESα
[
Z + a+

bE

E0

]
= ESα

[
Z +

bE

E0

]
− a, (6)

but the effect of the foreign capital is not trivial; it involves, from the point of view
of domestic aggregation, addingE-risk to the position, which will interact with the
Z-risk in some way.

We assume that no interest is earned on the reference investments. This is more
or less the case in the two economies which provide our data, but can easily be
accommodated – the a on either side of (6) would need to be related by an accumu-
lation factor.

A regulator may very well allow, or consider allowing, an entity to post capital
in more than one currency, and we will expand on the possible perspectives on this
optionality later in the section. Before that, we analyse mathematically this prob-
lem of capital composition, with the particular goal of optimising the composition.

Before performing calculations, we differentiate between three approaches that
one may take to this acceptability and optimisation problem. Firstly, one may con-
sider a fixed ratio in one’s capital composition. Achieving acceptance by this fixed-
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ratio approach amounts to solving

min{a+ ka
∣∣ESα[Z + a+

(ka)E

E0

]
= 0, a ∈ R+},

where k is the ratio of foreign to domestic capital, perhaps specified by the regula-
tor. Alternatively, one may take a fixed-capital approach, where the amount in the
foreign reference asset, say, is fixed, and the the domestic capital is increased until
sufficient; that is,

min{a+ b
∣∣ESα[Z + a+

bE

E0

]
= 0, a ∈ R+, b given}.

This might be appropriate if, for instance, a business happens to have a certain
amount of foreign capital available, but raising any more would incur liquidity
costs. Finally, one may take a global approach,

min{a+ b
∣∣ESα[Z + a+

bE

E0

]
= 0, a, b ∈ R+},

where the ratio between foreign and domestic capital becomes flexible in the opti-
misation.

5.1 Basic models and principles

As a first approximation we consider the expected shortfall on our portfolio for
various combinations of local and foreign capital. Figure 2 shows how adding
enough capital will bring the position below the zero plane into the acceptable
region.

We then consider the total capital required (in domestic currency) to make our
portfolio acceptable, for various ratios of capital holdings. As can be seen in Figure
3 the minimum capital requirement is obtained when fully invested in the local
reference asset.

If we allow the correlation between the foreign stock and exchange rate to vary,
as in Figure 4, we see that a minimum capital value can be obtained by investing
fully in the foreign reference asset when the foreign stock is very negatively corre-
lated with the exchange rate. The opposite holds true when a very high positive
correlation exists.

Varying the volatility of the exchange rate (Figure 5), keeping all else fixed,
simply increases the curvature of these lines. It does not, however, change the
optimal capital allocation. Similarly, we can see in Figure 6 that increasing currency
drift does not alter the optimum capital allocation, but does raise the overall level
of capital required.

We now consider the joint effect of the capital allocation ratio and correlation
between the foreign stock and exchange rate. Figure 7 shows that for all capital
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Figure 2: Expected shortfall for different capital holdings
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Figure 3: Capital required for different ratios

compositions, a smaller capital requirement can be obtained for a foreign stock
which is more negatively correlated with the exchange rate. For very negative cor-
relations, an investment fully in the foreign reference asset is preferable, whereas
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Figure 4: Varying ρY E

for very large positive correlations the opposite holds true. If, however, we increase
the exchange rate volatility to 0.3, then an investment fully in the foreign asset is
never preferable (Figure 8). This added volatility also increases the curvature of
the surface.

Holding correlation fixed, and allowing the stock allocation to vary (with short-
ing permitted), we see that a minimum capital amount can be achieved by hold-
ing an equal weighting of the two stocks (see Figure 9). For portfolios which
have a greater long holding in the local stock, foreign capital provides a minimum
amount. The opposite is true for portfolios which have a greater long holding in the
foreign stock. Figure 10 shows capital requirements, but at a higher exchange rate
volatility. In particular, it shows that the riskiest position, in our example, is one in
which the investor is invested fully in the foreign reference asset, as well as being
short one unit of the foreign stock (since this position has the greatest exposure to
exchange rate risk).

Finally, in Figure 11, we consider the minimum capital requirement (allowing
the capital allocation ratio to vary freely; that is, to take the optimum at each point),
that can be achieved for different stock allocations and correlations between the for-
eign stock and exchange rate. This shows that the minimum capital requirement,
for a fixed stock allocation, falls as the correlation between the foreign stock and
the exchange rate decreases. As correlation falls, the stock allocation minimising
shifts more towards the foreign stock.

Since the minimum capital requirement occurs for a portfolio invested fully in
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Figure 5: Varying σE
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Figure 6: Varying µE

either the local or foreign reference asset, we consider the difference between the
minimum capital surface, and the capital requirement when fully invested in the
local reference asset (Figure 12). This shows, roughly, the crossover boundary at
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Figure 7: Varying composition and ρY E

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1
10

15

20

25

30

35

40

45

50

55

CorrelationCapital Composition Ratio

C
ap

ita
l R

eq
ui

re
d 

(U
S

D
)

Figure 8: Varying composition and ρY E

which an investor would switch between being fully invested in the local reference
asset, and fully invested in the foreign one. It also shows the value of the option of
being allowed to post capital in the foreign currency in addition to the local one.

25



−1
−0.5

0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1
10

20

30

40

50

60

70

80

Stock(Allocation(RatioCapital(Composition(Ratio

C
ap

ita
l(R

eq
ui

re
d(

U
S

D
)

Figure 9: Portfolio and composition joint effects
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Figure 10: Portfolio and composition joint effects

5.2 Full models

We attempt, in a similar fashion to the BSM, to find an optimal capital allocation
for the CEV model with mean reverting currency. Using our estimated parameters
we get Figure 13, indicating that it would be optimal to invest fully in the local
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Figure 11: Optima and for different correlations and allocations
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Figure 12: Difference between optimal and fully local capital

reference asset. Figure 14 plots the same, but for a currency volatility of 0.3. All
this effects is the minimum currency value, and the curvature of the line. It does
not, however, influence the optimal capital allocation. The most striking feature
is how low the capital requirements are, which is explained by precisely the same
reasons cited in the discussion around Table 12.
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Figure 13: CEV capital compositions
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Figure 14: CEV capital compositions

5.3 Perspectives

As with the aggregation currency, we can conceive a variety of perspectives on
this problem. The regulator might be considering allowing entities the multiple
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currency option, and the results in this section will provide some heuristics as how
to think about this problem.

An entity might be curious to get a sense of the value of this option, and deter-
mine whether formally optimising would be materially beneficial.

6 Conclusion

We have undertaken a literature review on the general topic of risk management
and risk measurement. We have focussed on expected shortfall and therefore on
coherent risk measures. The literature survey also included the few papers dealing
with multiple currencies in this context.

We went on to establish a modelling framework with which we could perform
computations of expected shortfall and thereby study the issues of aggregation
currency and capital composition.

With regard to aggregation currency, we calculated the aggregation discrepancy
on a position in the two shares with both our simple and full models. We then
attempted to isolate the effects at work and retrospectively understand why the
discrepancy was of the sign that it in fact was. While we were unable to complete
the analysis we envisaged with our complex models, the rules we established could
be useful heuristics to different parties considering this matter.

With regard to capital composition, we established a framework in which one
can consider providing risk capital in more than one currency and attempt to op-
timise the composition. We confirmed some intuitive factors at work in this op-
timisation and performed calculations under a variety of models and conditions.
Again, we were not able to add to the basic results to our satisfaction. We found
the optimisation problem, under a wide variety of circumstances, has a boundary
solution: that is, one is very likely to want to provide capital in full in one or the
other currency, if one is allowed to do so.

We end by outlining a few research questions that one could address in a con-
tinuation of this work.

Further research questions

Because of the complex nature of the underlying problem, and the time limitations
of the project, it is quite easy to outline a few problems that could be the basis for
future work. These are listed below.

• Would the results be enhanced by qualitatively different data (e.g. access to
historical derivative prices to reflect on volatility states, or series with more
pronounced correlation structures)? More sophisticated estimation methods
would be required for this, taking cognisance of the fact that derivative prices
are often considered under the risk-neutral measure only, whereas risk calcu-
lations are under the real-world measure.
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• What insights and results can be obtained when the Heston model is esti-
mated and used in the aggregation setting of Section 4? It is the ability of
the this model to capture richer correlation structures (e.g. between volatility
processes) that makes this potentially interesting.

• Would anything important be added to the analysis if more than two assets
were involved in the position? Are there any interesting asymptotic results
or features that hold (for example, the occurrence of boundary solutions to
the capital composition problem) when the number of assets becomes large?

• Can the measure of diversification defined in Section 4 – the amount of ex-
pected shortfall reduction in the composition of positions – be interrogated
and studied further in a useful way? While the measure is model and hori-
zon dependent, it has the a priori benefit of focussing directly on the loss-tail
(capturing all of the dependencies at work on the extreme side of the final
distribution).

• What would the impact of more sophisticated models be in the context of
Section 5? Does our result of boundary solutions hold under these models?
The motivation for this point is that, due to time limitations, we could not
extend our analysis much beyond our basic models.
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1 Introduction

This report is concerned with the optimisation of the initial margin (im) and de-
fault fund contribution (df ) demanded by a central clearing counterparty (CCP) in
the clearing of derivatives. Also discussed is the formulation of optimal liquida-
tion strategies of the positions of defaulting clearing members. Before exploring
the technicalities of the models used, it is important to understand the context in
which this investigation was motivated.

The financial crisis exposed systemic fragilities in the global financial system: the
interdependence between large financial institutions was shown to be susceptible
to catastrophic contagion effects. In the aftermath of the crisis, a number of ongo-
ing regulatory initiatives have been undertaken to reduce the overall counterparty
risk in the system. One such initiative, and perhaps the most significant, is the shift
to central clearing of OTC derivatives. Regulations pushing for the move to central
clearing are the Dodd Frank Act in the US and the European Market Infrastructure
Regulation (EMIR) in Europe. Depending on the product and the classification of
the derivatives, estimates suggest that 50− 80% of the OTC derivative market will
eventually transact through a CCP (InteDelta, 2013).

Two major risk mitigation features of CCPs are the requirements to post an initial
margin with daily maintenance coming from the variation margin and contribute
to the pooled default fund. This report is concerned with optimising the allocation
of these values, from the point of view of competing CCPs. CCPs, in competition
with one another, are incentivised to minimise their margin demands - to attract
clients while maintaining a level of margins that protects the system from default
by any number and combination of counterparties. This leads to an optimisation
problem: how best to minimise margins while protecting the integrity of the sys-
tem.

The concept of initial margin is a long-held feature of financial markets. It is most
pertinent in the context of exchange traded derivatives and cash equity whereby
members of the exchange post initial margins and settle the daily variation mar-
gin. In the context of OTC derivatives, the concept of initial margin is less well
developed although it is similar to the independent amount under a credit support
annex, in the terminology of the International Swaps and Derivatives Association
(ISDA) (InteDelta, 2013).

CCPs are free to choose their own margining methodologies. Many CCPs are mov-
ing towards a 5-day worst case loss model based on five years of historic data.
Other CCPs use Value at Risk (V@R) methodology (InteDelta, 2013). We propose
a margining methodology based on a modified, multivariate extension of the ex-
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pected shortfall risk allocation approach, of which loss functions are a central part.
This methodology operates at the level of sets of interconnected components and
accounts for correlation between clearing members, something which aggregated
univariate risk measures fail to do. For this reason, the margins specified by our
models are generally higher than those suggested by aggregated univariate risk
measures, but better protect against systemic risk.

Figure 1 illustrates how CCPs place themselves as a counterparty to transactions
between participating firms. Firms that clear directly with a CCP are known as
clearing members. In the case of default of one or more clearing member’s, the
CCP may reduce the disruptive effects of defaults. The CCP may enable the struc-
tured replacement of the defaulting members position by, for example, auctioning
its portfolio to other clearing members (InteDelta, 2013). We explore the strategies
that the CCP may take to liquidate the defaulting member’s portfolio as an exten-
sion to the central problem of margin optimisation.

Figure 1: The netting effect of central clearing.

When a clearing member defaults, there is a hierarchy of collateral available to
the CCP to protect itself and the other clearing members. Firstly, the defaulting
member’s initial margin can be used to cover any incurred losses or obligation.
Ideally, this initial margin, maintained daily through the variation margin, should
be sufficient to cover all losses faced by the CCP. This has been the experience of
CCPs based in the UK following defaults such as those of Lehman Brothers and
MF Global. If the initial margin does not adequately cover the amount owed, the
CCP can then access the defaulting clearing members default fund contribution.
Before accessing the default fund contributions of the other clearing members, the
CCP may contribute some of its own equity towards resolving the incurred losses.
This motivates the CCP to optimise the allocation of each clearing member’s initial
margin and default fund contribution. This is the focus of this investigation. There-
after, if losses are still not adequately covered, the CCP may access the default fund
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contribution of the remaining non-defaulting members, mutualising losses across
them. Thereafter, CCPs may call on surviving members to make further contribu-
tions; sometimes termed rights of assessment. If the extent to which CCPs can call
on surviving members to make further contributions is limited, the last remaining
loss-absorbing resource available to the CCP is its remaining equity. If losses are
in excess of this remaining equity, the CCP would itself become insolvent. This
hierarchy, often termed the default waterfall, is captured in Figure 2 (Rehlon and
Nixon, 2013). In our modelling we focus on the initial margin and the default fund
as loss absorbing mechanisms.

Figure 2: The hierarchy of collateral available to the CCP in the event of a clearing
member defaulting.

The report is structured as follows. We first establish the theoretical framework
in which our models are constructed. We thereafter discuss the loss functions and
distributions used. We then provide a detailed explanation of the calibration and
margining scheme procedure developed. We then move onto the issue of optimis-
ing the liquidation strategy of the constituent positions of the defaulting clearing
member’s portfolio, with a discussion of the liquidity constraint and integrated
approaches we use. We conclude with a discussion of our results and proposals as
well as a brief discussion of potential future extensions.
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2 Theoretical framework

Let X = (X1, . . . , Xd) ∈ L0 be a random vector representing the respective loss
profiles of the CCP’s constituent clearing members, i.e. negative values of Xk rep-
resent profits whereas positive values represent losses. We aim to minimise the
sum of the total margins m1, . . . ,mk levied on each clearing member while still
maintaining an acceptable level of systemic risk. In order to solve this problem, we
build on the theoretical framework proposed in Armenti et al. (2015).

We start with a loss function l over Rd, used for measuring the expected loss
E[l(X)] of a financial loss profile X .

Definition 2.1. A function l : Rd → (−∞,∞] is called a loss function if:
(A1) l increasing, that is l(x) ≥ l(y) if xk ≥ yk for all k = 1 . . . , d;
(A2) l is convex, lower semi-continuous and satisfies l(x0) <∞ for some x0 > 0;
(A3) l(0) = 0 and l(x) ≥

∑
xk on Rd.

A risk neutral assessment of the losses would correspond to E[
∑
Xk] =

∑
E[Xk].

Hence, (A3) expresses a form of risk aversion, whereby the loss function weights
high losses more heavily than a risk neutral evaluation. (A1) and (A2) express the
respective normative facts about risk that “the more losses, the riskier” and “diver-
sification should not increase risk”.

The corresponding acceptance set is given by

A(X) =
{
m ∈ Rd : E[l(X −m)] ≤ c

}
.

We say that a monetary allocation m ∈ Rd is acceptable at the loss level c ≥ 0 if
E[l(X −m)] ≤ c, i.e. if m ∈ A(X).

We are now ready to state the main problems explored in this report.

Definition 2.2. An optimal monetary risk allocation is an acceptable allocation m∗

such that ∑
m∗k = inf

m∈A(X)

∑
mk (primal problem).

The dual formulation of the proposed optimisation problem is given by{
0 = 1− λE[∂il(X −m)] for i = 1, . . . , d,

c = E[l(X −m)],
(dual problem). (1)
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2.1 Distributions

In our modelling, we make use of the Multivariate Gaussian distribution, as well
as the Multivariate Affine Generalised Hyperbolic (MAGH) distribution to model
the vector X of losses and profits. Indeed, our framework is as general as possible
so as to allow for extensions employing other distributions. What follows is a brief
motivation for and discussion of the distributions used in this report.

The Multivariate Gaussian distribution is a widely used modelling component in
mathematical finance, largely due to its tractability. However, there is wealth of li-
terature criticising its applicability to the modelling of financial asset-returns, most
of which focuses on its inability to account for the empirically observed ’fat-tails’
of financial returns. While aware of its well-documented limitations, we include
the Gaussian distribution as a preliminary modelling distribution. We specify the
distribution as follows for a d-dimensional loss and profit vector X :

X ∼ Nd(µ,Σ)

where µ is a d-dimensional mean vector

µ = (µ1, µ2, . . . , µd)
T := (E[X1],E[X2], . . . ,E[Xd])

T

and Σ = (σij)ij is a d× d covariance matrix

σij := [Cov[Xi, Xj ]], i = 1, 2, . . . , d; j = 1, 2, . . . , d.

The joint moment generating function of the random vector X is given by

MX(t) = exp

(
µT t+

1

2
tTΣt

)
,

while each component has moment generating function

MXi(t) = exp

(
µit+

1

2
σ2
iit

2

)
.

As an alternative to the Multivariate Gaussian distribution, we propose to use the
Multivariate Affine Generalised Hyperbolic distribution to model the vector X of
losses. This distribution has been favoured because of its ability to capture many
of the stylised facts of the distribution asset returns.

A random vector X having the MAGH distribution with location vector µ and
scaling matrix Σ is constructed as

X = LTY + µ,
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where Y1, Y2, . . . , Yd are independent random variables, each with density given by

f(yi) =
(γi/δi)λi√

2πKλi(δiγi)
eβi(yi−µi) ×

Kλ−1/2(αi

√
δ2
i + (yi − µ)2)

(
√
δ2+(yi−µi)2/αi)

1/2−λi
.

Here Kλ is the hyperbolic Bessel function of the second kind. Each Yi has the fol-
lowing moment generating function

MYi(t) =
eµitγλii

(
√
α2
i − (βi + t)2)λi

×
Kλi(δi

√
α2
i − (βi + t)2)

Kλi(δiγi)
.

The joint moment generating function of X is given by

MX(t) = et
TµMY (tTL)

where

MY (t) =

d∏
i=1

MYi(ti).

As a comparison’, we show in Equation 3 the acceptance sets for the Normal and
MGH distributions for increasing values of c (here blue corresponds to low c and
red corresponds to high c). These distributions have been manipulated so that the
moment generating functions when evaluated at (2,0) and (0,2) are the same.

2.2 Loss functions

We now attempt to solve the proposed optimisation problem analytically by mak-
ing simplifying assumptions. We assume X has a bivariate Gaussian distribution
and our loss function l(x1, x2) takes the following, relatively tractable, form:

X ∼ N2

(
0,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
, l(x1, x2) = x+

1 + x+
2 + x1 ∨ x2.

It can be easily verified that l(x, y) satisfies (A1-3) and is a permissible loss function.
We start characterising the corresponding acceptance set at level c.

A(X) =
{
m | E[(X1 −m1)+ + (X2 −m2)+ + (X1 −m1) ∨ (X2 −m2)] ≤ c

}
=
{
m | E[(X1 −m1)+] + E[(X2 −m2)+]

+ E[(X1 −m1 + 0 ∨ (X2 −m2 − (X1 −m1))] ≤ c
}

=
{
m | E[(X1 −m1)+] + E[(X2 −m2)+]−m1

+ E[((X2 −X1)− (m2 −m1))+] ≤ c
}
.
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Figure 3: Comparison of normal and hyperbolic acceptance sets.

Making use of Bachelier’s pricing model for vanilla call options we can simplify
the expressions using the following identities. Let σ̄ :=

√
σ2

1 + σ2
2 − 2ρσ1σ2, then

E[(X1 −m1)+] =−m1Φ(
−m1

σ1
) + σ1φ(

−m1

σ1
),

E[(X2 −m2)+] =−m2Φ(
−m2

σ2
) + σ2φ(

−m2

σ2
),

E[((X2 −X1)− (m2 −m1))+] =− (m2 −m1)Φ(
−(m2 −m1)

σ̄
)

+ σ̄φ(
−(m2 −m1)

σ̄
).

Attempting to solve the dual problem (Equation 1) from these expectations we
have:

∂

∂m1
E[l(X −m)] = −Φ(

−m1

σ1
) + Φ(

−(m2 −m1)

σ̄
)− 1,

∂

∂m2
E[l(X −m)] = −Φ(

−m2

σ2
) + Φ(

−(m2 −m1)

σ̄
)− 1.
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This leads to simple implicit expressions for the optimal choices of m1 and m2:

m2 = −Φ−1

(
λ− 1

λ
+ Φ(

−m1

σ1
)

)
σ̄ +m1,

m1 = −Φ−1

(
λ− 1

λ
+ Φ(

−m2

σ2
)

)
σ̄ +m2.

Clearly attempts to solve for the optimal risk allocation analytically are impractical.
However, if we make the simplifying assumption that σ1 = σ2 (which is not too un-
reasonable given an appropriate ρ), we find that this leads to m1 = m2. This allows
us to simplify as follows, with σ1 = σ2 = σ∗:

m∗1 = m∗2 = −Φ−1(−1

2
+

1

λ
)σ∗.

A pragmatic approach to calibrating the model can now be adopted by choos-
ing λ such that an appropriate value for c is realised in our limiting condition
E[l(X −m)] = c.

A logical comparison to check whether this simple Gaussian framework is an ap-
propriate model for the risk allocation is to compare results with the easily com-
puted V@R and CV@R statistics. For choices of c = 0.2, σ1 = σ2 = 0.9 and 99%
value at risk statistics we obtain the following acceptance sets, as shown in figure
4 below.
Clearly this model is far too lenient and permits combinations of m1 and m2 that
are far outside of the acceptable value at risk ranges. As a result, we motivate the
following loss function which will allow us to calibrate the model so that the con-
vergent tails of the acceptance sets align with the calculated value at risk statistics:

l(x1, x2) = αx+
1 + βx+

2 + γx+
1 x

+
2 .

We elaborate on this argument in the chapter on calibration and margin scheme
proposal.

Is also interesting to note that the acceptance set reduces in size if the correlation
between the clearing members is lower. This is inconsistent with our general model
of acceptable margins, since higher correlation between clearing members should
increase systemic risk. This indicates a need for care when choosing loss functions,
as some may prove to be inconsistent with the general model.

We propose now another interesting loss faction, given by a d-dimensional multi-
variate extension to the exponential risk function proposed by Armenti et al. (2015)

l(x) =
1

1 + α

(
1

d

d∑
i=1

edxi + α exp

(
d∑
i=1

xi

))
− 1.
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Figure 4: Acceptance sets for pre-specified choices of c, σ1 and σ2 and 99% value at
risk statistics.

The high tractability of this function permits us to compute optimal monetary risk
allocation analytically (for a general distribution and loss profile) where the mo-
ment generating function is known.

To find the optimal marginsm∗, we first need to compute E [l(X −m)] and E
[

∂
∂mi

l(X −m)
]

for each i = 1, 2, . . . , d. We first present some preliminary calculations

E

[
d∑
i=1

edXi

]
=

d∑
i=1

MXi(d), E
[
e
∑d

i=1Xi

]
= MX(1).

This allows us to compute the necessary expectation of the loss function as follows:

E [l(X −m)] =
1

1 + α

(
1

d

d∑
i=1

MXi(d)e−dmi + αMX(1)e−
∑d

i=1mi

)
− 1,

11



∂

∂mi
l(x−m) = − 1

1 + α

(
ed(xi−mi) + α exp

(
d∑
i=1

(xi −mi)

))
.

We use these results to express the dual problem (1) in the following manner:

1

λ
=

1

1 + α

(
MXi(d)e−dmi + αMX exp

(
−

d∑
i=1

mi

))
,

c̃ := c+ 1 =
1

1 + α

(
1

d

d∑
i=1

MXi(d)e−dmi + αMX(1)e−
∑d

i=1mi

)
.

Solving these equations yields the following results:

m∗i =
ln (MXi(d))

d
− 1

d
ln (c̃(1 + α)) +

1

d
ln

(
1 + αMX(1)

d∏
i=1

[MXi(d)]−
1
d

)
,

d∑
i=1

m∗i =
1

d

d∑
i=1

ln (MXi(d))− ln (c̃(1 + α)) + ln

(
1 + αMX(1)

d∏
i=1

[MXi(d)]−
1
d

)
.

We now use these results in an example. Consider the same multivariate d-dimensional
loss function, and consider a vector X which has a d-dimensional multivariate
Gaussian distribution:

X ∼ Nd(µ,Σ) Xi ∼ N(µi, σ
2
i ).

Making use of our earlier results, we find that:

m∗i =µi +
1

2
dσ2

i +
1

d
ln

(
1 + α exp

[
1

2
σ̂2 − 1

2
d

d∑
i=1

σ2
i

])
− 1

d
ln(c̃(1 + α)),

d∑
i=1

m∗i =
d∑
i=1

µi +
1

2
d

d∑
i=1

σ2
i + ln

(
1 + α exp

[
1

2
σ̂2 − 1

2
d

d∑
i=1

σ2
i

])
− ln(c̃(1 + α)),

where σ̂2 = 1TΣ1.
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3 Calibration procedure and margin scheme proposal

The ability to choose different loss functions and distributions makes the expected
shortfall framework extremely versatile. However, this versatility also implies that
an effective calibration approach is required to make the model effective. In this
section we discuss methods for specifying the loss function and determining the
optimum threshold level c. This calibration approach leads naturally on to a mar-
gin scheme in which we can not only define an optimum monetary allocation, m∗,
but also two layers of margins: the initial margin im∗ and the default fund contri-
bution df∗ = m∗ − im∗.

As an illustrative example we make use of the following loss function:

l(x1, x2) = cw1x
+
1 + cw2x

+
2 + wx+

1 x
+
2 . (2)

Clearly this function can be easily generalised for dimension d > 2 and the vari-
ous coefficients can be chosen such that the axioms in Definition 2.1 are satisfied.
Further, the presence of an idiosyncratic contribution from each risk factor as well
as a pooled contribution from both risk factors suggests plausibility. Additional
quadratic terms can be introduced to improve smoothness (Feinstein et al., 2015).

The proposed strategy is to calibrate each wk to a target value îmk correspond-
ing to some individual measure of risk, such as value at risk or conditional value
at risk. If we assume that one of the members posts an extremely large margin, we
are effectively eliminating the risk contribution of that member and reducing the
loss function to a function of only one risk factor:

lk(xk) = cwkx
+
k .

Thus, setting the optimal m∗k in this asymptotic scenario to the relevant value at
risk statistic we can solve E[wk(Xk −m∗k)+] = 1 for the appropriate weighting wk.
Finally, by setting c = 1

min(w1,w2) to satisfy the risk aversion requirement for our loss
function, we are now able to plot acceptance sets as a function of w. In particular,
w will lie in a specific range [0, ŵ] where ŵ is the largest possible weighting for the
dependence structure which does not break the convexity of the loss function. The
results of this calibration approach are shown in Figure 5 below.

This calibration has a number of pleasing properties - most importantly that we
can make a clear proposal for the determination of initial margins and default fund
contributions. Namely, the asymptotic values (here set to value at risk) represent
the initial margins and the difference between these values and the corresponding
point chosen on the acceptance set curve represent the default fund contributions.
As the acceptance curves deviate from the asymptotic values more significantly for
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larger values of w, we can choose w according to the size of default fund contribu-
tions we desire. In addition, the methodology can be used for any distribution ofX
and can be extended to any loss function l(x) such that l(0, 0, . . . , 0, xk, 0, . . . , 0, 0)
reduces to lk(xk) (Armenti et al., 2015).

Figure 5: The initial calibration approach.

An obvious criticism of this approach is that the weightings applied to each risk
factor result in the losses arising from different system components being treated
unfairly. For example, simply swapping x1 and x2 will result in different weights
applying to the risk factors and will consequently yield different output - clearly
this is undesirable. Essentially, this implies that the loss function cannot be canon-
ical and varies depending on the properties of its inputs. In addition, using the
target idiosyncratic risk measures (in this case value at risk) directly as initial mar-
gins potentially places too much emphasis on this input data.

3.1 Pooled weighting approach

We propose a simple adjustment to the approach which both adjusts the weightings
so as to allow for the risk factors xk to determine losses. This also shifts the focus
away from the îmk, treating them rather as a sensible first guess for initial margins.
The adjustment is simply to calculate an average weighting based on the w1 and
w2 calculated above, w̄ = w1+w2

2 , and then set the threshold level to c = 1
w̄ . The

resulting acceptance set hence solves the following equation:

E[X+
1 +X+

2 + wX+
1 X

+
2 ] ≤ 1

w̄
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and the results are shown in figure 6.

Figure 6: Pooled weighting approach.

3.2 Optimal threshold approach

An additional improvement to the approach which can be considered is to remove
the dependence on the averaging of weights and simply solve for the optimum
threshold level c directly. This makes intuitive sense as we would like to have that
c is the primary factor in determining the level of margins required. The simplest
method for doing so is to minimise the distance between our optimal margins m∗k
and the initial estimates îmk. Thus, for the simple bivariate example we use, we
simply solve for c as follows:

min
c

[(
(m1(c)− îm1

)2
+
(
m2(c)− îm2

)2
]
. (3)

An extension to higher dimensions is obvious. Then setting w̄ = 1
c we again have

a simple equation from which acceptance sets can be constructed. We note in the
results shown in Figure 6 that, while this approach yields initial margins which are
closer to the input value at risk values, the size of the default fund contribution and
the range of acceptable w does not change significantly from the results in Figure

15



7.

Figure 7: Optimum threshold approach.

3.3 Default fund contribution approach

We now propose an alternative approach which, in contrast to previous efforts,
focusses on the determination of the default fund contribution df∗ as opposed to
the initial margins im∗. In order to do so, we define a new vector X∗ such that
X∗ = X − îm. Thus, rather than setting the margins m∗ to our target values îm or
minimising the distance between m∗ and îm as in previous approaches, we solve
the primal problem of E[l(X∗ −m)] ≤ c where our vector of risk factors X is sim-
ply reduced by the appropriate target values îm. As a result, our model focusses
exclusively on the size of the default fund contribution. Naturally this places more
stringent limits on the potential valuesw we may apply, but gives us the freedom to
use varying threshold values. Note the unique aspect of this approach as shown in
Figure 8 where the calculated acceptance sets lie (obviously) well below the value at
risk acceptance range. Here, arguments can be made for the idiosyncratic compo-
nents of the acceptance sets to be added to value at risk to determine initial margin
values versus simply leaving initial margins set at the target values.
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Figure 8: DFC focussed approach.

3.4 Multi-weighted approach

Our final and preferred approach for both calibration and margin determination is
now discussed. This approach is particularly rich in that it has the symmetry of
earlier approaches whilst also being calibrated well against the target values. For
this section we expand our example loss function to include quadratic terms as
follows:

l(x1, x2) = w1x
+
1 + w2(x+

1 )2 + w1x
+
2 + w2(x+

2 )2 + wx+
1 x

+
2 .

Now we have two parameters (w1 and w2) to calibrate, which gives us some more
freedom to manipulate the model. These can be determined by solving the system
of equations: {

w1E[(X1 − îm1)+] + w2E[((X1 − îm1)+)2] = 1,

w1E[(X2 − îm2)+] + w2E[((X2 − îm2)+)2] = 1.

We then choose to set our threshold level to give c = 1
w1

, but arguments can be
made for c = 1

w2
as well. As shown clearly in Figure 9 this approach is not only

pinned closely to our target values îm, but also allows us great flexibility in terms of
default fund contribution size. The range of w for which convexity is maintained is
significantly larger than in previous approaches and this is the primary reason why
we strongly advocate this approach for calibration and determination of margins.
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Figure 9: Final approach.

3.5 Table of results

Tables 1 and 2 are constructed using the following parameters:

σ1 = 0.55, σ2 = 0.45, ρ = 0.25, µ1 = µ2 = 0.

Unfortunately, the multi-weighted approach required us to use non-zero means
µ1 = µ2 = 1, preventing these results from being directly comparable with the ear-
lier approaches. However, we hypothesise that for parameters chosen consistently
our conclusions will still hold.
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Table 1: Tables of results for selected parameters.
w = 0 w = wmax

Approach im1 im2 df1 df2 df1 df2

Basic calibration 1.05 1.28 0.12 0.10 0.31 0.27
Pooled weighting 1.50 1.20 0.09 0.10 0.18 0.20

Optimum threshold 1.29 1.01 0.11 0.15 0.24 0.36
Default fund contribution 1.61 1.48 0.09 0.12 0.42 0.50

Multi-weighted 1.20 1.14 0.18 0.22 0.68 0.73

Table 2: Tables of results for selected parameters continued.
w = 0 w = wmax

Approach im1 + df1 im2 + df2 im1 + df1 im2 + df2

Basic calibration 1.17 1.38 1.36 1.55
Pooled weighting 1.59 1.30 1.68 1.40

Optimum threshold 1.40 1.16 1.53 1.37
Default fund contribution 1.70 1.60 2.03 1.98

Multi-weighted 1.38 1.36 1.88 1.87

A number of important interpretations can be made from tables 1 and 2. Firstly,
the basic calibration clearly places too much emphasis on the value at risk and,
as a result, produces margins which are in contrast to all other approaches. Se-
condly, the default fund contribution approach leads to significantly larger initial
margins as a result of the additional idiosyncratic elements added to V@R. Finally,
the multi-weighted approach (which we previously claimed to be the approach we
find most appealing) provides significantly greater freedom with respective to the
default fund contribution. The range of values ofw for which lmaintains convexity
is significantly larger than for the other approaches and this is the the primary
criterion which makes this approach preferable.
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4 Optimal liquidation strategies

We now consider the problem of calculating the initial margin of a single member
of the CCP. As in the previous sections, we want to choose this margin to be as low
as possible while keeping the level of systemic risk, as measured using loss func-
tions, acceptable. We now extend the model to include a multiple-day liquidation
horizon.

4.1 Problem specification

Let X = {Xt : t = 1, 2, 3, . . .} be a stochastic process representing the profit and
loss (P&L) of the portfolio of the member. From now onwards, we will refer to the
member as X . We assume that X has positions of size Q = (Q1, Q2, . . . , Qn) in n
assets whose mark-to-markets (MTM) are

{(MTM1(t),MTM2(t), . . . , (MTMn(t))) : t = 0, 1, 2, . . .}.

Finally we define the P&L of each position by Y i, i.e.

Y i
t = MTMi(t)−MTMi(0) t ≥ 1.

With this notation, X’s total P&L is given by

Xt =

n∑
i=1

QiY
i
t

for t = 1, 2, . . .. We want to choose the initial margins m = (m1,m2, . . . ,mn)
charged for each contract to minimise the total margin charged to X , while kee-
ping the risk at an acceptable level. To this end, we assume that X has defaulted
on at least one contract, and the CCP has to liquidate the remaining position X by
a certain time T .

At first it seems better for the CCP to liquidate all the positions on the first day
in order to eliminate any future risks. However, this may not be possible due to li-
quidity constraints and price movements caused by large transactions. Also, some
price trends may motivate for a non-trivial liquidation strategy.

We will denote a liquidation strategy by q = {qit : t = 1, 2, . . . , T, i = 1, 2, . . . , n}.
Here qit represents the proportion of asset iwhich is liquidated (sold) on day t. This
means that qitQi units of asset i are liquidated at time t; we therefore have

T∑
t=1

qit = 1 for every i = 1, 2, . . . , n.
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Let C denote the set of all admissible liquidation strategies. For now we will assume
that there are no external trading constraints on the strategies and therefore take C
to be the simplex

C = {q = (qit) : qit ∈ [0, 1] and
T∑
t=1

qit = 1 for i = 1, 2, . . . , n}.

Given a strategy q ∈ C and for each t = 1, 2, . . . , T we define the realised profit
Rit(q) by

Rit(q) :=
t∑

s=1

Qiq
i
sY

i
s for i = 1, 2, . . . , T,

and the unrealised profit by

U it (q) := Qi

(
1−

t∑
s=1

qis

)
Y i
t = Qi

(
T∑

s=t+1

qis

)
Y i
t .

The total profit at time t is defined by P it (q) := Rit(q) + U it (q) for every position i.
We note that P it (q) can be written as

P it (q) =
t∑

s=1

Qiq
i
sY

i
s +Qi

(
T∑

s=t+1

qis

)
Y i
t =

T∑
s=1

Qiq
i
sY

i
t∧s.

For risk management purposes, it will be useful to work with the loss process
L(q) = {Lit(q) : i = 1, 2, . . . , n and t = 1, 2, . . . , T} defined by Lit(q) = −P it (q).
So from now onwards, we will deal with the processL = L(q) = (L1(q), . . . , Ln(q)).

In the literature, different functionals of L have been used to measure the riskiness
of a strategy q. Some include the following random vectors

1. The worst loss:

max
1≤t≤T

Lt(q) = ( max
1≤t≤T

L1
t (q), . . . , max

1≤t≤T
Lnt (q)).

2. The terminal loss:
LT (q) = (L1

T (q), . . . , LnT (q)).

3. The average loss:

Lav :=

(
T∑
t=1

L1
t (q), . . . , L

n
t (q)

)
.
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For more information on these risk measures, see Avellaneda and Cont (2013). For
presentation purposes, we will choose the terminal loss LT (q) as a risk measure.
The main reason for this choice is simplicity, since for each i we have that

LiT (q) =
T∑
t=1

Qiq
i
tY

i
t ,

implying that LiT is simply a linear combination of the Y i’s. This will later be useful
for the models we use.

We now assume a loss function l. Fix a strategy q ∈ C and let m = (m1, . . . ,mn) be
a vector of margins charged for each contract (for i = 1, 2, . . . , n). Again choosing a
risk level c > 0, we say that m is acceptable at level c for the strategy q if and only
if

E (l(LT (q)−m)) ≤ c.

For each q ∈, define Aq(X) to be the set of all margins m that are acceptable for the
strategy q, i.e.

Aq(X) := {m ∈ Rn : E (l(LT (q)−m)) ≤ c} .

Our aim is to find a strategy q∗ ∈ C and margins m∗ ∈ Aq∗(X) that minimise the
total margins

n∑
i=1

mi.

This can be interpreted as finding q∗ ∈ C and m∗ ∈ Aq∗(X) such that

n∑
i=1

m∗i = inf
q∈C

(
inf
m∈Aq

(
n∑
i=1

mi

))
.

4.2 Liquidity constraint

In the previous subsection we discussed a method for optimising the liquidation
strategy of the portfolio of a defaulting clearing member, without considering a
possible price impact on the strategy.

Our first attempt to model this effect is to include a daily market liquidity con-
straint associated with the instruments constituting the defaulting member’s posi-
tions (see Avellaneda and Cont (2013)).

Definition 4.1 (Daily market-liquidity constraint). The daily liquidity constraint
represents an upper bound on the number of contracts that can be traded, long or
short, without impacting the price.
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Let `1, . . . , `n be the daily liquidity constraint corresponding to each position. Re-
call that in our model the traded volume of the i-th position at time t is represented
by the quantity Qiq

i
t. We then define the set C̃ ⊆ C of all admissible liquidation

strategies which satisfy the daily liquidity constraint. A liquidation strategy in this
set satisfies

T∑
t=1

qit = 1 (positions are liquidated before time T ),

0 ≤ qit ≤ `i/Qi (liquidity constraints are satisfied),

for all i = 1, . . . , n. The optimisation problem reduces to finding q∗∈C̃ andm∗∈Aq∗
such that

n∑
i=1

m∗i = inf
q∈C̃

(
inf
m∈Aq

( n∑
i=1

mi

))
.

A further potential approach to modelling a liquidity constraint is to directly model
the price impact of a liquidation strategy on the MTM of the defaulting clearing
member’s constituent positions . In this sense Bertsimas et al (see Bertsimas and
Lo (1998)) present a model whereby the dynamics of the price include two distinct
components: an arithmetic random walk modelling the price in the absence of a
trade, and the impact of the trade.

4.3 Example

We provide an example to illustrate the proposed methodology.

Assume that the portfolio of the member is composed of only two positions, the
P& L processes thereof being denoted by Y i = {Y i

t : t = 1, . . . , T}, for i = 1, 2.
Suppose that Y i = σiW

i for all i, where W 1,W 2 is a pair of Brownian Motions
satisfying Cov(W 1,W 2) = ρσ1σ2. This structure allows us to easily describe the
distribution of the terminal loss LT (q) = (

∑T
t=1Q1q

1
t Y

1
t , . . . ,

∑T
t=1Qnq

n
t Y

n
t ). Set-

ting qi := (qi1, . . . , q
i
T )′ and (AT )ij = i ∧ j we indeed obtain that

LT (q) ∼ N (0,Σ),

where

Σii = σ2
iQ

2
i (qi)′AT q

i, i = 1, 2 and Σ21 = Σ12 = ρσ1σ2Q1Q2 (q1)′AT q
2.

Consider the loss function proposed in Chapter 3 given by

l(x) =
1

1 + α

(
1

2
e2x1 +

1

2
e2x2 + αex1+x2

)
− 1,
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and recall that, in this framework, the sum of the corresponding optimal allocation
is given by:

R(σ1, σ2, ρ, q) := R(LT (q)) := Σ11+Σ22+ln
(
1+αeΣ12− 1

2
(Σ11+Σ22)

)
−ln((c+1)(1+α)).

Figures 10, 11, and 12 illustrate the differences between the optimal strategy, de-
termined by the methodology above, and more naı̈ve ones, such as “liquidate as
soon as possible”, “liquidate as late as possible” or “liquidate the same amount
every day”. We also compare optimal strategies assuming different daily liquidity
constraints. The parameters for figures 10, 11, and 12 are:

σ1 = 0.1, σ2 = 0.5, Q1 = 20, Q2 = 20.

Figure 10: Optimal close out strategy assuming a daily market constraint
of the 30% of the initial quantity.

Figures 10, 11, and 12 illustrate that within our framework, the optimal liquidity
strategy coincides with “liquidate as soon as possible” for large enough ρ. What is
of interest is that this is not the case when the two underlying Brownian Motions
are strongly negatively correlated. In this case, the optimal liquidation strategy as
determined by our model is strictly better than “liquidate as soon as possible”. It
is also important to note that a more restrictive liquidity constraint improves the
performance of a more staggered liquidation strategy.

Figure 13 confirms the sub-optimality of the “liquidate as soon as possible” liqui-
dation strategy for ρ close to −1. It also illustrates how

∑
m∗i increases with the

correlation.
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Figure 11: Optimal close out strategy assuming a daily market constraint
of the 60% of the initial quantity.

Figure 12: Optimal close out strategy assuming no daily market constraint.
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Figure 13: Sum of optimal allocation following the strategies “liquidate as late as
possible”, “liquidate the same amount every day”, “liquidate as soon as possible”,
and the optimal one.
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5 Conclusion and discussion

In this report, we have outlined strategies for optimising margins in a clearing
counterparty context, whilst also including a discussion on optimal liquidation
strategies which take into account liquidity constraints. The flexibility of our model
- specifically with regard to the possible choices for the underlying distributions
and loss functions - allows for both an analytical approach and a numerical ap-
proach. In particular, a number of methodologies for calibrating the model are
proposed each of which flows naturally into a potential scheme for allocating mar-
gins.

Our investigation can be extended to the issue of pro-cyclicality. CCPs may adjust
initial margin demands in response to changes in market conditions. While per-
haps pertinent to their own risk management, these margin changes could have a
destabilising effect on clearing members if sufficiently large. A CCP may, for ex-
ample, increase initial margin requirements in response to increased price volatil-
ity. This could occur if initial margin requirements were established under less
volatile market conditions, necessitating a large increase in margin requirements
when volatility increases. This increased obligation may force clearing members
to liquidate their positions, or seek other sources of funding to meet margin calls.
This can further impact price volatility at a time when markets may already be
illiquid and credit controls are tight. It has been suggested that a better strategy is
for margins to remain at higher levels in good times, even if this puts them above
the regulatory minimum requirements (Rehlon and Nixon, 2013).
Suggestions for improvement on the model in order to avoid this pro-cyclical ef-
fect, include stochastic modelling of the optimal threshold level c as a function of
volatility of the clearing members as well as putting bounds on the amount of mar-
gins that the CCP can demand.

Open questions

Hereunder, we propose a list of research questions which have come up during the
work presented int his report.

• The calibration procedure is limited to a class of loss functions with a specific
set of properties (described in the relevant chapter). Future research should
look into finding an analogous method for other forms of loss functions.

• The liquidity constraint proposed is modeled by an upper bound on the num-
ber of contracts that can be traded per day without impacting the price. One
then considers as admissible only the strategies where traded volume per
day remains below this threshold. This assumption is very restrictive and
one should consider a price impact proportional to both the traded quantity
and the price, without restricting the set of admissible strategies.
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• The optimal liquidation strategy proposed focuses on a single clearing mem-
ber only. Can it be improved by considering the simultaneous liquidation of
an arbitrary number of members?

• As mentioned in the conclusion, our model does not consider the pro-cyclicality
issue. Is it reasonable to improve it in this sense by putting bounds on the
amount of margins that the CCP can demand? From the CCP’s point of
view, it may be more convenient to model the optimal threshold level c as
a stochastic process. In particular, is it reasonable to model it as function of
the volatility of its members?
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1 Introduction

Energy and commodity markets have grown in complexity and sophistication over
the past decade, with a range of derivatives on futures being liquidly traded. Trad-
ing in such contracts has become an integral part of operations. When developing
models for these derivatives, spot price, the term structure of futures prices, as well
as derivatives prices should ideally be treated within a single framework in a con-
sistent manner. In addition, a sound understanding of the dynamics of volatility
in commodity markets is key in pricing, hedging and risk-managing commodity
options.

The extent to which volatility is spanned refers to the extent to which volatility
risk can be hedged by trading in the underlying commodities themselves or their
corresponding futures, forwards or swap contracts (Trolle and Schwartz, 2009).
In the presence of unspanned stochastic volatility, options cannot be completely
hedged and risk-managed by trading in only the underlying instruments. Trolle
and Schwartz (2009) develop a framework, based on Heath, Jarrow, and Merton
(1992), which incorporates unspanned stochastic volatility in the pricing of com-
modity derivatives. They estimate the model on an extensive data set for New York
Mercantile Exchange (NYMEX) crude oil derivatives; and find that two volatility
factors, which are largely unspanned by futures contracts, are required to fit op-
tions on futures. This makes it difficult to find a model that provides an accurate
representation of the temporal dynamics observed in time series of prices.

This paper develops a model for commodity spot, futures, and option prices,
with a view towards accommodating USV. It also details estimation and imple-
mentation procedures for the model. The modeling approach draws on the linear-
rational framework developed by Filipovic et al. (2014) for the term structure of
interest rates. Filipovic et al. (2014) introduce a new class of term structure models,
the linear rational. The linear rational model is highly tractable and easily incorpo-
rates unspanned volatility factors affecting the volatility of bond prices. Filipovic
et al. (2014) specify a multivariate factor process with linear drift and a state price
density, which is a linear function of the current state. This specification means
that bond prices and the short rate become linear-rational functions (ratios of lin-
ear functions) of the current state. An important feature of the framework they de-
velop is that the martingale component of the factor process does not affect the term
structure. This means that factors which affect the prices of interest rate deriva-
tives without affecting bond prices can be easily included. They demonstrate that
the state vector can be partitioned into factors that affect the term structure, factors
that affect interest rate volatility but not the term structure, and factors that affect
neither term structure nor volatility but may have an indirect effect on the distri-
bution of future bond prices. This particular model is called the Linear-Rational
Square-Root (LRSQ) model.

This paper derives pricing formulas for future and option prices through adap-
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tation of the LRSQ model to the commodities framework. P-dynamics are then
obtained by specifying an appropriate market price of risk. Restriction of the
model parameters so as to enforce unspanned stochastic volatility is investigated.
Model price computation and trajectory simulation is performed using the devel-
oped model. In addition, quasi-maximum likelihood estimation using the Kalman
filter is investigated.

2 Model

2.1 Affine Diffusion Processes

The linear-rational diffusion model has dynamics of the form

dXt = κ(θ −Xt)dt+ σ(Xt)dWt, (1)

for some d-dimensional Brownian Motion Wt and some dispersion function σ(x).
What makes this process affine is that the drift and diffusion matrix, a(x) = σ(x)σ(x)T ,
are affine in Xt.

The aim in this section is to construct a large class of Linear Square-Root models
LSQ(m,n) with m term factors and n unspanned stochastic volatility factors with
m ≥ n and m+ n = d. The LSQ model is introduced in the following section.

2.2 The Linear Square-Root Model

The linear commodity spot model is specified by a multivariate factor process Xt

together with a linear (affine) spot price of the form

St = uTXt = u1X1t + · · ·+ udXdt. (2)

The factor process dynamics under the pricing measure Q is specified by

dXt = κ(θ −Xt)dt+ dMQ
t , (3)

where κ ∈ Rd×d is the mean-reversion matrix, θ ∈ Rd contains the levels of mean
reversion, MQ

t is a Q-martingale. This report investigates the square-root factor
process specified as

dXt = κ(θ −Xt)dt+

σ1

√
X1t

. . .
σd
√
Xdt

 dWQ
t , (4)

where σi > 0 (i = 1, · · · , d), and WQ
t = (WQ

1t , · · · ,W
Q
dt) is a d−dimensional Brow-

nian motion under Q. The solution to (4) exists and is unique if and only if κ has
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non-positive off-diagonal elements and κθ ∈ R+. Consequently, the solution sat-
isfies Xt ∈ R+ for all t ≥ 0 as shown in Filipovic (2009). In addition, any positive
ui in (2) can be normalised by coordinate-wise scaling to ui = 1 without loss of
generality. It is important to normalise u in order for the model to be identifiable.

Under this specification, it is possible to derive a number of useful properties:

• Futures prices are linear (affine) in the current state Xt, i.e.,

EQ[ST |Ft] = A(T − t) +B(T − t)>Xt

for some deterministic functions A(τ) and B(τ) with values in R and Rd re-
spectively (Filipovic et al., 2014).

• Assuming a deterministic risk-free rate r, the price of a European call option
on a futures contracts is given by

C(t, T, T ′,K) = e−r(T−t)EQ[(F (T, T ′)−K)+|Ft],

where T is the option expiry, T ′ the maturity date of the underlying futures
contract, andK is the strike price. The conditional expectation takes the form

EQ[(a+ bTXT )+|Xt]

for some deterministic values a ∈ R and b ∈ Rd. Under the square-root factor
specification, such expectations can be computed efficiently using transform
methods (see Section 3).

2.3 Market Price of Risk and P-Dynamics

In order to take advantage of the temporal information contained in price obser-
vations over time, these observations should not be considered as a sample from
their risk-neutral (Q) distribution, but from their distribution under the historical
measure P. A Rd-valued market price of risk process of the following form was
considered

λt = (λ1

√
X1t, . . . , λd

√
Xdt)

T , (5)

and the historical measure P specified by

dQ
dP

= exp(

∫ t

0
λTs dW

Q
s −

1

2

∫ t

0
‖λs‖2ds). (6)

Then dW P
t = dWQ

t − λtdt is a Brownian motion under P which gives the P-
dynamics of the factor process as

dXt = (κθ + (Diag(σ ◦ λt)− κ)Xt)dt+ Diag(σ ◦
√
Xt)dW

P
t . (7)
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Figure 1: Attainable shapes of the futures curve
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This specification ensures that the factor process remains an LSQ process under
the change of measure, making estimation and implementation procedures which
are widely reviewed in the literature applicable to this model.

2.4 Suitability to the Commodity Market

The behaviour of the commodity market and commodity term structure are char-
acterised by four “stylised facts”. The ability of the LSQ model to capture these
effects was investigated. In particular, a five-factor LSQ model was used.

2.4.1 Backwardation and Contango

The commodity futures curve is in contango when it is upward-sloping and in
backwardation when it is downward-sloping. Contango corresponds to a situation
where the futures price of a commodity is above the expected future spot price of
the commodity, and backwardation a situation where the futures price is below
the expected future spot price. A humped futures curve is also common. The rate
of mean reversion parameter, κ, was successfully adjusted in order to produce the
different futures curve shapes observed in the market, see Figure 1.
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2.4.2 Mean Reversion

Spot commodity markets show strong evidence of mean-reverting behaviour (Nielsen
and Schwartz, 2004), largely believed to be the result of the dynamics of supply and
demand interactions. Essentially, prices rise when shortages occur and this tends to
raise the level of investments which will increase supply and decrease prices again
(see Back and Prokopczuk (2013)). Whilst there are some studies which question
the presence of mean reversion in some commodities (see Barkoulas et al. (1997)), it
is generally accepted that mean reversion is an important feature of the commodi-
ties market (Pindyck, 2001).

The spot price process is simply a linear combination of mean-reverting factors.
Therefore, under the LSQ specification, the spot commodity market displays mean
reversion.

2.4.3 Seasonality

Seasonality is a common feature in certain commodities (see Geman (2009)). It
is driven by supply side factors (seasonal production cycles, such as agricultural
commodities) or demand side factors (such as an increase in demand in the USA
for natural gas during the winter months). Beyond the seasonality in the price level
and convenience yield, there is evidence of seasonality in the volatility correspond-
ing to that exhibited in the spot.

In the LSQ model, deterministic seasonality could easily be incorporated through
the inclusion of a deterministic time-dependent adjustment, Π(t), as follows

St = Π(t)uTXt.

2.4.4 The Samuelson Effect

(Geman, 2009) describes the Samuelson Effect as the observation that, all else being
equal, the volatility of futures prices tends to increase as the time to maturity de-
creases. It is believed that this is due to the increased sensitivity of the futures price
to current information as it nears its time to maturity, as was originally proposed
in Samuelson (1965).

Figure 2 was obtained by once again varying the rate of mean reversion param-
eter, κ. It can be seen that the five-factor LSQ specification does not always capture
a decreasing volatility term structure. This opens the door to further research on
whether further parameter restrictions are necessary in order to more consistently
capture this decreasing volatility.

2.5 Unspanned Factors

To discuss the potential presence of unspanned factors, it is necessary to derive an
expression for the futures term structure. The futures price is a Q-expectation of
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Figure 2: The Samuelson Effect illustrated
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the spot price,
F (t, T ) = EQ[ST |Ft].

The first moment of the LSQ model is explicitly derived in Section 4.2 and obeys
the general form for first moments of affine processes, see Fisher and Gilles (1996).
Thus,

F (t, T ) = u>(θ − e−κ(T−t)θ) + u>e−κ(T−t)Xt (8)
= G(T − t,Xt), (9)

with
G(τ, x) = u>(θ − e−κτθ) + u>e−κτx (10)

being a convenient formulation.
The intent is to describe a set, U , of directions, ξ ∈ Rd, such that the futures term

structure is unchanged with respect to movements of Xt along ξ. All the results
presented in this section are equivalent to those derived in Filipovic et al. (2014)
Section 2.2, where the role of the interest rate term structure has been replaced by
the futures term structure. This allows the specification of the state price density to
be neglected and eventually leads to a different set of parameter constraints.
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Definition 2.1 (Function Kernel). Consider a differentiable function f on some space E,
then the kernel of f is defined by

ker f =
{
ξ ∈ Rd : ∇f(x)T ξ = 0 for all x ∈ E

}
.

Taking f(x) asG(τ, x) in the above definition would imply thatG(τ, x) is insen-
sitive to movements of x along ξ. That is, the location of Xt along the direction ξ
cannot be recovered by only considering information at time t of the futures price.
As in Filipovic et al. (2014), the term structure kernel will now denote the set of all
such directions.

Definition 2.2 (Term Structure Kernel). The term structure kernel, denoted by U , is
given by

U =
⋂
τ≥0

kerG(τ, ·) (11)

Finally, Theorem 2.1 yields an expression for U in terms of the model parame-
ters.

Theorem 2.1. The term structure kernel, U , is the largest subspace of ker u> that is in-
variant under κ. Equivalently,

U = span
{
u, κ>u, · · · , κ(d−1)>u

}⊥
. (12)

In the case where κ is diagonalizable, Proposition 2.2 provides the sufficient
conditions on κ and u to ensure that there are no unspanned factors.

Proposition 2.2. Assume κ is diagonizable with real eigenvalues, i.e. κ = S−1ΛS where
S is invertible and Λ is diagonal and real. Then the term structure kernel is trivial, U =
{0}, if and only if all eigenvalues of κ are distinct and all components of S−>u are non
zero.

The idea now is to construct an invertible linear transformation S on Rd for the
state space such that the unspanned directions ξ correspond to the last components
of the transformed state vector. The transformed process X̂t = SXt satisfies the
linear drift dynamics

dX̂t = κ̂(θ̂ − X̂t)dt+ dMQ
t , (13)

where κ̂ = SκS−1, θ̂ = Sθ, M̂t = SMt and in the LSRQ specification, dMQ
t =

Diag(σ ◦
√
Xt)dW

Q
t . Note that the transformed process is observationally equiva-

lent to the original process.
If the linear transformation S can be constructed in such a way as to map the

term structure kernel onto the last n components of Rd = Rm×Rn, it can be written
as

S(U) = {0} × Rn, (14)
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where n = dim U and m = d − n. It can then be shown that the application of S
to Xt allows the transformed process to be decomposed as X̂t = (Zt, Ut), where Zt
impacts the futures term structure, but Ut does not.

Theorem 2.3. Let m,n ≥ 0 be integers with m + n = d and define û = S−>u. Then
Equation 14 holds if and only if the transformed model parameters satisfy:

1. û = (ûZ , 0) ∈ Rm × Rn;

2. κ̂ has block lower triangular structure, κ̂ =

(
κ̂ZZ 0
κ̂UZ κ̂UU

)
∈ R(m×n)×(m+n);

3. The upper left block κ̂ZZ of κ̂ satisfies span
{
ûZ , κ̂

>
ZZ ûZ , · · · , κ̂

(m−1)>
ZZ ûZZ

}
= Rm.

Proof. The proof for the equivalent theorem for linear-rational models for the term
structure of interest rates can be found in Filipovic et al. (2014). Note that here the
role of the state-price density coefficient is played by u.

Now suppose Equation 14 holds and write Sx = (z, u) ∈ Rm × Rn and θ̂ =
(θ̂Z , θ̂U ). Through simple substitution it is clear that

Ĝ(τ, z) = G(τ, x) = û>Z [θ̂Z + e−κ̂ZZ(τ)(z − θ̂Z)] (15)

does not depend on u. Thus F (t, T ) = Ĝ(τ, Zt) which clearly illustrates that the
components of Ut are unspanned factors. The realizations of Ut do not influence
the futures term structure and cannot be recovered from the current futures curve.
On the other hand, Zt directly determines the term structure of futures and can be
recovered from a realization of the futures curve. The components of Zt will be
denoted as term structure factors.

2.6 Unspanned Stochastic Volatility

The discussion on unspanned factors can now be specialized to those factors that
give rise to unspanned stochastic volatility. This implies the presence of unspanned
factors, which do not influence the term structure, but which still influence the
volatility of the term structure.

Using Itō’s Lemma, the volatility dynamics of any future can be derived. Let
F (t, T ) = g(t, x;T ) where

g(t, x;T ) = u>[θ − eκ(T−t)θ] + u>e−κ(T−t)x.

The necessary partial derivatives are given by

∂g(t, x;T )

∂t
= −κe−κ(T−t)u>θ + κe−κ(T−t)u>x, (16)
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and

∂g(t, x;T )

∂x
= u>e−κ(T−t). (17)

The application of Itō’s Lemma now yields

dg(t, x;T ) = [−κe−κ(T−t)u>θ + κ−κ(T−t)u>Xt]dt+

+ u>e−κ(T−t)Diag(σ ◦
√
Xt)dW

Q
t . (18)

Thus the volatility vector of F (t, T ) is given by

ν(t, T ) = u>e−κ(T−t)Diag(σ ◦
√
Xt). (19)

And finally, the squared volatility at time t of the future with maturity T is given
by ‖ν(t, T )‖2 = V (T − t,Xt) with

V (τ, x) = u>e−κ(τ)a(x)ue−κ
>(τ), (20)

and
a(x) = Diag(σ2 ◦ x). (21)

This allows for the definition of the volatility kernel.

Definition 2.3. The volatility kernel, denoted byW , is defined as

W =
⋂
τ≥0

kerV (τ, ·) (22)

It should be intuitively clear that the model will exhibit unspanned stochastic
volatility if there are elements of the term structure kernel that do not lie in the
volatility kernel. In a similar fashion to Section 2.5, the desire is to decompose the
unspanned factors such that Ut = (Vt,Wt) where movenents of Wt affect neither
the term structure of futures or their volatiliies, whereas Vt will not affect the term
structure of futures but will impact the volatilities. Thus Vt will be the USV factors,
whereas Wt are known as residual factors.

This means that S must be an invertible linear transformation that satisfies
Equation 14 and possesses the additional property that

S(U ∩W) = {0} × {0} × Rq, (23)

where q = dim U ∩W and p+ q = n = dim U .
Although it is not immediately clear how this additional required property in-

fluences the parameter restrictrions required by Theorem 12, Filipovic et al. (2014)
provides a canonical representation for linear-rational square-root models for the
term structure with unspanned stochastic volatility and this representation is easily
translated into the current context.
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2.6.1 The Linear Square-Root Model

In this section, u is taken as the unit vector with no loss of generality and the mean-
reversion matrix κ will be denoted in block form as

κ =

(
κII κIJ
κJI κJJ

)
, (24)

where κIJ denotes the submatrix whose rows are indexed by I and columns by J .

Definition 2.4 (LSR). Fix nonnegative integers m ≥ n with m + n = d, representing
the desired number of term structure and USV factors, respectively. The LSQ(m,n) speci-
fication is obtained by choosing κII ∈ Rm×m with non-positive off-diagonal elements and
such that

span
{
u, κ>IIu, · · · , κ

(m−1)>
II u

}
= Rm. (25)

The mean reversion matrix is defined by

κ =

(
κII κIIA−AA>κIIA
0 A>κIIA

)
, (26)

with A ∈ Rm×n given by

A =

(
In
0

)
. (27)

The level of mean reversion is taken to be a vector θ ∈ Rd with κθ ∈ Rd+, and the volatility
parameters are taken to be nonnegative, σ1, · · · , σd ≥ 0.

Finally, Theorem 2.4 below provides the important result for this section: the
further parameter restrictions required to ensure the desired number of USV factors
in the LSQ(m,n) specification. Again, for a proof, refer to Filipovic et al. (2014).

Theorem 2.4. The LSQ(m,n) specification exhibits m term structure factors and n un-
spanned factors. Assume that u>θ 6= 0 and κII is invertible. Then the number of USV
factors equals the number of indices 1 ≤ i ≤ n such that σi 6= σm+i. If σi 6= σm+i for all
1 ≤ i ≤ n then every unspanned factor is a USV factor.

An explicit algorithm for the construction of the appropriate linear transforma-
tion matrix S is outlined in Filipovic et al. (2014) Section 4. It is applied below to
illustrate the LSQ(1,1) model. The effect on the futures volatility of moving along
an unspanned direction is displayed for the LSQ(1,1) and LSQ(3,2) models in Fig-
ures 3 and 4 respectively. The effect on the European call price is illustrated in

Example 2.1. The LSQ(1, 1) implies m = n = 1.
The second column of S−1 must form a basis for U to ensure that Equation 14

holds and the first column must be selected in such a way that the columns remain
linearly independent.
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Figure 3: LSQ(1,1) illustrated
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Observe that keru> is spanned by vectors of the form −ei + ej , for i < j, where
ei denotes the i-th standard basis vector in Rd. Choose −e1 + e2as a basis for U and
the first column of S−1 as e1 such that

S−1 =

(
1 −1
0 1

)
and S =

(
1 1
0 1

)
. (28)

The corresponding transformed process X̂t = SXt follows

SXt =

(
1 1
0 1

)(
X1t

X2t

)
=

(
X1t +X2t

X2t

)
=

(
Zt
Ut

)
, (29)

where Zt = X1t + X2t is the term structure factor and Ut = X2t is the unspanned
factor.

This transforms the volatility matrix as

SDiag(σ ◦
√
Xt) =

(
1 1
0 1

)(
σ1

√
X1t 0

0 σ1

√
X2t

)
=

(
σ1
√
z − v σ1

√
v

0 σ1
√
v

)
, (30)

and, similarly, the transform for κ is given by

κ̂ = SκS−1 =

(
1 1
0 1

)(
κ11 0
0 κ22

)(
1 −1
0 1

)
=

(
κ11 0
0 κ22

)
. (31)
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Figure 4: LSQ(3,2) illustrated
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According to Theorem 2.4, Vt is a USV factor if σ1 6= σ2, κ11 6= 0, and u>θ 6= 0.

3 Pricing

3.1 Pricing Options on Futures

In this section the formula for a European call on a future is expounded for the LSR
model.

Proposition 3.1. Consider an European call option with maturity T and strike price K
written on a futures contract with expiry T ′. Given a deterministic risk-free rate r, the
price of the option, denoted C(t, T, T ′,K), is given by

C(t, T, T ′,K) = e−r(T−t)EQ[(a+ b>XT )+|Xt]. (32)
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Figure 5: The effect on the European call price of moving along an unspanned
direction in the LSQ(1,1) model
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where

b> = u>e−κ(T ′−T ), (33)

and

a = u>[θ − e−κ(T ′−T )θ]−K. (34)

The expectation in Equation 32 requires the computation of a multidimensional
integral. This could be done numerically if the conditional distribution of XT were
known. However, it is more efficient to use Fourier transform methods. The re-
quired result is summarized in the next theorem without proof.

Theorem 3.2. Define
q̂(z) = E[ez(a+b>XT )|Ft] (35)

for every z ∈ C such that the conditional expectation is well-defined. Choose any µ > 0
such that q̂(µ) <∞. Then

C(t, T, T ′,K) =
1

π
e−r(T−t)

∫ ∞
0

Re
[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ. (36)
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Since Xt is a multifactor square-root process, q̂(z) can be computed using the
exponential-affine transform formula (Duffie and Pan, 2000). It reproduced below
for completeness.

Lemma 3.3. For any 0 ≤ t ≤ T , u ∈ C and v ∈ Cd such that E[|ev>XT |] <∞,

E[eu+v>XT |Ft] = eΦ(T−t)+Ψ(T−t)>Xt , (37)

where Φ : R+ → C, Ψ : R+ → Cd solve the system of Ricatti equations

Φ′(τ) = θ>κ>Ψ(τ) (38)

Ψ′i(τ) = −κ>i Ψ(τ) +
1

2
σ2
i Ψi(τ)2, i = 1, · · · , d (39)

with initial conditions Φ(0) = u, Ψ(0) = v and where κi is the i-th column of the matrix
κ.

3.2 Implementation of the Call Option Price

Pricing an European call option in the LSR model is complicated by the fact that
the integral in Equation 36 requires a solution to an ODE system at each evaluation
point. This slows pricing considerably and can lead to situations where parameter
estimation becomes untractable. This section briefly introduces two techniques to
aid speeding up the computation.

3.2.1 Gauss-Legendre Quadrature

A n-point Gaussian quadrature rule is a technique for finding points xi and weights
wi such that an approximation of the form∫ 1

−1
f(x)dx =

n∑
i=1

wif(xi) (40)

is exact for polynomials of degree less than or equal to 2n− 1. It can be shown that
the evaluation points xi are the roots of a polynomial belonging to the class of or-
thogonal polynomials. Gauss-Legendre quadrature is the simplest case; where the
associated polynomials are the Legendre polynomials. A standard implementation
of Guass-Legendre quadrature was used in MATLAB to accelarate the evaluation
of the integral in Equation 36. The effect on the computation time is illustrated in
Figure 6.

3.2.2 Control Variate

Figure 7 illustrates the evaluation of the integrand for the European call price us-
ing Gauss-Legendre quadrature. A potential computational advantage could be
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Figure 6: The effect of Guass-Legendre quadrature on option pricing
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gained by attempting to reduce the size of the oscillations, which slow the conver-
gence of the integral. Consider

E[(a+ b>X)+] =
1

π

∫ ∞
0

Re
[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ. (41)

A control variate technique would take the form

E[(a+ b>X)+]− E[Y +] + E[Y +] =

1

π

∫ ∞
0

Re
[
q̂(µ+ iλ)− p̂(µ+ iλ)

(µ+ iλ)2

]
dλ+ E[Y +], (42)

with Y an appropriately chosen scalar random variable. An option to be explored
is choosing Y to be Gaussian with mean m and variance v, such that

m = E[a+ b>X] (43)

v = Var(a+ b>X) (44)

and thus

p̂(z) = emz+
1
2
vz2 . (45)
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Figure 7: The oscillations of the integrand
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For this choice of Y ,E[Y +] is the Bachelier option price, which is available in closed
form.

4 Estimation

4.1 Quasi-maximum Likelihood Estimation

4.1.1 Overview

A quasi-maximum likelihood estimate (QMLE) is an estimate of a parameter vector
Θ in a statistical model that is formed by maximizing a function that is related to
the logarithm of the likelihood function, but it is not equal to it. In contrast, the
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maximum likelihood estimate maximizes the actual log-likelihood function of the
data and model.

The function that is maximized to form a QMLE is often a simplified form of
the actual log-likelihood function. A common way to form such a simplified func-
tion is to use the log-likelihood function of a misspecified model that treats certain
data values as being independent, even when in actuality they may not be. This
removes any parameters from the model that are used to characterize these depen-
dencies. This is only sensible if the dependency structure is a nuisance-parameter
with respect to the goals of the analysis.

As long as the quasi-maximum likelihood function that is maximized is not
overly simplified, the quasi-maximum likelihood estimate is consistent and asymp-
totically normal.

4.1.2 Estimation Procedure

The estimation approach is QML in conjunction with the extended Kalman filter
(EKF). To apply the Kalman filter the model must be cast in state space form, which
consists of a measurement equation and a transition equation.

The measurement equation describes the relationship between the state vari-
ables and the prices of futures and options, while the transition equation describes
the discrete-time dynamics of the state variables.

LetXt denote the vector of state variables and let Yt denote the vector consisting
of the price of futures and European call option prices. The general form of the
transition equation is given by

Xt+1 = Φ0 + ΦXXt + wt+1 (46)

with wt+1 and i.i.d random variable Φ0,ΦX can be computed in closed form. The
measurement equation is given by

zt = h(Xt; Θ) + ut, (47)

with ut ∼ N(0,Ω) where zt is the data vector, h is the pricing function and ut is a
vector of i.i.d Gaussian measurement errors with covariance matrix Ω.

Two assumptions are made to reduce the number of parameters in Ω:

1. All measurement errors are cross-sectionally uncorrelated, i.e Ω is a diagonal
matrix.

2. A single variance applies to all measurement errors for the futures prices, and
one more variance applies to all measurement errors for option prices.

This essentially states that futures and options prices of different terms are not
driven by different sources of randomness.
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4.1.3 Derivation of QML Function

Let X̂t = Et[Xt] and X̂t−1 = Et−1[Xt] denote expectations of Xt and let Pt and
Pt|t−1 denote the corresponding estimation error covariance matrices.

Linearizing the h-function in Equation 47 around X̂t−1, results in

zt =
(
h
(

(X̂t−1; Θ)
)
−H ′tX̂t−1

)
+H ′tX̂t + ut, (48)

where

H ′t =
δh(Xt)

δX ′t

∣∣
Xt=X̂t|t−1

. (49)

Assuming wt in Equation 46 is i.i.d and Gaussian results in

Xt = Φ0 + ΦXXt−1 + wt,withwt ∼ N(0, Qt). (50)

The Kalman Filter applied to Equations 50 and 48 yields

X̂t|t−1 = Φ0 + ΦXX̂t|t−1, (51)

Pt|t−1 = ΦXPt|t−1Φ′X +Qt, (52)

X̂t = X̂t|t−1 + Pt|t−1H
′
tF
−1
t εt, (53)

and

Pt = Pt|t−1 − Pt|t−1H
′
tF
−1
t HtPt|t−1, (54)

where the corresponding optimal predictor of zt given information at t− 1 is

zt|t−1 = h(X̂t|t−1) (55)

and

εt = zt − ẑt|t−1

= zt − h(X̂t|t−1) (56)

is the prediction error. The dispersion matrix (i.e. the covariance matrix) of ε is

E[εtε
>
t ] = Ft = HtPt|t−1H

′
t + Ω, (57)

where the Kalman filter produces one-step-ahead forecasts for zt, ẑt|t−1 and the
corresponding error covariance matrices Ft|t−1.

If it assumed that Xt is Gaussian, imposing that wt ∼ N(0, Qt) and linearizing
the h-function results in zt following a Gaussian distribution with mean

Et−1[zt] = h(X̂t|t−1)−H ′tX̂t|t−1 +H ′tEt−1[Xt] (58)

= h(X̂t|t−1)−H ′tX̂t|t−1 +H ′tX̂t|t−1 (59)

= h(X̂t|t−1) (60)

= ẑt|t−1, (61)
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and variance given by

Var(zt) = Var
(
h(X̂t−1; Θ)−H ′tX̂t−1 +H ′tX̂t + ut

)
(62)

= Var
(
H ′tXt + ut

)
(63)

= HtVar(Xt)H
′
t + Var(ut) + 2Cov(H ′tXt, ut) (64)

= HtPt|t−1H
′
t + Ω (65)

= Ft. (66)

Letting fz and fε denote the probability density functions of zt and εt respec-
tively, it should be clear that

fz(z1, z2..., , zT ) =
1√

(2π)T |Ft|
exp

(
−1

2
(zt − ẑt)>(Ft)

−1(zt − ẑt)
)

(67)

and

fε(ε1, ε2..., , εT ) =
1√

(2π)T |Ft|
exp

(
−1

2
(εt)
>(Ft)

−1εt

)
(68)

where T is the number of observation dates and εt = zt − ẑ so that εt ∼ N(0, Ft).
In order to compute the likelihood function of Θ note that the likelihood func-

tion associated with a dynamic time series model can be expressed in terms of a
prediction error decomposition. The components from Equation 56 and Equation
57 form the prediction error decomposition of the log-likelihood function.

If Θ is defined to be the vector of the parameters of the state model, for a fixed
value of Θ the Kalman filter produces the prediction errors ε and the prediction
error variances Ft|t−1 from the prediction equations.

Considering Θ to be the vector variable the likelihood can be written as a pre-
diction error decomposition of the form

L(Θ; ε1, ..., εT ) =

T∏
t=1

f(εi|Θ). (69)

By taking the logarithm it follows immediately that

L(Θ) = −1

2
log 2π

T∑
t=1

Nt −
1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

ε′tF
−1
t εt, (70)

where T is the number of observation dates and Nt is the dimension of εt. Ap-
proximating the true distribution of wt in Equation 46 with a Gaussian distribution
makes this a quasi-maximum likelihood procedure.
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As a consequence the quasi-maximum likelihood estimator, Θ̂ is then

Θ̂ = arg max
Θ

L(Θ)

which must be solved numericall.y
Note that although QML estimation has been shown to be consistent in many

settings, it is in fact not consistent in a Kalman filter setting, but it has been shown
that this effect is negligable in the term structure estimation framework.

4.2 Moment Derivation

Recall that the factor process dynamics under the pricing measure Q is specified by

dXt = κ(θ −Xt)dt+ Diag
(
σ ◦
√
Xt

)
dWQ

t (71)

where σi ≥ 0 for i = 1, · · · , d), κ ∈ Rd×d, θ ∈ Rd, and WQ
t is d-dimensional Brown-

ian Motion under Q. It useful for both the parameter estimation and option pricing
to have expressions for the first and second conditional moments of Xt. In this sec-
tion the conditional expection of a random variable Ut under the Q-measure will
be denoted

EQ[Ut|Ft] = Et[Ut] (72)

to ease notation.
The method of integrating factors can be used to determine the conditional ex-

pectation of Xt. Note

dXt + κXtdt = κθdt+ Diag
(
σ ◦
√
Xt

)
dWQ

t . (73)

This form suggests the integrating factor eκt. Multiplying both sides of the SDE by
eκt yields

d(eκtXt) = eκtκθdt+ eκtDiag
(
σ ◦
√
Xt

)
dWQ

t (74)

such that

eκTXT = eκtXt + κ−1(eκT − eκt)κθ +

∫ T

t
eκsDiag

(
σ ◦
√
Xt

)
dWQ

t (75)

resulting in

XT = e−κ(T−t)Xt + (I − e−κ(T−t))θ + e−κT
∫ T

t
eκsDiag

(
σ ◦
√
Xt

)
dWQ

t .

(76)
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Taking conditional expectations yields the first moment of Xt as

Et[XT ] = e−κ(T−t)Xt + (I − e−κ(T−t))θ,

= θ + e−κ(T−t)(Xt − θ), (77)

with t ≤ T .
The expression for the second moment is unavailable in closed form, but can be

solved numerically. Define
Yt = XtX

>
t . (78)

The SDE for Yt can be found using Itō’s lemma,

dYt = d(XtX
>
t ) (79)

= dXtX
>
t +XtdX

>
t + d〈Xt, X

>
t 〉, (80)

where

dX>t = (θ> −XT
t )κ>dt+ (dWQ

t )>
[
Diag

(
σ ◦
√
Xt

)]>
, (81)

d〈Xt, X
>
t 〉 = Diag

(
σ ◦
√
Xt

)
dWQ

t (dWQ
t )>

[
Diag

(
σ ◦
√
Xt

)]>
(82)

and

dWQ
t (dWQ

t )> = Iddt. (83)

Thus

d(Yt) = Xtθ
>κ>dt− Ytκ>dt+ κθX>t dt− κY >t dt+ Diag

(
σ2 ◦Xt

)
dt

+Xt(dW
Q
t )>

[
Diag

(
σ ◦
√
Xt

)]>
+ Diag

(
σ ◦
√
Xt

)
dWQ

t X
>
t . (84)

Taking the conditional expectation yields

dEt[Yt] = −Et[Yt]κ>dt− κEt[Yt]dt+
Et[Xt]θ

>κ>dt+ κ>θ>Et[Xt]dt+ Diag(σ2 ◦ Et[Xt])dt. (85)

Defining

G(t) = Et[YtY
>
t ] (86)

and

F (t) = Et[Xt] (87)

delivers the matrix ordinary differential equation

G′(t) +G(t)κ> + κG(t) = F (t)θ>κ> + κ>θ>F (t) + Diag(σ2 ◦ F (t)). (88)

Equation 88 can now be solved numerically to deliver the conditional variance of
the Xt process.

23



Figure 8: A single simulated futures path with added low volatility noise
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5 Implementation

The first step in implementing the QMLE is testing the Kalman Filter against sim-
ulated data. For data that consists only of the futures term structure realizations,
the standard Kalman Filter is sufficient.

5.1 Filtering Futures

The first test case involves a single time-series of simulated futures data with the
addition of low-volatility noise. Figure 8 illustrates the input observations and
Figure 9 displays the corresponding filtered state. It is clear that in this simple case
the standard Kalman Filter performs admirably.

The second test case involves three time-series of simulated futures data with
differing terms and the addition of high-volatility noise. The input observations
to the filter are displayed in Figure 10 whereas the corresponding filtered state is
depicted in Figure 11.

Even though the true futures prices are almost dwarfed by noise, the Kalman
Filter performs well. The added noise is somewhat offset by the increased num-
ber of paths as it is assumed (and simulated) that each path has the same noise
variance. The final test requires option observations.
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Figure 9: The output of the Kalman Filter application
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5.2 Filtering Options

When the input data consists of time-series of futures as well as options the Ex-
tended Kalman Filter performs poorly. Thus the Unscented Kalman Filter was im-
plemented. A test case is illustrated in Figures 12 and 13, where it is again shown
that the filter is performing well at recovering the underlying state.

5.3 The QMLE

Finding the QMLE requires performing an optimization over the Kalman Filter
function calls. However, the Kalman Filter is numerically unstable: the required
Cholesky decomposition of the transition covariance matrix will fail when small
numerical errors accumulate and the matrix stops being positive-definite. A solu-
tion to this problem is to implement the square-root specification of the Kalman
Filter which keeps the covariance matrices decomposed.
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Figure 10: Multiple simulated futures paths with added high volatility noise
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Figure 11: The output of the Kalman Filter application
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Figure 12: Simulated time-series data for futures and options with added noise
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Figure 13: Applying the Unscented Kalman Filter to the time-series data of futures
and options
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5.4 Conclusion

The investigation of the LSQ model proceeded well both analytically and numer-
ically. The next step is to implement a numerically stable Kalman Filter such that
real-world parameters can be estimated.
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1 Introduction

1.1 The market models and interest rate derivative pricing

The lognormal forward-LIBOR model (LFM or LIBOR market model) is one of the
most popular interest rate models. The reason for this is simply how it prices
caps, which along with swaptions are among the most liquidly traded interest rate
derivatives. Firstly, there is an analytical expression for cap prices in this model,
commonly referred to as the Black formula, see e.g. Brigo and Liinev (2005). This
closed-form pricing rule has been market practice for pricing caps long before the
LFM was introduced in Miltersen et al. (1997) and Brace et al. (1997). It also allows
for efficient calibration of LFM to the market prices of caps. Secondly, although
there is no simple formula for swaption prices in the LFM, these can be approxi-
mated very well by a closed-form expression also relying on the Black formula.

Similarly, under the lognormal forward-swap model (LSM), swaption prices are
given exactly by an analogous Black formula and cap prices can be approximated
suitably. Pricing swaptions with this analogous Black formula is again standard in
the swaption-market. However, as shown in Brigo and Liinev (2005) and explained
in more detail in Chapter 6.1 in Brigo and Mercurio (2006), there is no model under
which swaptions and caps are both priced exactly with the Black formula.

In order to price interest rate derivatives that are not liquidly-traded, one can
therefore calibrate the LFM (or LSM) to the market-prices of liquidly traded caps
(swaptions) based on the corresponding Black formula and use Monte Carlo simu-
lation to approximate the price of the derivative. If the non-liquidly traded deriva-
tive is itself a cap (swaption), of course, the exact formula can be used and for
swaptions (caps) the approximate pricing formulas can be employed.

1.2 Research problem: Pricing of long-dated swaptions in single- and
multi-curve LIBOR market models

Insurance companies pricing swaptions and calibrating to swaption data are faced
with the following problem. In the Asset Liability Management (ALM) context
the maturities and tenors (in the terminology of Chapter 1 in Brigo and Mercurio
(2006)) of these swaptions are far larger than those of any swaptions traded in the
market. Since the swaption market in South Africa is generally viewed not to be
liquid enough for a sensible calibration of the LSM model, one could resort to the
LFM. This brings us precisely to the setup outlined above: we want to calculate swap-
tion prices in the LFM. Due to the large number of insurance policies that have to be
valued in the ALM context, the number of sample paths that can be used for the
Monte Carlo simulation is very limited. On the other hand, the Rebonato formula
(see e. g. Section 6.15 in Brigo and Mercurio (2006)), a closed-form approximation
for the implied volatility of a swaption price in the LFM model, has been found to
be very accurate in empirical studies presented by several researchers, for example
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in Brigo and Mercurio (2006). However, these empirical studies have been in the
pricing context and not in the ALM context. In some parameter settings based on
the calibration of the LFM to market data, however, the Rebonato volatility and the
volatility implied from the price calculated using Monte Carlo seem to differ sub-
stantially. The problem examined by our team for the purposes of this challenge
thus mainly comprehends the following questions:

Why are the two volatilities so different? Which of the two approximations should be
trusted and how can we assess the accuracy of the calculated prices?

As a further question we were asked to derive a similar approximation in a
multi-curve setting. See Section 5 for a motivation of the problem.

1.3 Organisation of the report and proposed solutions

In Section 2 we give a review of the LIBOR market model, Monte Carlo pricing in
this setup and derive the Rebonato formula. In Sections 3 and 4 we then discuss
and assess different aspects that we consider possible solutions to the problem for-
mulated above. These include

(i) Consistency checks: Monte Carlo error bounds and bias control via exact
caplet pricing.

(ii) Sensitivity of the implied volatility to approximation error.

(iii) Improving the accuracy of Monte Carlo: reducing the step size, using predictor-
corrector and switching to quasi-Monte Carlo.

In more detail, in Sections 3.1 and 3.2 we outline two simple checks that allow us
to measure the quality of the Monte Carlo approximation for the price: Firstly, we
obtain a confidence interval for the true price using the standard Monte Carlo error
bounds and secondly, we show how the exact pricing formula for caps under the
LFM model can be used to further assess the quality of a simulated Monte Carlo
sample. In Section 3.3 we then look at the problem from a different point of view:
given that swaption prices in the South African market are quoted in terms of im-
plied volatility, this is the quantity of interest. However, the simulations give an
approximation of the price, not the implied volatility. The inversion of the Black
formula, mapping a price to its implied volatility, might in some cases be very sen-
sitive to small price changes and thus amplify the Monte Carlo error. We illustrate
how standard methods may be used to assess this sensitivity. In Section 3.4 we
describe the predictor-corrector method which may allow for the improvement in
the accuracy of Monte Carlo pricing for a fixed sample size. This will of course
increase the computational cost required to generate the samples. In the ALM con-
text, however, the number of policies valued with the same Monte Carlo sample
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is large. Thus, the overall computational cost for valuing all these policies may be
lower in comparison to standard Monte Carlo with larger sample size.

In Section 4 we then assess each of the above points in simulations. We consider
different parameter scenarios, all of which have been obtained by calibrating the
LFM to market data. We see that in cases of short maturities the approximation
using the Rebonato formula indeed seems to be working quite well. For longer-
dated swaptions, however, the two approximations can be quite far apart. In these
cases, the consistency checks in (i) allow us to quantify the approximation quality
of Monte-Carlo prices and we thus easily see that for long-dated maturities the
Rebonato formula may not be a good approximation. Furthermore, we examine
the different methods in (iii) and see, for example, that simulating forward rates
with smaller time-steps do not seem to bring an improvement as opposed to only
sampling them at the reset times of the swaption.

We conclude with Section 5, where we review the lognormal multi-curve LI-
BOR market model introduced in Mercurio (2010) and the derivation of the anal-
ogous Rebonato formula. This provides an answer to the second question formu-
lated above.

2 LIBOR Market Model

In this section we provide a review of the lognormal forward-LIBOR model, first
introduced in Miltersen et al. (1997) and Brace et al. (1997). The exposition in this
section is very close to Brigo and Mercurio (2006), but not fully self-contained for
the sake of brevity. In Section 5, many of the notions are explained in more detail
in a multi-curve setting.

2.1 Why Market Models are popular

The lognormal forward-LIBOR model (LFM or LIBOR market model) and the lognor-
mal forward-swap model (LSM) are two of the most popular interest rate models.
As outlined in the introduction, this is mainly due to the fact that they price caps
and swaptions in agreement with the well-established market formulas. The Black
cap formula is the standard formula used in the cap market and the prices com-
puted from this formula coincide with the ones from the LFM. Moreover, the LSM
prices swaptions with the Black swaption formula which again is standard in the
swaption market. However, though these classic formulas for caps and swaptions
can be derived rigorously separately in each of the two models, the two models are
not compatible. As discussed in detail in Section 2.4, if forward rates are lognormal
under each of their own forward measures, the swap rate is not exactly lognormal
(although, it is not far away). There is empirical work on this matter, see Brigo and
Liinev (2005) and Brigo and Mercurio (2006).
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2.2 Definition

Let T−1 = 0 be the current time. Consider a set ε = {T0, ..., TM} of adjacent expiry-
maturity pairs of dates. Let us denote by {τ0, ..., τM} the corresponding year frac-
tions.

Consider the generic forward rate Fk(t) := F (t;Tk−1, Tk), which is defined up
to time Tk−1, where it coincides with the spot LIBOR rate Fk(Tk−1) := L(Tk−1, Tk).

Consider now the probability measure Qk associated with the numéraireP (·, Tk).
As in Brigo and Mercurio (2006) we denote by P (t, T ) the price at time t of a zero-
coupon-bond with maturity T , where t ≤ T . Qk is often called the forward adjusted
measure for maturity Tk. The LFM assumes the following driftless geometric Brow-
nian dynamics for Fk under Qk :

dFk(t) = σk(t)Fk(t)dZk(t), (1)

t ≤ Tk−1, where dZk is a standard Brownian motion under Qk and σk(t) is a deter-
ministic function representing the instantaneous volatility at time t for the forward
LIBOR rate Fk. Throughout this report, we will always consider piecewise constant
instantaneous volatility σk(t) = σk,β(t), where β(t) = m if t ∈ (Tm−2, Tm−1]. The
noises in the dynamics of different forward rates are assumed to be instantaneously
correlated according to

d〈Zi, dZj〉t = ρi,jdt,

where the brackets denote the quadratic variation.
If we look at the dynamics of the forward LIBOR rate Fk under a measure Qα

with α 6= k, the forward rate Fk(t) is not a martingale under Qα and a drift term
appears:

dFk(t) = σk(t)Fk(t)

k∑
j=α+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt+ σk(t)Fk(t)dZk(t), (2)

for k = α + 1, ..., β. For further details, see Section 5 of the report or Chapter 6 of
Brigo and Mercurio (2006).

2.3 Pricing Caplets

Caps are collection of caplets. A caplet with maturity Ti−1 has payoff (Fi(Ti−1 −
K)+ paid at time Ti. Since in the LFM Fi follows a geometric Brownian motion
under Qi, the price Cpl of a caplet is computed immediately as a classical Black

7



price:

Cpl = P (0, Ti)Bl(K,Fi(0), vi), with

Bl(K,Fi(0), vi) = Fi(0)Φ(d1(K,Fi(0), vi))−KΦ(d1(K,Fi(0), vi)),

d1(K,Fi(0), vi) =
ln(Fi(0)/K) + v2

i /2

vi
,

d2(K,Fi(0), v) =
ln(Fi(0)/K)− v2

i /2

vi
,

(3)

Here Φ denotes the distribution function of a standard normal and vi is given as

v2
i = Ti−1v

2
Ti−1

v2
Ti−1

=
1

Ti−1

∫ Ti−1

0
σi(t)

2dt
(4)

2.4 Limitations

The limitation of the LFM from a market perspective is that it does not price swap-
tions according to the Black swaption formula. The payoff of a swaption can be
written as

H = (Sα,β(Tα)−K)+
β∑

i=α+1

τiP (Tα, Ti), (5)

where Sα,β is the forward swap rate. For example, in equation (6.33) in Brigo and
Mercurio (2006)), we can express the forward swap rate Sα,β(Tα) in terms of span-
ning forward rates Fα+1(Tα), . . . , Fβ(Tα),

Sα,β(t) =
1−

∏β
j=α+1

1
1+τjFj(t)∑β

i=α+1 τi
∏i
j=α+1

1
1+τjFj(t)

. (6)

The lognormal forward-swap model (LSM) assumes the following geometric
Brownian driftless dynamics for a forward swap rate Sα,β(t) under the swap mea-
sure Qα,β (see Brigo and Mercurio (2006)):

dSα,β(t) = σ(α,β)(t)Sα,β(t)dWα,β
t (7)

where Wα,β is a standard Brownian motion under Qα,β .
Thus, basically we have two possibilities to calculate the price of a swaption:

we can do this either under the LFM, which models the spanning forward rates,
giving a swap rate as in equation (6) or under LSM which models forward swap
rates directly. The two results are not the same.

This is because while the dynamics of the swap rate coming from the LSM
(see Equation (7)) are lognormal, the dynamics of swap rate coming form the LFM
(Equation (6)) are not lognormal.
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Thus, under the LFM we can not get the Black formula for swaptions, which is
the market standard. Instead, we need to price swaptions numerically under the
LFM.

2.5 Monte Carlo Pricing of Swaptions with the LFM

The price p0 at time 0 of a swaption can be obtained as the expectation of the payoff
Equation (5) under the Tα-forward measure Qα

p0 = P (0, Tα)Eα
[

(Sα,β(Tα)−K)+
β∑

i=α+1

τiP (Tα, Ti)

]
(8)

where Eα denotes the expectation under Qα. Notice that for k = α+ 1, . . . , β,

P (Tα, Tk) =

k∏
j=α+1

1

1 + τjFj(Tα)
(9)

and Equation (6) hold, so that the payoff inside the expectation in Equation (8)
can be expressed only in terms of forward rates. For Monte Carlo simulation, we
can thus proceed precisely as in Section 6.10 of Brigo and Mercurio (2006) and first
simulate N realisations of Fα+1(Tα), . . . , Fβ(Tα) under the measure Qα. By taking
logs and applying Itô’s Lemma, we see that the dynamics (2) imply

d lnFk(t) = σk(t)
k∑

j=α+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt− σk(t)

2

2
dt+ σk(t)dZk(t).

To simulate the forward rates, we simply use the Euler scheme

lnF∆t
k (t+ ∆t) = lnF∆t

k (t) + σk(t)
k∑

j=α+1

ρk,jτjσj(t)F
∆t
j (t)

1 + τjFj(t)∆t
∆t

− σk(t)
2

2
∆t+ σk(t)(Zk(t+ ∆t)− Zk(t))

(10)

recalling that Z(t+ ∆t)− Z(t) ∼ N (0, ρ).
We then evaluate the payoff inside the expectation in Equation (8) for each of

these realisations (giving a scenario H i), average and multiply by P (0, Tα), a quan-
tity given by the initial data, to obtain the Monte Carlo approximation of the price

pMC =
P (0, Tα)

N

N∑
i=1

H i (11)
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The Monte Carlo implied volatility vMC
α,β is the volatility, which has to be in-

serted into the Black swaption formula (see Brigo and Mercurio (2006)) in order to
obtain pMC . More precisely, it is the unique solution to

pMC = Cα,β(0)Bl(K,Sα,β(0),
√
Tαv

MC
α,β ), (12)

where Bl is as in Equation (3) and

Cα,β(0) =

β∑
i=α+1

τiP (0, Ti).

2.6 The Rebonato formula for the swaption volatility

From equation (6), we can write

Sα,β(t) =

β∑
k=α+1

ωk(t)Fk(t), (13)

where

ωk(t) =
τk
∏k
j=α+1

1
1+τjFj(t)∑β

k=α+1 τk
∏k
j=α+1

1
1+τjFj(t)

. (14)

Assuming that the variability of the weights ω is much smaller than the vari-
ability of the Fk, we can freeze the weights at their known value at time 0, leading
to:

Sα,β(t) ≈
β∑

k=α+1

ωk(0)Fk(t).

We define this approximation of the swap rate as the Rebonato swap rate,

SRebonatoαβ (t) :=

β∑
k=α+1

ωk(0)Fk(t)

Taking differentials on both sides and equating the quadratic variations, we
have

d〈lnSα,β〉t ≈
β∑

i,j=α+1

ωi(0)ωj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)

Sα,β(t)2
dt.

We now introduce a further approximation by freezing all the forward rates Fk
at time 0 in the above equation, which results in

d〈lnSα,β〉t ≈
β∑

i,j=α+1

ωi(0)ωj(0)Fi(0)Fj(0)ρi,jσi(t)σj(t)

Sα,β(0)2
dt.

10



By the definition of Black swaption volatility under the LSM,

(υ2
α,β) :=

∫ Tα

0
σ2
α,β(t)dt =

∫ Tα

0
(d lnSα,β(t))(d lnSα,β(t))

Then we have∫ Tα

0
d〈lnSα,β〉tdt

≈
β∑

i,j=α+1

ωi(0)ωj(0)Fi(0)Fj(0)ρi,j
Sα,β(0)2

∫ Tα

0
σi(t)σj(t)dt =: (υLFMα,β )2

Then we have LFM Black-like swaption volatility

(υRebonatoα,β ) =

√√√√ 1

Tα
(

1

Sαβ(0)
)2

β∑
i,j=α+1

ωi(0)ωj(0)Fi(0)Fj(0)ρi,j

∫ Tα

0
σi(t)σj(t)dt.

(15)

3 Implementation, Quality Assessment and Sensitivity Anal-
ysis

3.1 Standard Monte Carlo Error Bounds

Following Section 6.11 in Brigo and Mercurio (2006), the central limit theorem gives
the following confidence interval for the Monte Carlo approximation of the swap-
tion price1. The true value p0 will lie inside the (random) interval[

pMC − Φ−1

(
α+ 1

2

)
Std(p)√

N
, pMC + Φ−1

(
α+ 1

2

)
Std(p)√

N

]
with probability α, where Std(p) is the (true) standard deviation of P (0, Tα)H . Re-
placing Std(p) by the sample standard deviation

Ŝtd
2

=
1

N

N∑
i=1

(P (0, Tα)H i)2 −

(∑N
i=1 P (0, Tα)H i

N

)2

we obtain an approximate confidence interval. Here pMC andH i are as in Equation
(11).

1Note that here we have scaled the interval by P (0, Tα).

11



3.2 Validating the Monte Carlo Implementation Using the Black For-
mula for Caplets

To check if the Monte Carlo works correctly, let us look for a payoffH for which the
price can be calculated exactly. Given a Monte Carlo sample used to approximate
the price of a swaption, we can then use the same sample to calculate the Monte
Carlo price of H . Comparing this to the known true price of H , this gives us an
indication of how good the approximation of the swaption price with this sample
is.

Let us consider a payoff at Tα given as

Hk = τkD(Tα, Tk)(Fk(Tα)−K)+,

where D denotes the stochastic discount factor associated to the risk-neutral mea-
sure Q. The price c0 of this contract at time 0 is thus given as c0 = E[D(0, Tα)Hk],
where E denotes the expectation under the risk-neutral measure. By changing to
the Tk forward-measure, we can rewrite this as

E[D(0, Tα)Hk] = τkP (0, Tk)Ek[(Fk(Tα)−K)+]

= τkP (0, Tk)Bl(K,Fk(0), vk),

where Bl is as in Equation (3) and

v2
k =

∫ Tα

0
σk(t)

2dt =

α∑
j=0

σ2
k,j+1τj .

The second equality follows from the assumption that σ is piecewise constant.
However, to calculate this price using Monte Carlo, we cannot directly use the

realisations generated above to approximate Ek[(Fk(Tα) − K)+]; recall that these
realisations were generated under Qα and not Qk. Nevertheless, we may obtain

E[D(0, Tα)Hα] = τkE[D(0, Tα)(Fk(Tα)−K)+P (Tα, Tk)]

= τkP (0, Tα)Eα[(Fk(Tα)−K)+P (Tα, Tk)]

by using Section 2.7 in Brigo and Mercurio (2006) for the first step and a change of
numéraire for the second. For each k = α+ 1, . . . , β the expectation in the last step
can now be calculated using the realisations of Fk(Tα) generated above (under Qα)
and Equation (9) for k.

3.3 Sensitivity Analysis

As we invert the Black formula to find the Monte Carlo implied volatility, see Equa-
tion (12), it might be informative to look at the sensitivity of the volatility to price
changes.

12



The sensitivity of volatility to price change may be defined as

ζ =
∂vMC

α,β

∂pMC
=

1
∂pMC

∂vMC
α,β

.

Note that ζ can be obtained by standard calculations as

ζ =

√
2π

Sα,β(0)Cα,β(0)
√
Tα

exp

[
1

2
d2

1(K,Sα,β(0),
√
Tαv

MC
α,β )

]
(16)

where the function d1 is as in Equation (3).
By looking at the sensitivity, we can get an idea to what extent the error in the

Monte Carlo approximation affects the volatility. More precisely, a large sensitivity
will indicate that a even a small error p0−pMC may result in a large error v0− vMC

α,β

and vice versa. Here by v0 we denote the true implied volatility, i.e. the solution of

p0 = Cα,β(0)Bl(K,Sα,β(0),
√
Tαv0)

analogously to (12).

3.4 Predictor-Corrector method

In the log discretisation used above, a discretisation error arises due to the fact
that the drift is state dependent. Following an approach proposed by Hunter et al.
(2001), it is possible to produce a more accurate estimate of the drift experienced
over the update period.

The idea is to evolve the forward rates to the end of the period and then com-
pute the terminal drift using the evolved rates. Using the same variates that were
used to estimate the terminal drift, the initial forward rates are then evolved using
a drift computed as the average of the initial and terminal drift.

Mathematically, we first compute

ln F̄∆t
k (t+ ∆t) = ln F̂∆t

k (t) + σk(t)µ̂k(t)∆t

− σk(t)
2

2
∆t+ σk(t)(Zk(t+ ∆t)− Zk(t))

where

µ̂k(t) =
k∑

j=α+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)

for k = α+ 1, ..., β. Then we use these evolved rates to compute

µ̄k(t) =

k∑
j=α+1

ρk,jτjσj(t+ ∆t)Fj(t+ ∆t)

1 + τjFj(t+ ∆t)
.
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Finally, using the same (Zk(t+ ∆t)− Zk(t)) as before, we compute the new rates,

ln F̂∆t
k (t+ ∆t) = ln F̂∆t

k (t) + σk(t)
µ̂k(t) + µ̄k(t)

2
∆t

− σk(t)
2

2
∆t+ σk(t)(Zk(t+ ∆t)− Zk(t)).

(17)

4 Model Simulation

Simulating under the 2-Factor LMM

Under the calibrated 2-factor LMM, we analyse the discrepancy between υMC
α,β and

υRebonatoα,β . We calculate υMC
α,β as the Black implied volatility from pMC and determine

υRebonatoα,β from the approximation formula (15). Our simulations were conducted in
MATLAB 2015a. Note that there are a number of varying parameters which pro-
duce the results below: most notably the total number of simulations (N), the num-
ber of times steps per year (nt) that are used to evolve the forward rates, whether
quasi-Monte Carlo is implemented, and finally the use of the predictor-corrector
method.

From our simulations we observe that in certain cases υRebonatoα,β 6= υMC
α,β and the

approximation breaks down. In comparing the maturities and tenors of different
swaptions, we note that the approximation holds for short-dated swaptions but
deteriorates as we evaluate long-dated swaptions. We consider the sensitivity of
swaption prices to a change in volatility, and illustrate the negative impact that a
poor volatility approximation can have. We finally apply our simulations in the
ALM context and suggest possible guidelines for appropriate implementing of the
Rebonato approximation for swaption volatilities.

Quasi-Monte Carlo

For selected results below, we use the method of quasi-Monte Carlo (QMC) due
to the well known fact that it has a faster rate of convergence when compared to
Monte Carlo (MC) in two dimensions. For the majority of simulations the differ-
ence in accuracy between QMC and MC is neglible. Discrepancies only arise when
the number of simulated time steps per year exceeds 10, i.e. for high dimensions.
However, our results indicate that time steps greater than 4 per year do not yield
better approximations. Therefore, for scenarios when the number of time steps is
large, we resort back to MC simulations.

Our choice of low discrepancy sequence is the Sobol sequence. The method and
list of initial direction numbers and primitive polynomials is provided by Joe and
Kuo (2008).
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Accuracy and efficiency in implementation

It is important to re-emphasise that our objective is not to improve the pricing of
swaptions via the LFM model. Our simulations seek to determine the scenarios
under which the approximation of volatility

(
υRebonatoα,β

)
becomes inaccurate. Our

results are also based on data which has been produced using a particular calibra-
tion technique, and any conclusions made with respect to υRebonatoα,β , will be specific
to this data.

4.1 Short-dated versus Long-dated Swaptions

The short-dated swaptions we consider have maturities (Tα) of 1, 5 and 10 years
and tenors (Tβ − Tα) of 5, 10 and 25 years. These swaptions are not frequently
traded in South Africa. A swaption labeled 1×5 illustrates a 1 year maturity (Tα)
with a 5 year tenor (Tβ − Tα). The approximations were considered with the use
of 95% Monte Carlo error bounds. In Figure 1a, one can deduce that the Rebon-
ato approximation performs relatively well for short-dated swaptions. Although
slightly higher, the Rebonato volatility for the 1×5 swaption lies within the 95%
error bounds of our Monte Carlo estimate for a sample of 50 000 paths. For the
10×15 swaption in Figure1b, the Rebonato approximation lies just within the er-
ror bounds. The tenor of both these swaptions is the same, yet for the swaption
with the higher Tα, the Rebonato approximation overestimates volatility by 47 ba-
sis points.

One can also clearly identify the superior convergence of quasi-Monte Carlo
compared to crude Monte Carlo. It is evident that when pricing according to QMC
one should not need more than 20 000 samples as the change in the estimate is
minimal.
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Figure 1: Short-dated swaption pricing with increasing sample size

(a) Swaption volatility (1×5) (b) Swaption volatility (10×15)

In Table 1 we display the relative volatility error (RVE), defined as

RVE =
υRebonatoα,β − υMC

α,β

υMC
α,β

,

for a flat yield curve (FYC) and observed yield curve (OYC).

Table 1: Short-dated relative volatility error for a FYC and the OYC (N = 10 000)

1×5 1×10 1×15 5×10 5×15 10×10 10×15

FYC - Crude MC 0.46% 0.44% 0.78% 1.19% 1.81% 0.02% 2.04
FYC - Quasi-MC 0.05% 0.16% 0.22% 1.51% 1.66% 0.98% 1.93
OYC - Crude MC 0.97% 1.12% 3.96% 3.16% 4.28% 1.00% 1.04
OYC - Quasi-MC 0.46% 1.41% 2.93% 3.41% 4.16% 2.05% 0.93

The difference of 40 basis points in the volatilities of the longest maturity swap-
tion does gives an indication of the effect of longer time horizons. The relative error
on our caplet pricing validation was no higher than 2%, which supports the imple-
mentation of our Monte Carlo. In extending these simulations to long-dated swap-
tion scenarios we found that the approximation began to break down the longer
the time horizon. We consider a swaption with a fixed maturity of 25 years and
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varying tenors ranging from 1 to 25 years. There appears to be a point around
Tβ − Tα = 10 where the approximation and the simulation begin to diverge under
this specific calibration.

Table 2: Long-dated relative volatility error (Crude Monte Carlo, N = 10000)

Tenor (Tβ − Tα)

1 5 10 15 20 22 25
Tα = 25 2.57% 1.05% 7.62% 20.31% 27.42% 35.35% 41.20%

Maturity (Tα)

1 5 10 15 20 22 25
Tβ − Tα = 25 0.88% 0.08% 4.06% 14.41% 30.58% 34.49% 41.20%

Figure 2: Performance of υRebonatoα,β 6= υMC
α,β over long-dated swaptions

(a) Price discrepancy for fixed maturity (Tα) (b) Volatility discrepancy for fixed maturity (Tα)

In Figure 1, for the longest time horizon Tβ−Tα = 25 there is a volatility discrep-
ancy of 730 basis points, while the caplet relative error still supported Monte Carlo
with levels no higher than 8%. These results highlight the limitation of Rebonato’s
approximation in pricing swaptions over long time horizons under this calibration.
On a R10 000 000 25×25 swaption contract, the use of Rebonato’s approximation
would lead to a R730 000 price differential when compared to the quasi-Monte
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Carlo estimate. However the differences between the prices and volatilities vary,
which leads us to look at the sensitivities to further analyse the discrepancies.

4.2 Price and Volatility Sensitivity

In considering the same fixed maturity swaption as before (Tα = 25), with N = 10
000, it may be of importance to consider price volatility sensitivities. The sensitiv-
ities can be calculated with the closed-form solution for the sensitivity in equation
(3.3). This will give an indication of how sensitive the difference in price will be
for a different volatility. Table 3 illustrates the sensitivity levels across short-dated
swaptions. The sensitivity is calculated as 1

ζ in order to consider the sensitivity
of the volatility in terms of the price. Larger sensitivity and larger discrepancy of
volatilities will, as predicted, cause larger discrepancies of prices.

Table 3: Basis point (BP) differentials (diff) and error sensitivities

1×5 1×10 1×15 5×5 5×10 5×15 10×5 10×10 10×15

BP diff in Vol 9.675 27.770 56.940 42.355 78.470 94.909 32.184 48.323 22.618
BP diff in Price 1.178 5.911 15.740 8.991 28.615 43.394 6.697 16.168 9.042

1
ζ 32.650 31.140 30.110 13.667 13.083 13.028 9.022 9.166 9.680

Figure 3: Consistency check with caplet price and swaption vega

(a) Consistency check to the Black caplet price (b) Swaption Vega as function of tenor
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Plotting these sensitivities in Figure 3 appears to follow the movements of the
caplet prices in this scenario. These sensitivities were calculated directly from the
Black formula for ζ as a derivative of pMC , which should explain the relationship.

What Figure 3 does give us is an indication of where a difference in volatilities
will have a larger effect on the difference in price. It is not the absolute size of the
sensitivity that matters, rather the relative size that indicates a scenario where the
price is more/less sensitive to an erroneous volatility approximation.

4.3 Simulating in the ALM context

In the ALM context there are both restrictions on the number of simulated paths
and greater interest in long-dated time horizons. We therefore consider our sce-
narios specific to these circumstances in order to understand the flexibility of the
approximation and when it begins to stray.

We found that increasing the number of time steps per year in an attempt to
improve the Euler approximation had little effect on the overall result, as shown in
Figure 4. The minimum number or time steps per year was two, to match the reset
dates of the calibrated yield instruments.

Figure 4: Swaption pricing with increased time steps per year

(a) Swaption price for nt = 2 and nt = 100 (b) Swaption volatility for nt = 2 and nt = 100

Implementing the predictor-corrector scheme in Figure 5 did not seem to im-
prove results dramatically. Again, in the ALM context this scheme should opti-
mise accuracy for a small number of samples. What we see here is how Rebonato’s
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approximation appears to lose accuracy under most circumstances as we move be-
yond a certain time horizon. This may be a result from the derivation itself, where
the sample foward rates are “frozen” in their initial state (assumed to remain rela-
tively constant through time).

Figure 5: Swaption price using the predictor-corrector (PC) method

(a) Swaption price using the PC method (b) Swaption volatility using the PC method

5 Multi-Curve Libor Market Model

In this Section, we will give a brief review of the extension of the LFM to a multi-
curve setup as proposed in Mercurio (2010). This also leads to a Rebonato formula
for approximating swaption prices in a multi-curve setup and therefore provides
one possible answer to the second question formulated in the introduction. Due to
the lack of data, we do not report on any simulations in the multi-curve setup.

5.1 From Single- to Multi-curve models

Already before the financial crisis in 2007, there was a slight discrepancy between
standard interest rate models and observed market behaviour: There was a small
spread between the overnight indexed swap (OIS) and the LIBOR rate. However,
this spread was considered negligible. After 2007 the situation changed drastically
and since then, the market has been showing a significant spread between the two
rates. In the context of interest rate derivative pricing, this has thus created the need
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for models in which the yield curve generating the cashflows and the curve with
which these are discounted (the OIS rate) are distinct. For a detailed explanation,
see Mercurio (2009).

Different approaches to incorporate this new feature have been taken in the lit-
erature, see for example Crépey et al. (2012) and further references therein. Notice
that many of these models also tackle the problem of jointly modelling the OIS
rate and a variety of LIBOR curves; in this review of Mercurio (2010) we restrict
ourselves to a single LIBOR curve for notational simplicity.

5.2 Setup

Let us denote by PL(t, T ) and PD(t, T ) the zero-coupon-bond price at time t for
maturity T associated to the LIBOR and OIS yield curve, respectively. For given
times T0 < T1, · · · < TM , let us define as in the classical single-curve setup the
(simply compounded) forward rate (associated to the respective curve x ∈ {L,D})
at time t with expiry Tk−1 and maturity Tk as

F xk (t;Tk−1, Tk) =
1

τxk (Tk−1, Tk)

[
Px(t, Tk−1)

Px(t, Tk)
− 1

]
,

for t ≤ Tk−1 < Tk, where τxk is the year-fraction associated with (Tk−1, Tk). As-
suming the existence of a risk-neutral measure Q, we define by Qk

D the equivalent
measure associated to the numéraire PD(·, Tk), referred to as the Tk forward mea-
sure for the OIS curve.

Let us now consider the FRA (forward rate agreement) rate Lk(t): this is the
fixed rate K (at time t), that makes a contract paying (Fk(Tk−1)−K) at time Tk fair
at time t. Noting that the payoff of any traded asset discounted by PD(·, Tk) is a
martingale under Qk

D, by no-arbitrage we see that

Lk(t) = EkD
[
FLk (Tk−1)|Ft

]
, (18)

where Ft is the information available at time t. Thus, whereas in the single-curve
setup the forward rate Fk(t)L coincides with the FRA rate Lk (and the forward
rate FDk ), here this does not hold anymore. Therefore, in contrast to the LFM, the
stochastic model to be proposed will not be based on assumptions on the evolution
of Fk, but rather on Lk. As can be seen from Equation (18), this is a martingale
under Qk

D and Lk(Tk−1) = Fk(Tk−1), which allows us to write the payoffs of e.g.
swaptions and caplets on the LIBOR rate also in terms of the Lk. In this extended
LIBOR market model, we now also want to impose a stochastic model for FDk .
Denoting by Sk(t) the spread

Sk(t) = Lk(t)− FDk (t),

we actually have three choices of what we want to be our fundamental modelling
quantities:
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• the rates Lk and FDl , or

• the rates Lk and spreads Sl, or

• the rates FDk and spreads Sl.

5.3 The lognormal Multi-Curve LFM

Still following Mercurio (2010), we choose the first option and impose lognormal
dynamics on both rates. Thus, we assume that for each k the FRA rate evolves as a
geometric Brownian motion under Qk

D,

dLk(t) = σk(t)Lk(t)dZk(t)

for t ≤ Tk−1. Similarly, for the OIS forward rates we assume

dFDk = σDk (t)FDk (t)dZDk (t)

for t ≤ Tk−1. σk and σDk are deterministic and ZDk , Zk are Brownian motions under
Qk
D with correlation structure

d〈Zk, Zj〉t = ρk,jdt

d〈ZDk , Zj〉t = ρD,Lk,j dt

d〈ZDk , ZDj 〉t = ρD,Dk,j dt

chosen to ensure that the block matrix

R =

[
ρ ρD,L

(ρD,L)′ ρD,D

]
is positive semi-definite. Since this system of stochastic differential equations is
formulated in terms of a different measure for each component, it is not obvious
that a solution exists. However, we can fix a forward measure Qα

D and look at the
dynamics that are implied by the above assumptions for all the FRA rates Fk and
Lj under Qα

D. This system can then be argued to admit a solution, see Section 5.2
of Mercurio (2010). For example, for k = α + 1, . . . , β the dynamics under the Tα
forward measure Qα

D are given as

dLk(t) = σk(t)Lk(t)

[
k∑

h=α+1

ρL,Dk,h τ
D
h σ

D
h (t)FDh (t)

1 + τDh F
D
h (t)

dt+ dZαk

]

dFDk (t) = σDk (t)FDk (t)

[
k∑

h=α+1

ρL,Dk,h τ
D
h σ

D
h (t)FDh (t)

1 + τDh F
D
h (t)

dt+ dZD,αk

]
.

(19)

A similar expression can be derived for k = 1, . . . , α− 1.
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5.4 Pricing Caplets in the lognormal Multi-Curve LFM

Let us now examine how the formulas for caplet pricing reported in Section 2
change in this multi-curve setup. We are interested in the price at time 0 of a Tα−1-
caplet based on the LIBOR forward rate. As before, the payoff at time Tα is given
as

Hα−1 = τα(FLα (Tα−1)−K)+.

Changing the numéraire, we can see that the price at time 0 is therefore given as

Cpl = ταPD(0, Tα)EαD[(FLα (Tα−1)−K)+]

= ταPD(0, Tα)EαD[(Lα(Tα−1)−K)+]

= ταPD(0, Tα)Bl(K,Lα(0),
√
Tα−1vα),

where v2
α is given by equation (4) (with i = α). This is completely analogous to the

single-curve case: we only have to replace the discount factor by the one associated
to the OIS-curve and replace the initial forward rate by the initial FRA-rate.

5.5 Swaption Pricing and Rebonato Formula for Lognormal FRA and
OIS-Forward Rate Dynamics

As in the single-curve setup, we are interested in calculating swaption prices in this
model.

5.5.1 Swap Rates

Firstly, let us consider an interest rate swap that exchanges at each Tk ∈ {Tα+1, . . . , Tβ}
the LIBOR rate set at Tk−1 for a fixed rate K. According to (22), the value at time
t ≤ Tα of receiving τkFk(Tk−1) at each time Tk is thus given as

β∑
k=α+1

PD(t, Tk)τkLk(t) (20)

whereas the value at time t of the fixed payments is given as

K

β∑
k=α+1

τkPD(t, Tk). (21)

The swap rate Sα,β(t) is defined as the fixed rate K which at time t renders the
above contract fair. Combining equations (20) and (21), we obtain

Sα,β(t) =

∑β
k=α+1 τkPD(t, Tk)Lk(t)∑β

k=α+1 τkPD(t, Tk)
,
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which we can rewrite as

Sα,β(t) =

β∑
k=α+1

ωk(t)Lk(t) , ωk(t) =
τkPD(t, Tk)∑β

j=α+1 τjPD(t, Tj)
. (22)

5.5.2 Swaptions and the Rebonato Formula in the Multi-Curve Model

For a given rate K, a swaption is a financial contract that at time Tα gives its holder
the right (but not the obligation) to enter a swap contract as specified above. The
payoff of a swaption can thus be written as

Hα,β = (Sα,β(Tα)−K)+
β∑

k=α+1

τkPD(t, Tk).

Denoting by Qα,β the pricing measure associated with the numéraire
∑β

k=α+1 τkPD(·, Tk),
the value of a swaption at time 0 can be written as

Eα,β[(Sα,β(Tα)−K)+]

β∑
k=α+1

τkPD(0, Tk). (23)

Assuming that we could write

dSα,β(t) = Sα,β(t)vα,β(t)dZα,βt (24)

for a Qα,β-Brownian motion Zα,β and a deterministic vα,β , we would obtain

d[Sα,β, Sα,β]t = vα,β(t)2S2
α,β(t)dt. (25)

On the other hand, if we froze the weights in Equation (22) at 0 and calculated the
quadratic variation of the resulting expression, we should get

d[Sα,β, Sα,β]t ≈ d[

β∑
k=α+1

ωk(0)Lk,

β∑
h=α+1

ωh(0)Lh]t

=

β∑
k,h=α+1

ωk(0)ωh(0)Lk(t)Lh(t)ρk,hσk(t)σh(t)dt.

If we equate this with Equation (25) and replace Lk(t), Lh(t) and Sα,β(t) by their
values at time 0, we get that vα,β(t) should be of the form

v2
α,β(t) =

β∑
k,h=α+1

ωh(0)ωk(0)Lh(0)Lk(0)ρk,h
(Sα,β(0))2

σh(t)σk(t).
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If we now insert the assumed lognormal dynamics (Equation (24)) in the expecta-
tion in equation (23), as in the single-curve case we get a closed form approximation
for the price of a swaption. Namely, we approximate the swaption price (Equation
(23)) by

β∑
j=α+1

PD(0, Tj)Bl(K,Sα,β,
√
TαvReb)

where

v2
Reb =

1

Tα

β∑
k,h=α+1

ωh(0)ωk(0)Lh(0)Lk(0)ρk,h
(Sα,β(0))2

∫ Tα

0
σh(t)σk(t)dt.

Note that again this is very similar to the derivation of the Rebonato formula
(15) in Section 2.

6 Conclusions

Overall, we have proposed three different approaches to handle the problem for-
mulated in the introduction. Firstly, we have proposed two consistency checks that
allow us to evaluate the quality of the Monte Carlo approximations. For long-dated
maturities the Rebonato formula seems to give a particularly good approximation,
which makes this a very useful tool. Secondly, the standard sensitivity measure al-
lows one to judge whether the Monte Carlo pricing error is amplified in the implied
volatility or not. Thirdly, we have examined different variants of Monte Carlo pric-
ing algorithms. We have seen that using smaller time-steps or Predictor Corrector
does not seem to make a big difference, whereas using quasi-Monte Carlo instead
of Monte Carlo does, as was to be expected.

Nevertheless, the Rebonato formula still has its virtues. This closed-form ap-
proximation to the implied volatility of a swaption is very accurate in some scenar-
ios. However, one should always be aware of the limitations of this approximation.

Finally, we review the Multi-Curve LIBOR market model as introduced in Mer-
curio (2010) and derive the Rebonato formula in this setup. This provides one
possible answer to the second question. It would be very interesting to extend the
present report and examine the accuracy of the Rebonato formula in this multi-
curve setup.

Open Questions

• In Proposition 6.15.2 in Brigo and Mercurio (2006) a second order approx-
imation for the implied volatility is presented. According to their numeri-
cal results, the difference between the Rebonato formula and this formula is
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practically negligible. Is this still true in the ALM context of long-dated swap-
tions? Could this second order approximation be used as a substitute for the
Rebonato formula in the ALM context?

• Time constraints have only allowed us to numerically examine the Rebonato
approximation in a single-curve setup. In Chapter 5, however, we have re-
viewed the analogous formula in a multi-curve LFM. Does the formula give
good approximations when simulating in this setup? Does the approxima-
tion quality still deteriorate in the ALM context?

• The Rebonato formula approximates swaption prices by prices on a basket
of forward rates. Can we exploit this connection to use existing results on
basket options for a more through, mathematically rigorous analysis of the
approximation quality?
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1 Introduction and problem statement

The third variation of the Basel Accords (known as Basel III) arose because of the deficiencies
in financial market regulation, noticed heavily during the 2008 financial crisis. One of
the principal aims of Basel III is to strengthen and crystallise global capital and liquidity
regulation, with the ultimate goal of encouraging a more resilient banking sector.

In January 2013, Basel III was implemented in South Africa. A significant revision of
regulatory banking capital structures followed, leading to banks attempting to access capital
via very innovative structures. These new innovative capital structures had to meet the new
conditions and stipulations of Basel III. One of these new conditions was the classification of
capital instruments into three tiers of subordination, ranging from the lowest priority to the
highest - namely Tier 1, Tier 2 and Tier 3.

We now focus on Tier 2 instruments in the South African context. Within this context,
most instruments slotting into Tier 2 take the form of callable floating-rate debt instruments.
Various pricing methodologies may be applied to these floating-rate debt instruments, but it
must be borne in mind that there is no clear market standard on their valuation. The opacity
surrounding the pricing of these instruments, together with a lack of liquidity opens up
potential arbitrage opportunities, as well as inconsistent mark-to-market processes. These
shortfalls, as well as the penultimate fact that banks issue these instruments, more than
justify the importance and the need for the construction of a robust and rigorous valuation
framework.

Accordingly, our aim is to develop a reasonable yet robust methodology for valuing
instruments of this nature within the South African market context.

In summary, the particular characteristics of the product that we consider is as follows.
We consider a floating-rate note (FRN) issued by a defaultable entity with 10 years to maturity.
We also introduce the option for the issuer to call back the bonds at year 5 or anytime after
year 5 at the discretion of the issuer. Moreover, the issuer can activate during the whole time
of the contract a write-down mechanism based on its solvency situation.

The first challenge of the problem is to understand the economics behind the contract and
formulate a precise criterion based on which the issuer can judge whether or not to call back
the bond or write down the principal.

The option to call back will be valuable to the issuer if he can refinance debt in the open
market at a lower coupon (or credit spread). This means that for the issuer, it is optimal to
call back the bond if its credit spread improves compared to the spread when the bond was
originally issued. For this reason we decided to value the callability option based on market
credit spreads and risk-free rates.

In the case of a bank issuing this instrument, the write-down feature is most likely tied to
the issuer’s capital ratios. We may expect the bank to write-down the principal if its Core
Equity Tier 1 (CET1) ratio falls below a certain trigger. Therefore, the write-down feature
should be most likely valued based on the issuer’s book or market value of equity as well
as the issuer’s Risk Weighted Assets (RWA). Unfortunately, this is difficult to implement,
especially in the South African context. See, for example, Brigo et al. (2015) for a firm value
approach on this problem. In particular, a very large amount of data, which generally is
not publicly or easily available, would be needed. For this reason we propose a simplified
solution. We assume that the decision to write-down the principal is also tied to the credit
spread of the issuer. In particular, we assume that if the credit spread of the issuer deteriorates
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above a specific level during the life of the instrument, then the issuer will trigger a principal
write-down. Under this simplifying assumption we are basically considering a high credit
spread event, which is directly comparable to a low CET1 ratio event. To address the
shortcoming of not considering the CET1 ratio directly, we develop a simple method to relate
credit spread increases to equity devaluations.

The second challenge is to start with a model which is feasible for simulations of the
underlying processes, in particular for the credit spread process. In Sections 5.1 and 5.2 below,
we have considered tractable short-rate and reduced-form intensity models, which allow to
simulate risk-free interest rates and credit spreads.

In order to address the above challenges, the report is structured as follows. Section 2
provides a brief background on the regulatory requirements for banks’ capital, and brings to
the fore further reasons as to why a valuation methodology for the instruments is necessary.
A description of the valuation of vanilla FRNs in a South African context follows in Section 3,
this being necessary because the basic underlying product of our instrument is essentially a
vanilla FRN. Thereafter in Section 4, we propose the payoff structure of the product, and the
discounted expected value thereof is presented. In order for the valuation to proceed, we
require models for the underlying risk factors of this instrument and these are presented in
Section 5. Section 6 heuristically relates the probability of default from the structural Merton
model for equity to the reduced-form credit risk model we propose in Section 5. After that,
Section 7 introduces the Kalman filter which we use in our work to estimate parameters.
Sections 8 and 9 illustrate how we calibrated our models for the risk factors to market data
and the valuation results respectively. Finally, section 10 concludes.

2 Hybrid capital securities and regulatory capital requirements

Hybrid capital securities such as CoCos or bonds with write-down features automatically
absorb losses when the capital of the issuing bank falls below a certain level. These types of
instruments have two defining characteristics: the mechanism of the loss absorption and the
trigger that activates the mechanism. The former is either conversion into common equity or
principal write-down. The trigger can be either mechanical or discretionary.

The most common book-value triggers are defined in terms of the book value of Common
Equity Tier 1 (CET1) capital as a ratio of risk-weighted assets (RWA). The most common
market-value triggers are set as a minimum ratio of the bank’s stock market capitalisation to
its assets. Figure 1 depicts the Basel III capital directives.
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Figure 1: Basel III capital directives. Source: BIS

Under Basel III instruments such as CoCos or bonds with write-down features qualify
as either Additional Tier 1 (AT1) or Tier 2 (T2) capital. As shown in the figures below
such securities offer very attractive coupon rates to compensate investors for the risk of
loss absorption. As a consequence of the pressure from markets and regulators to boost
banks’ capital, along with increasing coupon rates for investors, the volume of hybrid capital
instruments issued for the purposes of AT1 or T2 provisions has increased considerably since
2012. For this reason it is critically important to have a valuation framework for these kinds
of instruments. In particular, this report studies callable floating-rate bonds with write-down
features as described in the problem statement. These types of bonds currently qualify as T2
instruments for South African banks.
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Figure 2: Example of AT1 and T2 hybrid capital securities. Source: Citi Research Lorenzen
(2015)

3 Pricing vanilla floating-rate notes in South Africa: expounded
and applied

3.1 Introduction to vanilla floating-rate notes

Many variations of coupon-bearing bonds exist. One such variation is the floating-rate note
(FRN), which is commonly issued by entities as a debt instrument which pays periodic
coupon payments as well a nominal amount at maturity. In a vanilla FRN, the coupon
payment is linked to a pre-specified floating reference rate. The first coupon of the FRN
is typically known on the settlement date, but subsequent coupons are unknown because
they are linked to future realisations of the reference rate. Each coupon has an associated
coupon-paying date and coupon period, which are both generated prior to issue of the note.
At the beginning of the coupon period, this date being known as the reset date, the reference
rate determining the coupon is set, and at the end, the coupon is paid to the note holder. As
an example of a vanilla FRN, consider the following: a note, with coupons determined by a
(floating) reference rate such as the 3-month Johannesburg Interbank Agreed Rate (JIBAR),
with coupons payable quarterly in arrears and coupon periods of 3 months.

Since FRNs are issued by entities quite separate from government, an element of credit
risk is attached. The credit risk of the issuer is captured, in part, by attaching a pre-specified,
fixed spread to the coupon payments. This spread also reflects the liquidity of the issued
floating rate note i.e. the demand for this type of instrument in the market where it is traded,
this market in South Africa being the Johannesburg Securities Exchange’s (JSE) Debt Market.

Definition: The fixed spread, added to the coupon payments of a FRN, which is pre-specified
at the outset of the FRN, is known as the issuance spread.
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3.2 JSE valuation methodology for floating-rate notes

3.2.1 Assumptions

The JSE’s model to value FRNs makes the following assumptions:

• Investors use FRN prices as deciding factors for entering into trades.

• Coupon rates vary, with the variation driven by the reference rate of the FRN.

• Coupon periods and coupon paying-dates are pre-specified.

• Dates are subject to the modified-following day-count convention: interest is payable
on coupon-paying dates, unless that date falls on a weekend or public holiday, in which
case the interest is paid on the next business day and the coupon includes these extra
days.

3.2.2 Valuation methodology

The following methodology applies to valuing vanilla FRNs at dates during the term of
the FRN. The setup of the vanilla floating-rate note is as follows - see Figure below for a
diagrammatical depiction. For the FRN, let:

• N be the nominal amount of the FRN;

• ts be the settlement date, which is assumed to fall between coupon-paying dates;

• tn be the maturity date;

• tr be the last reset date prior to the settlement date;

• {t1, t2, ..., tn} be the coupon-paying dates;

• L(ti−1, ti) be the simple reference (floating) rate between coupon-paying dates ti−1 and ti
(for i ∈ {1,2, ...,n}) ;

• f (ts, ti−1, ti) be the simple forward rate between coupon-paying dates ti−1 and ti (for
i ∈ {1,2, ...,n}) ;

• τi =
( ti−ti−1

365

)
be the period between coupon-paying dates;

• B(ts, ti) be the default-free discount function at each coupon date and is defined to be
the product of the forward period discount functions1.

• S(0, ti− ti−1), for each i, be the fixed issuance spread agreed upon at issuance of the FRN,
for the given tenor of the FRN, and

• S(t, ti− ti−1) be the market spread (defined below), agreed at any time t > 0 for the given
coupon tenor.

7



τi

time

payment

tr ts t1

C(tr , t1)τrN

t2

C(t1 , t2)τ1N

ti−1

...

ti

C(ti−1 , ti)τiN

tn−1

... C(tn−1 , tn)τnN

tn

N

Figure 3: FRN cashflow depiction. For ease of notation, note that C(ti−1, ti) = L(ti−1, ti) +
S(0, ti − ti−1). So, the coupon is dependent upon both the future reference rate and the
issuance spread.

The following definition is also necessary: The spread, added to the forward rates in the
forward period discount factors, is known as the market spread. The market spread varies
with the valuation date t > 0 of the FRN, but is fixed for the remaining term of the FRN.

The following steps below follow the FRN pricing specifications given by the JSE -
see Mavuso (2012) for further details. The JSE’s methodology follows the steps outlined
below. This methodology is commonly known as the discount margin method, and it involves
discounting all cashflows to the settlement date. The issuance spread and market spread
are taken as inputs to the valuation - these spreads are quoted in the market. The issuance
spread is fixed from the issue date of the FRN, while the market spread changes with time.

1. Using the current bid and offer swap-zero curves, generate the mid swap-zero rate
corresponding to the coupon dates. Use linear interpolation to interpolate the zero
rates at each coupon dates.

2. Using no-arbitrage arguments, it is possible to justify the replacement of the future
(floating) reference rates with their forward counterparts. Calculate the forward rates,
for each coupon period, by using the discount factors for each of the future coupon-
paying dates. Using the relation(

1+ y(ts, ti−1)
ti−1− ts

365

)
(1+ f (ts; ti−1, ti)τi) =

(
1+ y(ts, ti)

ti− ts
365

)
, (1)

an expression (see Equation 2 below) for the forward rate is obtained. y(ts, ti−1), for
all i, represents the simple mid swap-zero rate, interpolated linearly off the market
swap-zero curve observed at the settlement date ts.

f (ts; ti−1, ti) =
1
τi

(
B(ts, ti−1)

B(ts, ti)
−1
)

(2)

Equation 2 above can be used to replace the future unknown reference rates L(ti−1, ti)
for each i.

3. Predict the future coupon rates using the forward rates from step 2 as well as the fixed
issuance spread. At a coupon-paying date ti, the coupon of the FRN is given by

N(L(ti−1, ti)+S(0, ti− ti−1))τi, (3)

1For example, the forward period discount function over the coupon period ti−1 to ti is given by
(1+ f (ts; ti−1, ti)τi)

−1
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and if the reference rate is replaced, Equation 3 becomes

N( f (ts, ti−1, ti)+S(0, ti− ti−1))τi, (4)

4. Discount each future coupon payment, as well as the nominal received on maturity
(time tn), back to the settlement date ts, using the simple mid swap-zero rates together
with the market spread. That said, for a prototypical coupon-paying date ti this means
that the simple rate used to discount to time t > 0 is equal to (Y (t, ti)+ S(t, ti− ti−1)).
Furthermore, in order to ensure that the FRN always prices at par on its issue date
(and further assuming that the issue spread is equal to the market spread), the discount
functions B̄(ts, ti), for each i, are constructed using the product of the forward period
discount factors. Equation 5 below illustrates the generic discount function for the
coupon-paying date ti.

B̄(t, ti) = (1+(y(t, t1)+S(t, ti− ti−1))τi)
−1

i

∏
j=2

(1+( f (t; t j−1, t j)+S(t, ti− ti−1))τ j)
−1 (5)

Therefore, the present value of the coupon paid at the coupon-paying date ti is given by

N( f (t; ti−1, ti)+S(0, ti− ti−1))τiB̄(t, ti). (6)

5. Finally, sum all the present values of the coupons, as well as that of the nominal payable
at maturity, in order to find the present value of the FRN, VFRN(t,N,T ,S(t, ti− ti−1)),
where T = {t0, t1.t2, ..., tn} is the vector representing the coupon-paying dates of the
FRN. Equation 7 illustrates this sum.

VFRN(t,N,T ,S(t, ti− ti−1)) =
n

∑
i=1

N( f (t; ti−1, ti)+S(0, ti− ti−1))τiB̄(t, ti)+NB̄(t, tn) (7)

However, the first coupon, due at time t1, is typically known at time t ∈ [t0, t1). Therefore,
Equation 7 can be rewritten as follows:

VFRN(t,N,T ,S(t, ti− ti−1)) = N(y(t0, t1)+S(0, ti− ti−1))τ1B̄(t, t1) (8)

+
n

∑
i=2

N( f (t; ti−1, ti)+S(0, ti− ti−1))τiB̄(t, ti)+NB̄(t, tn)

6. Steps 1 to 5 provide a methodology for the valuation of FRNs, but ignore the books
close date for the coupons. The valuation of vanilla FRNs is now formalised more fully.
Let tBCD denote the books close date of the first coupon due - that coupon at t1. Note
that tBCD < t1. Define a cum/ex coupon function by

φ =

{
1 if ts < tBCD

0 if ts ≥ tBCD,
(9)

and let the number of days worth of accrued interest be given by

d =

{
ts− tr if φ = 1
ts− t1 if φ = 0.

(10)
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Therefore, the unrounded all-in price of the vanilla FRN at trade date t, with settlement
date ts, is given by

V A
FRN(ts,N,T ,S(t, ti− ti−1)) = φN(Y (tr, t1)+S(0, ti− ti−1))τ1B̄(t; ts, t1) (11)

+
n

∑
i=2

N( f (t; ts, ti−1, ti)+S(0, ti− ti−1))τiB̄(t; ts, ti)+NB̄(t; ts, tn) ,

where

B̄(t; ts, ti) =
B̄(t, ti)
B̄(t, ts)

,

is the forward discount function over [ts, ti] as seen at t. To calculate the clean price, it is
necessary to first find the unrounded accrued interest, which is given by Equation 12
below.

IFRN = N(Y (tr, t1)+S(0, ti− ti−1))τ1
d

365
. (12)

Ultimately, the unrounded clean price of the vanilla FRN is given by

VC
FRN(ts,N,T ,S(t, ti− ti−1)) =V A

FRN(ts,N,T ,S(t, ti− ti−1))− IFRN. (13)

As a concluding remark to the valuation of FRNs, it must be emphasised that the above steps
apply to vanilla FRN valuation after the issue date. The value of the FRN will vary in the
following three ways (note that these variations can be proved mathematically):

• if both S(0, ti− ti−1) = S(t, ti− ti−1) and the valuation date t falls on a reset date, then the
FRN will trade at par. Furthermore, this observation speaks to the fact that the FRN
will always be valued at par when it is originally issued if the issue date and settlement
date coincide.

• if S(0, ti− ti−1)< S(t, ti− ti−1), the FRN will trade at a discount.

• if S(0, ti− ti−1)> S(t, ti− ti−1), the FRN will trade at a premium.

4 Instrument specification and valuation

This section will comprise four parts, so as to build up the valuation from its simplest case. We
firstly consider valuing the callable floating rate note (CFRN) in the case when the issuer can
only exercise at a single time point. At this time point, should there be a certain improvement
in the credit spread, the issuer will recall the CFRN and reissue the underlying FRN at a
lower spread - hence the European-style features of the CFRN. Secondly, we consider valuing
this CFRN in the case where the issuer can exercise over a continuous range of times from a
pre-specified time point onwards, i.e. we consider an American-style call feature. Therefore,
the issuer can reissue the underlying FRN at a time point of his own choice (from the pre-
specified time onwards, obviously). Finally, in both the European and American cases we
allow for the possibility of write-down of the underlying FRN. The write-down can occur at
any time during the life of the CFRN.

10



Value of CFRN Value of FRN Value of issuer’s callability Value of write-down= - -

Figure 4: Heuristic valuation scheme of the CFRN: the instrument can be decomposed into a
(deterministic) FRN, a “callability” option and a “write-down” option.

We value the CFRNs from the point of view of the investor. Therefore, from the perspec-
tive of the investor the ultimate value of the CFRN can be depicted in a heuristic fashion as
illustrated in Figure 4 below.

Before proceeding, a distinction between default and write-down is needed. In our case,
write-down of the nominal value of the FRN occurs when the credit quality of the issuer of
the instrument worsens to a level below some pre-specified level. The nominal value can
either be partially or fully written down in our model, however, South African practice is to
fully write-down the nominal value to zero. It should be noted that the event of default is
almost idiosyncratic to the write-down event, however both these events are systematically
dependent. Default, in our case, is defined to be the first time the credit spread jumps to a
very high level, which is high enough to infer that the company will no longer operate as a
going-concern. This (high) level will not be specified in our contract, but it is given that this
level is higher than the pre-specified level in the case of write-down.

4.1 Vanilla European callable floating-rate note valuation framework

4.1.1 The case without write-down

The first framework proposed is rather simple, and is useful for the purpose of estimating
the value (or equivalently the excess spread) of the callability feature of the vanilla European
callable FRN. It assumes that the underlying FRN cannot be written down, however default
by the issuer is permitted. The callability feature of the FRN is, however, accounted for: at a
contractually specified time T , the issuer of this FRN has the option to recall the FRN and
re-issue it, should the issuer’s creditworthiness deem this so. So for example, if the issuer’s
creditworthiness has improved at time T - this improvement being defined by a lower credit
spread - then the issuer will exercise his option to recall the FRN and re-issue it to the investor
at a lower credit spread (reflecting the improvement in the issuer’s creditworthiness). Note
that the option embedded in the FRN is a possible decrease in the coupon payments payable
by the issuer after the exercise date. Therefore, because of the embedded optionality, one can
deduce that this product should trade at a lower price than a standard FRN (or equivalently
at a higher net fixed spread).

We now value the vanilla European callable FRN. Let T = {t0, t1.t2, ..., tn} be the vector
representing the coupon payment dates of the FRN - the coupon payment dates are assumed
to conform to a regular grid size, with intervals of length ti− ti−1 = δ . Consider now the value
of the vanilla European callable FRN. The payoff of this FRN for the option holder (i.e. the
issuer of this FRN) at time T is the gain in re-issuing the FRN at the time T market spread,
S(T,T + ti− ti−1), only if this market spread is lower than a pre-specified lower threshold
level. This threshold level (i.e. a floor of S) is contractually set at a viable level lower than the
original issuance spread S(0, ti− ti−1). Furthermore, the valuation of the option is performed
under the risk-neutral probability measure, with the option payoff being discounted at the
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risk-free rate.
Before we present the valuation formula, we define some further notation needed2.

Define:

• t0 = 0, so that the instrument is valued at time 0. Also, fix tn = T

• S(t) = S(t, t +δ ).

• τ to be the time of default of the issuer.

• VFRN(t,N,T ,s) value of floating rate note at time t with notional N, time grid T and
market spread s. We set VFRN(t,N,T ,∞) = 0 and S(t) = ∞ when τ ≤ t.

• S is the upper limit, set higher than the original issuance spread S(0, ti−ti−1). See Section
4.1.2 for further details.

• γ is the default time for the issuing entity.

• γ = inf{t ≥ 0|S(t)≥ S} and γT = inf{t ≥ T |S(t)≤ S}where S < S(0)< S.

• w(S(t)) =

{
w0, S(t)≥ S
0, S(t) = ∞

write-down for w0 ∈ [0,1].

With this all in mind, the valuation formula for the vanilla European callable FRN with no
write-down features (ECFRN), at time t = 0, can be written as

VECFRN(0) =VFRN(0,N,T ,S(0))

−E
[
B(T )−1 (VFRN(T,N,T ,S(0))−VFRN(T,N,T ,S(T ))1S(T )≤S1γ>T

]
. (14)

The motivation behind this rather simplistic approach lies within the realm of tractability
and parsimony, and also to price the callability feature of the ECFRN. Firstly, Equation 14
seems quite straightforward to evaluate and may require less computing power and time to
evaluate. Secondly, Equation 14 could also be used as a simple and quick approximation to
the vanilla European callable FRN value, when necessary.

Finally, the CFRNs are quoted on spread and not price. We therefore calculate SECFRN
from Equation 17 below:

VECFRN(0)−VFRN(0,N,T ,SECFRN) = 0, (15)

and imply the excess spread ε = SECFRN − S(0,δ ), which is the value of the defaultable
callability feature in spread terms.

2Note that some of the notation below is required in subsequent valuation formulae. We have defined all
notation in a single place for ease of exposition.
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4.1.2 The case with write-down

Extending the valuation framework in Section 4.1.1 above to include a write-down of the
nominal value of the FRN yields a more complicated valuation formula. In the contract,
the issuer of this FRN will write down its debt on the FRN if the market spread reaches a
pre-specified upper threshold level. This threshold level, which is a ceiling of S̄, is set at a
level higher than the original issuance spread S(0,δ ). The time of write-down, when the debt
will be written down by the issuer, is given by γ , which was defined in Section 4.1.1 above.
Practice in the South African market is to assume that if γ is reached, a full write down occurs
- this can be accounted for in our model by setting w0 = 0.

On the other hand, if default occurs, then the nominal of the FRN is also written down
to zero. Observe that in the definition of γ , the case of default is implicitly allowed for in
that at the time τ when the spread jumps to a very high value, the condition “S(τ) ≥ S” is
immediately satisfied, and therefore γ = τ .

Before presenting the valuation formula, it is useful, for illustrative purposes, to consider
the cases when the callability option is exercised and when write-down occurs. These cases
are illustrated in Figure 5 below.
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Case 1: no default prior to maturity tn, γ > T and S(T )≤ S

time

payment

0

...

t1

C(tr , t1)τrN
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C(t1 , t2)τ1N

t3 t3

C(t2 , t3)τ2N
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C(ti−2 , ti−1)τi−1N

T ti
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...

tn−1
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T
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Option exercise date

Case 2: no default prior to maturity tn, γ > T and S(T )> S

time

payment

0
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t1

C(tr , t1)τrN

t2

C(t1 , t2)τ1N

t3 t3

C(t2 , t3)τ2N

ti−1

C(ti−2 , ti−1)τi−1N

T ti

C(ti−1 , ti)τiN

ti+1

C(ti , ti+1)τi+1N

...

tn−1

C(tn−2 , tn−1)τn−1N

C(tn−1 , tn)τnN

T
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Option not exercised

Case 3: default or reaching S prior to time T

time

payment

0

...

t1

C(tr , t1)τrN

t2

C(t1 , t2)τ1N

t3 t3

C(t2 , t3)τ2N

ti−1

C(ti−2 , ti−1)τi−1N

γ T ti ti+1 tn−1 T

First time of write-down or default

Case 4: default between times T and T , and S(T )> S

time

payment

0

...

t1

C(tr , t1)τrN

t2

C(t1 , t2)τ1N

t3 t3

C(t2 , t3)τ2N

ti−1

C(ti−2 , ti−1)τi−1N

T ti

C(ti−1 , ti)τiN

ti+1

C(ti , ti+1)τi+1N

...

t j

C(t j−1, t j)τ jN

γ t j+1 tn−1 T

Option not exercised First time of write-down or default

Case 5: default between times T and T , and S(T )≤ S

time

payment

0

...

t1

C(tr , t1)τrN

t2

C(t1 , t2)τ1N

t3 t3

C(t2 , t3)τ2N

ti−1

C(ti−2, ti−1)τi−1N

T ti

C∗(ti−1 , ti)τiN

ti+1

C∗(ti , ti+1)τi+1N

...

t j

C∗(t j−1 , t j)τ jN

γ t j+1 tn−1 T

Option exercise date First time of write-down or default

Figure 5: Vanilla European callable floating-rate note cash flow depiction. For ease of notation,
note that C(ti−1, ti) = L(ti−1, ti)+ S(0,δ ), and that C∗(ti−1, ti) = L(ti−1, ti)+ S(T,δ ), where δ is
the (regular) time between the coupon dates, i.e. 3-month periods, and S(T,δ ) is the time T
issuance spread, equal to the time T market spread.
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All these cases are accounted for by the use of indicator functions in the valuation formula
for the vanilla European callable floating-rate note with write-down features (ECFRN). With
the notation defined in Section 4.1.1 in mind the valuation formula at time 0 is therefore given
by

V (0) =VFRN(0,N,T ,S(0))

−E
[
B(T )−1 (VFRN(T,N,T ,S(0))−VFRN(T,N,T ,S(T ))1S(T )≤S1γ>T

]
−E

[
B(γ)−1 (VFRN(γ,N,T ,S(0))−VFRN(γ,Nw(S(γ)) ,T ,S(0)))1

γ<T

]
. (16)

The motivation behind this more sophisticated formula is that both the callability and
write-down features of the ECFRN are accounted for. Finally, the CFRNs are quoted on
spread and not price. We therefore calculate SECFRN from Equation 17 below:

VECFRN(0)−VFRN(0,N,T ,SECFRN) = 0, (17)

and imply the excess spread, ε on the ECFRN by setting ε = SECFRN−S(0,δ ), which again
is the value of the defaultable callability features in spread terms. Obviously, ε is a more
realistic spread for the type of vanilla European callable floating-rate notes that are market
relevant, because it comprises three components - the spread for the default together with
the spread for the write-down and the spread for the callability.

4.1.3 The case with write-down but without callability

Finally, it is also possible to value the instrument ignoring the callability. This is useful in
order to calculate the spread, on the instrument, attributed to both default and write-down.
With the notation defined in Section 4.1.1, the value of the instrument without callability is
given by

VECFRN(0) =VFRN(0,N,T ,S(0))

−E
[
B(γ)−1 (VFRN(γ,N,T ,S(0))−VFRN(γ,Nw(S(γ)) ,T ,S(0)))1

γ<T

]
. (18)

Then calculate SECFRN from Equation 19 below

VECFRN(0)−VFRN(0,N,T ,SECFRN) = 0, (19)

and imply the excess spread ε = SECFRN−S(0,δ ), which is the value of the write-down feature
in spread terms.

4.1.4 Decomposition of the spread

As mentioned before, the spread for the vanilla ECFRN can be largely attributed to three
dependent components - the callability of the FRN, the write-down feature and the defaultable
value (although, it is difficult to disentangle defaultability from the value of the callability
feature). Using our valuation model, it is possible, as demonstrated above, to imply the
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component of SECFRN arising due to write-down risk (given by ε) and the component of
SECFRN arising due to default risk and the risk of the issuer calling back the FRN (given by ε).
From the values derived above, it is also possible to develop a decomposition for the spread
by observing the following:

SECFRN =S(0,δ )+ ε

≈S(0,δ )+ ε + ε.

One would expect the final relation to be approximate, this relation holding because of the
structural interdependence between the various components of the spread being omitted.
However, one can deduce a considerable correlation between the callability feature and
the write-down feature. Should the call option be exercised, the write down feature will
essentially “fall away”, thereby reducing the value of the call option relative to the write-
down. Consequently, there appears to be a negative correlation between the value of the
callability feature and the write-down feature. Therefore, we can reasonably deduce that 20
does not hold in approximation.

4.2 Vanilla American callable floating-rate note valuation framework

Because these CFRNs are not standardised, American-style features could also exist. There-
fore, we allow for the exercise of the callability feature at any time between T and T .

Allowing for the callability feature, default and write-down, the value of the instrument
is given by (using the notation in Section 4.1.1),

V A(0) =VFRN(0,N,T ,S(0))

−E
[
B(γT )−1

(
VFRN(γ

T ,N,T ,S(0))−VFRN(γ
T ,N,T ,S(γT )

)
1γ>γT 1

γT<T

]
−E

[
B(γ)−1 (VFRN(γ,N,T ,S(0))−VFRN(γ,Nw(S(γ)) ,T ,S(0)))1γ<γT 1

γ<T

]
. (20)

The spreads on this option can be calculated and attributed in precisely the same way as
was done for the European version in Sections 4.1.1 to 4.1.4.

Now what becomes necessary is the modelling of the risk factors. This is covered in the
following section.

5 Modelling the risk factors

5.1 Modelling default-free interest rates

(Ω,F ,(F (t))t≥0,Q) is a filtered probability space. The filtration satisfies the usual conditions.
The measure Q plays the role of a risk neutral measure. All processes are defined on Ω,
adapted to (F (t))t≥0, and cádlág. W1 = (W1(t))t≥0 and W2 = (W2(t))t≥0 are two independent
standard (F (t))t≥0-Brownian motions.

We assume that the dynamics of the short-rate process (r(t))t≥0 under the risk-neutral
measure Q is given by

r(t) = X(t)+Y (t)+ϕ(t), r(0) = r0, (21)

16



for processes X and Y satisfying

dX(t) =−aX(t)dt +σdW1(t), X(0) = 0,

dY (t) =−bY (t)dt +ηρdW1(t)+η

√
1−ρ2dW2(t), Y (0) = 0,

(22)

where r0 ∈ R, a,b,σ ,η > 0, ρ ∈ [−1,1] and ϕ is a deterministic function on R+. In particular
ϕ(0) = r0.

Lemma 5.1. For t ≥ s the solution of the short-rate model (21)-(22) is given by

r(t) = X(s)e−a(t−s)+Y (s)e−b(t−s)+σ

∫ t

s
e−a(t−u)dW1(u)

+ηρ

∫ t

s
e−b(t−u)dW1(u)+η

√
1−ρ2

∫ t

s
e−b(t−u)dW2(u)+ϕ(t).

The conditional distribution of r(t) given Fs is Gaussian with mean

E [r(t) |F (s)] = X(s)e−a(t−s)+Y (s)e−b(t−s)+ϕ(t),

and variance

Var [r(t) |F (s)] =
σ2

2a

(
1− e−2a(t−s)

)
+

η2

2b

(
1− e−2b(t−s)

)
+2ρ

ησ

a+b

(
1− e−(a+b)(t−s)

)
.

Proof. See Brigo and Mercurio (2007) Section 4.2.

We denote by P(t,T ) the price at time t of a default-free zero-coupon bond maturing at
time T with unit face value. By no-arbitrage pricing theory we have

P(t,T ) = E
[
e−

∫ T
t r(s)ds |Ft

]
Theorem 5.2. In the short-rate model (21)-(22) zero-coupon bond prices for t ≤ T have the following
(time-inhomogeneous) exponential affine form

P(t,T ) = e−
∫ T

t ϕ(u)du− 1−e−a(T−t)
a X(t)− 1−e−b(T−t)

b Y (t)+ 1
2 Φ(T−t),

where for τ ≥ 0

Φ(τ) =
σ2

a2

(
τ +

2
a

e−aτ − 1
2a

e−2aτ − 3
2a

)
+

η2

b2

(
τ +

2
b

e−bτ − 1
2b

e−2bτ − 3
2b

)
+2ρ

ση

ab

(
τ +

e−aτ −1
a

+
e−bτ −1

b
− e−(a+b)τ −1

a+b

)
.

Proof. See Brigo and Mercurio (2007) Section 4.2.
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Corollary 5.3. Let us denote by f M(0,τ) the instantaneous forward rate at time 0 for a maturity τ

implied by the term structure τ 7→ PM(0,τ), i.e.,

f M(0,τ) =−∂ lnPM(0,τ)
∂τ

,

then the model (1.1) fits the currently-observed term structure of discounted factors if and only if, for
each τ ,

ϕ(τ) = f M(0,τ)+
σ2

2a2 (1− e−aτ)2

+
η2

2b2 (1− e−bτ)2 +ρ
ση

ab
(1− e−aτ)(1− e−bτ).

Proof. See Brigo and Mercurio (2007) Section 4.2.

In this model explicit pricing formulae for interest rate caps are available. These formulae
are needed to calibrate the volatility parameters of the model to market data. First define the
following quantity

Σ(t,T,S)2 =
σ2

2a3

[
1− e−a(S−T )

]2 [
1− e−2a(T−t)

]
+

η2

2b3

[
1− e−b(S−T )

]2 [
1− e−2b(T−t)

]
+2ρ

ση

ab(a+b)

[
1− e−a(S−T )

][
1− e−b(S−T )

][
1− e−(a+b)(T−t)

]
We denote by T = {t0, t1, t2, ..., tn} the set of the cap/floor payment dates, augmented with
the first reset date t0, and by τi = ti− ti−1.

Theorem 5.4. Caplets and floorlets values in the short-rate model (21)-(22) are given by

Cpl(t,T1,T2,N,X) =−N′P(t,T2)Φ

 ln NP(t,T1)
N′P(t,T2)

Σ(t,T1,T2)
− 1

2
Σ(t,T1,T2)


+P(t,T1)NΦ

 ln NP(t,T1)
N′P(t,T2)

Σ(t,T1,T2)
+

1
2

Σ(t,T1,T2)


Fll(t,T1,T2,N,X) =N′P(t,T2)Φ

 ln N′P(t,T2)
NP(t,T1)

Σ(t,T1,T2)
+

1
2

Σ(t,T1,T2)


−P(t,T1)NΦ

 ln N′P(t,T2)
NP(t,T1)

Σ(t,T1,T2)
− 1

2
Σ(t,T1,T2)


Proof. See Brigo and Mercurio (2007) Section 4.2.

The price of a cap (floor) is the sum of the prices of the underlying caplets (floorlets), the
price at time t of a cap with cap rate (strike) X , nominal value N, set of times T and year
fractions τ is then given by

Cap(t,T ,τ,N,X) =
n

∑
i=1

Cpl(t, ti−1, ti,N,X),
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and the price of the corresponding floor is

Flr(t,T ,τ,N,X) =
n

∑
i=1

Fll(t, ti−1, ti,N,X).

5.2 Modelling credit spreads

Let τ be a R+-valued random variable on Ω which denotes the default time of an entity. We in-
troduce the filtration Gt =Ft ∨σ ({τ ≤ t},u≤ t) which includes default monitoring. However,
for pricing problems it is often more convenient to consider conditional expectations under
the filtration (F (t))t≥0. The following result provides a relation between the conditional
expectations with respect to the two filtrations, see Brigo and Mercurio (2007) Section 22.5.

Lemma 5.5 (Filtration switching formula). Let HT be a GT -measurable payoff then

E [1τ>T HT | Gt ] =
1τ>t

Q(τ > t |Ft)
E [1τ>T HT |Ft ]

We model τ as the first jump time of a Cox process with stochastic intensity process given
by a R+-valued, (Ft)t≥0-adapted cádlág process λ = (λ (t))t≥0. The assumption that λ is
(F (t))t≥0-adapted means that the randomness we allow in the intensity is induced by the
default-free market. We define the hazard process by Λ(t) =

∫ t
0 λ (u)du.

Lemma 5.6. Under the modelling assumptions on τ the survival probability is given by

Q[τ > t] = E
[
e−

∫ t
0 λ (s)ds

]
= E

[
e−Λ(t)

]
.

Proof. See Brigo Brigo and Mercurio (2007) Section 22.2.3. We write the steps down since
these are reused in the sequel. Note that Λ(τ) is exp(1)-distributed and independent of Ft

under Q. Hence,

Q[τ > t] =Q[Λ(τ)> Λ(t)] = E
[
E
[
1Λ(τ)>Λ(t) |F (t)

]]
= E

[
E
[
1Λ(τ)>x

]∣∣
x=Λ(t)

]
= E

[
Q[Λ(τ)> x]

∣∣
x=Λ(t)

]
= E

[
e−Λ(t)

]

We propose a model for the intensity process λ . Let W λ =
(
W λ (t)

)
t≥0 be a standard

(F (t))t≥0-Brownian motion with

d[W λ ,W1](t) = ν1dt, and d[W λ ,W2](t) = ν2dt,

where ν1,2 ∈ [−1,1]. Assume that λ evolves according to the following SDE

dλ (t) = (λ (t)−λ0)λ (t)dt +σ
λ

λ (t)dW λ (t), λ (0) = λ0 (23)

where λ0,σ
λ > 0.

Theorem 5.7. Let τ be the first jump time of a Cox process with stochastic intensity given by (23).
Then, the following holds.
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(i) The conditional density process λ (t) = ∂tQ(τ ≤ t|Ft) satifies the SDE

dλ (t) =−λ0λ (t)dt +σ
λ

λ (t)dW λ
t , λ (0) = λ0,

i.e. λ is geometric Brownian motion;

(ii) λt > 0 Q-a.s. for all t ≥ 0; and

(iii) The survival probability is given by

Q(τ > t) = e−λ0t .

Proof. We prove the four statements

(i) Since Λ(τ) is exp(1)-distributed and independent of F (t) under Q we obtain

λ (t) = ∂tQ(τ ≤ t|F (t)) = ∂tE[1τ<t |F (t)] = ∂tE[1Λ(τ)<Λ(t)|F (t)]

= ∂t

(
1− e−Λ(t)

)
= λ (t)e−Λ(t).

Consider the C2 function f (x,y) = xe−y. Applying Itō’s formula we obtain

dλ (t) = d ( f (λ (t),Λ(t))) =−λ (t)e−Λ(t)dΛ(t)+ e−Λ(t)dλ (t)

= e−Λ(t)
(
−λ0λ (t)dt +σ

λ
λ (t)dWt

)
=−λ0λ (t)dt +σ

λ
λ (t)dW (t).

(ii) We have λ (t) = λ (t)
e−Λ(t) > 0 almost surely for each t since λ (t) is geometric Brownian

motion with positive initial value.

(iii) The density of τ under Q is given by

∂tQ(τ ≤ t) = ∂tE [Q(τ ≤ t|Ft)] = E [∂tQ(τ ≤ t|Ft)]

= E
[
λ (t)

]
= λ (0)e−λ0t = λ0e−λ0t .

Hence, for the survival probability we obtain

Q(τ > t) =
∫

∞

t
λ0e−λ0sds = e−λ0t .

The price P(t,T ) at time t of a defaultable zero coupon bond with maturity T and unit
notional is given by

P(t,T ) = 1τ>tE
[

B(t)
B(T )

1τ>T | Gt

]
.

Define the spot rates of default-free and defaultable zero-coupon bonds by

Y (t,T ) =− 1
T − t

logP(t,T ), and Y (t,T ) =

{
− 1

T−t logP(t,T ), τ > t
−∞, τ ≤ t

.
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The credit spread at time t of a defaultable zero coupon bond with maturity T is defined by

S(t,T ) =

{
Y (t,T )−Y (t,T ) = 1

T−t log P(t,T )
P(t,T ) , τ > t

∞, τ ≤ t
.

Theorem 5.8. The price of a defaultable zero-coupon bond in the stochastic intensity model (23) is
given by

P(t,T ) = 1τ>tE
[
e−

∫ T
t (r(s)+λ (s))ds |Ft

]
= 1τ>t

λ (t)

λ (t)

∫ +∞

T
E
[
e−

∫ T
t r(s)ds

λ (u) |Ft

]
du.

(24)

In the case ν2 =
√

1−ν2
1 we have explicit formulas for the price of a defaultable zero-coupon bond

P(t,T ) = 1τ>t
λ (t)
λ0

P(t,T )e

(
µ̃(t,T )− σ̃(t,T )2

2

)
, (25)

and for the credit spread

S(t,T ) =

−
1

T−t log

(
λ (t)
λ0

e

(
µ̃(t,T )− σ̃(t,T )2

2

))
, τ > t

∞, τ ≤ t

, (26)

where

ga(t,T ) =
(

t +
e−aT

a

(
1− eat)) ,

gb(t,T ) =
(

t +
e−bT

b

(
1− ebt

))
,

µ̃(t,T ) = (−λ0−
(σλ )2

2
)(T − t)+σ

λ

(
ν1

σ

a
(ga(t,T )−ga(T,T ))

+ν1ρ
η

b
(gb(t,T )−gb(T,T ))+

√
(1−ν2

1 )(1−ρ2)
η

b
(gb(t,T )−gb(T,T ))

)
,

σ̃(t,T )2 =
(

σ
λ

)2
(T − t)

In the case ν1 = ν2 = 0 explicit formulas are also available

P(t,T ) = 1τ>tP(t,T )
λ (t)
λ0

e−λ0(T−t), (27)

S(t,T ) =

{
− 1

T−t log
(

λ (t)
λ0

e−λ0(T−t)
)
, τ > t

∞, τ ≤ t
. (28)

21



Proof. The first equality in (24) is a standard result which can be found e.g. in Brigo and
Mercurio (2007). Applying the filtration switching formula we obtain

P(t,T ) =
1τ>t

Q(τ > t|Ft)
E
[
e−

∫ T
t r(s)ds |Ft

]
=

1τ>t

e−Λ(t)
E
[
e−

∫ T
t r(s)dsQ(τ > T |FT ) |Ft

]
=

1τ>t

e−Λ(t)
E
[
e−

∫ T
t r(s)dse−Λ(T ) |Ft

]
= 1τ>tE

[
e−

∫ T
t (r(s)+λ (s))ds |Ft

]
.

The first equality in (24) follows from

P(t,T ) =
1τ>t

e−Λ(t)
E
[
e−

∫ T
t r(s)dsQ(τ > T |FT ) |Ft

]
=

1τ>t

e−Λ(t)
E
[∫

∞

T
e−

∫ T
t r(s)ds

∂uQ(τ ≤ u|FT ) |Ft

]
= 1τ>t

λ (t)
λ̄ (t)

∫
∞

T
E
[
e−

∫ T
t r(s)ds

λ (u) |Ft

]
where we use Fubini’s theorem.

Denote by QT the T -forward measure defined by the Radon-Nikodym derivative

ξt =
dQT

dQ

∣∣∣∣
Ft

=
P(t,T )

P(0,T )B(t)
.

By change of measure we obtain

E
[
e−

∫ T
t r(s)ds

λ (u) |Ft

]
= E

[
B(t)
B(T )

E[λ (u)|FT ] |Ft

]
= EQT

[
B(t)
B(T )

E[λ (u)|FT ]
ξt

ξT
|Ft

]
= P(t,T )EQT

[
λ (T )e−λ0(u−T ) |Ft

]
.

This means that the defaultable zero-coupon bond price is given by

P̄(t,T ) = 1τ>t
λ (t)

λ0λ (t)
P(t,T )EQT

[
λ (T ) |Ft

]
By Girsanov’s theorem the following processes are independent Brownian motions under
the forward measure QT , see Brigo and Mercurio (2007) Lemma 4.2.2,

dW T
1 (t) = dW 1(t)+

(
σ

a

(
1− e−a(T−t)

)
+ρ

η

b

(
1− e−b(T−t)

))
dt

dW T
2 (t) = dW 2(t)+

η

b

√
1−ρ2

(
1− e−b(T−t)

)
dt.
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Hence, we obtain

W λ (t) = ν1W 1(t)+
√

1−ν2
1W 2(t) = ν1W T

1 (t)+
√

1−ν2
1W T

2 (t)

−ν1
σ

a
ga(t,T )−ν1ρ

η

b
gb(t,T )−

√
(1−ν2

1 )(1−ρ2)
η

b
gb(t,T ).

The random variable log λ̄ (T )
λ̄ (t)

is Gaussian given Ft under QT with mean µ̃(t,T ) and variance

σ̃(t,T )2. This proves the formula. If we assume independence between W λ and W1,2 then we
obtain

P(t,T ) = 1τ>tP(t,T )
λ (t)
λ̄ (t)

∫
∞

T
E
[
λ (u) |Ft

]
du

= 1τ>tP(t,T )
λ (t)
λ̄ (t)

∫
∞

T
λ (t)e−(u−t)λ0du = 1τ>t

λ (t)
λ0

P(t,T )e−λ0(T−t).

The formula for the spread follows by definition.

6 Heuristic approach to estimate credit spreads from equity trig-
gers

As we mentioned in the introduction, the write-down trigger should be more appropriately
tied to a depreciation of the market or book value of the issuer rather then its credit spreads
on the market. To address this issue we formulate a procedure to calculate the equity
depreciation which corresponds to a certain credit spread. The market value of equity
process of the issuer (M(t))t≥0 follows the SDE

dM(t) = µ
MM(t)dt +σ

MM(t)dW M
t , M(0) = M0,

where µM,σM ≥ 0 are constants and W M =
(
W M

t
)

t≥0 is a standard (F (t))t≥0-Brownian motion.
Let τM denote the default time of this issuer, which is defined as

τ
M := inf{0≤ t ≤ T : M(t)≤M},

where M is the flat barrier.
Then the default probability under this framework is given by

Q
[
τ

M ≤ T
]
=

(
M
M0

)2α

Φ

 log
(

M
M0

)
+µT

σM
√

T

+Φ

 log
(

M
M0

)
−µT

σM
√

T

 ,

where µ =
(

µM− σM2

2

)
, α = µ

σM2 and Φ(x) = 1√
2π

∫ x
−∞

e−φ 2/2dφ is the CDF of standard Normal
random variable. See Bielecki and Rutkowski (2002) Section 3.2.

In order to obtain a closed-form expression we assume that ν1 = ν2 = 0. In the general
case the calculation can be done numerically. According to Theorem 5.7 and formula (27), at
time 0, we have

Q
[
τ ≤ T

]
= 1− e−λ0T and S(0,δ ) = λ0.
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By choosing S(0) = S(0,δ ) = λ0 such that Q
[
τ ≤ T

]
=Q

[
τM ≤ T

]
, we have

S(0) = κ

(
M
M0

)
,

where

κ(x) =− 1
T

log
(

1− x2α
Φ

(
logx+µT

σM
√

T

)
+Φ

(
logx−µT

σM
√

T

))
for x > 0.

Credit Spread as a function of equity default trigger (%)
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Figure 6: Credit Spread as a function of equity default trigger (%), with parameters µM = 0.03,
σM = 0.15 and T = 10.

7 Maximum likelihood estimation and Kalman filter

We estimate our model for risk-free interest rates and credit spreads setting ϕ ≡ 0. Once we
have estimated the model parameters we calibrate ϕ in order to perfectly match the initial
risk-free yield curve.

For the Kalman filter we refer to Haykin (2004) Section 1.6. We write the procedure in full

details assuming ν1,2 = 0. For the case ν2 =
√

1−ν2
1 proceed in the same way using (25).

7.1 Discretisation of the transition system

First, note that for estimation we need to consider the real-world dynamics of the underlying
risk factors. We choose the market price of risk process such that the processes

dW 1 +αX(t)dt, dW 2 +βY (t)dt, dW λ +θλ (t)dt, α,β ,θ ∈ R,
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are independent Brownian motions under the real-world measure P. We apply the first order
discretisation to the SDEs for X(t), Y (t) and logλ (t), respectively. Denote the length of the
time interval [ti−1, ti] by δ . Note that the time grid in this section is for estimation and is not
related to coupon payments and interest rate resets as in the previous section. Then, for
i ∈ {1,2, ...,n}we have

X(ti) =(1−δa−δσα)X(ti−1)+σ
√

δε
1
i

Y (ti) =(1−δb−δη

√
(1−ρ2)β )Y (ti−1)−δηραX(ti−1)+ηρ

√
δε

1
i +η

√
(1−ρ2)δε

2
i

logλ (ti) =
(

λ (ti−1)−λ0−σ
λ

θ − 1
2
(σλ )2

)
δ + logλ (ti−1)+σ

λ
√

δε
3
i

where ε1, ε2 and ε3 are independent standard Gaussian random variables under the real
world measure P.

Define Xi :=

 X(ti)
Y (ti)

logλ (ti)

=

Xi,1
Xi,2
Xi,3

. Then, for i ∈ {1,2, ...,n}

Xi :=

1−δa−δσα 0 0
−δηρα 1−δb−δη

√
(1−ρ2)β 0

0 0 1

Xi−1 +δ

 0
0

eXi−1,3


+

 0
0(

−λ0−σλ θ − 1
2(σ

λ )2
)

δ

+

 σ
√

δ 0 0
ηρ
√

δ η
√
(1−ρ2)δ 0

0 0 σλ
√

δ

ε i,

where ε i := [ε1
i ε2

i ε3
i ]
>.

7.2 Discretisation of the measurement system

Define
Yi =

(
Y (ti, ti + τ1),Y (ti, ti + τm)

)>
,

1 = (1 ... 1)> ,

τ = (τ1 ... τm)
> , and

τ
−1 =

(
τ
−1
1 ... τ

−1
m
)>

.

For i ∈ {1, ...,n} and j ∈ {1, ...,m}, we have

Y (ti, ti + τ j) =−
1
τ j

logP(ti, ti + τ j)

=
1
τ j

1− e−aτ j

a
X(ti)+

1
τ j

1− e−bτ j

b
Y (ti)−

1
2τ j

φ(τ j)

Hence, the measurement system (i.e. defaultable zero-coupon yields) satisfies the following
equation

Yi = τ
−1 logλ0 +Yi− τ

−1Xi,3 +λ0τ +R
1
2 υ i
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where
Yi = ψ1Xi,1 +ψ2Xi,2−Φ,

ψ1 :=
(

1
τ j

1− e−aτ j

a

)
j=1,...,m

,

ψ2 :=
(

1
τ j

1− e−bτ j

b

)
j=1,...,m

,

Φ :=
(

1
2τ j

φ(τ j)

)
j=1,...,m

,

and the random term R
1
2 υ i for non-singular R

1
2 ∈ Rm×m denote an m-dimensional noise term

which may indicate that defaultable zero-coupon yields are itself estimated from financial
market data.

7.3 Extended Kalman filter

Anchoring:

X0|0 =

 0
0

logλ0

 and P0|0 = δ

 σ2 σηρ 0
σηρ η2 0

0 0 σλ 2


The predicted state is given by

Xi|i−1 = f(Xi−1|i−1),

where

f(X) =

1−δa−δσα 0 0
−δηρα 1−δb−δη

√
(1−ρ2)β 0

0 0 1

X+

 0
0

δeX3


+

 0
0(

−λ0−σλ θ − 1
2(σ

λ )2
)

δ .


The predicted covariance is given by

Pi|i−1 = Fi−1Pi−1|i−1F>i−1 +Q,

where

Fi−1 =
[

∂ fp
∂Xi−1,q

]
p,q=1,2,3

=

1−δa−δσα 0 0
−δηρα 1−δb−δη

√
(1−ρ2)β 0

0 0 1+δeXi−1,3

 ,
Q = P0|0

Measurement residuals are given by

Ỹi = Yi−h(Xi|i−1),
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where
h(X) = τ

−1 logλ0 +ψ1Xi,1 +ψ2Xi,2−Φ− τ
−1Xi,3 +λ0τ.

Residuals covariance covariance is given by

Si = HPi|i−1H>+R,

where

H :=
[

∂hp
∂Xi−1,q

]
p=1,...,m;q=1,2,3

=

ψ11 ψ21 −τ
−1
1

...
...

...
ψ1m ψ2m −τ−1

m

 ∈ Rm×3.

The near-optimal Kalman gain matrix and the updated covariance estimates and state esti-
mates are given by

Ki = Pi|i−1H>S−1
i

Pi|i = (I−KiH)Pi|i−1,

Xi|i = Xi|i−1 +KiỸi

where I is the 3×3 identity matrix.

7.4 Maximum likelihood estimation

For the underlying parameters Θ =
(
a,σ ,α,b,η ,ρ,β ,λ0,σ

λ ,θ
)
, we have the following log-

likelihood function

l(Θ) =
n

∑
i=1

(
−1

2
Ỹ>i S−1

i Ỹi−
3
2

log(2π)− 1
2

log(detSi)

)
The Kalman maximum likelihood estimator (KMLE) is found by maximising l. We select the
noise term matrix R by numerical experiments. This noise term matrix can also be seen as
the degree of information contained in the observations.

8 Estimation and calibration results

We select the model simultaneously from time series and prevailing market prices.

8.1 Calibration versus estimation

By calibration we mean solving an inverse problem for the parameters with respect to the
prevailing market prices. Whereas, by estimation we determine the parameters applying
statistical procedures to time series data.

Practical experience suggests that if all the parameters are determined by calibration, then
the model poorly describes the dynamics of market risk factors. On the other hand, if all the
parameters are obtained by estimation then typically the initial state of the model does not
match market prices. For this reason we believe that the model should be selected from both
calibration and estimation.

27



8.2 Our approach for determining the parameters under the risk neutral proba-
bility measure

In order to do valuation we need to determine the parameters under the risk neutral measure
a,σ ,b,η ,ρ,λ0 and σλ . These parameters are going to be estimated from times series of
defaultable zero-coupon yields. For this purpose we apply the Kalman filter MLE procedure
outlined above. Then, we calibrate the time dependent shift function ϕ in order to match
the risk-free yield curve. The same idea of adding a deterministic time-dependent shift can
also be implemented for the stochastic intensity λ which also allows to exactly calibrate the
defaultable zero yields.

Alternatively, a,σ ,b,η ,ρ may as well be calibrated to market prices of interest rate cap-
s/floors. See Theorem 5.4 and figures below. We do not follow this approach because interest
rate caps and floors are based on LIBOR rates which are not a good proxy for risk-free
rates. Since modelling credit spreads is very important for this project and better proxies
for risk-free rates are available we use the Kalman filter approach which allow to input our
proxies for risk-free and defaultable zero yields.
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Figure 7: Implied volatility surfaces and market prices of interest rate caps for USD LIBOR.

8.3 Data used

We work with daily zero-coupon yields data. As proxy for the risk-free rates we use zero-
coupon rates bootstrapped from OIS rates in USD (USD OIS ZC). As proxy for the credit
spreads we use the credit spread on SA Government Bonds (SA Sov Sprd).

8.4 Estimation and calibration results

We now present some estimation and calibration results for some of the valuation dates.

29



Zero−coupon yields (%)

time to maturity (τ)

Y
(t,

 τ
)

1 2 3 4 5 6 7 8 9 10

0.
7

1.
4

2.
1

2.
8

3.
5

4.
2

4.
9

5.
6

6.
3

7

USD OIS ZC
USD OIS ZC+SA Sov Sprd
G2−RF
G2PP−RF
G2−D
G2PP−D

Figure 8: Calibration as of 31-12-2014. USD OIS ZC are risk-free zero coupon rates boot-
strapped from OIS rates in USD. SA Sov Sprd is the credit spread on SA Government Bonds.
G2-RF are the risk-free zero rates given by the model if we assume a constant shift. G2-D are
the defaultable zero-rates given by the model if we assume a constant shift. G2PP-RF and
G2PP-D are the corresponding models with time-dependent drift calibrated to the market
rates. For the Kalman filter we set R0 = 10−4. We use 100 yield curve observations for the
calibration.

G2++ Credit Q(τ ≤ t) = 1− exp(−λ0t)
date a σ b η ρ λ0 σλ t = 1 t = 5 t = 10

31-12-2014 0.70 7.5% 0.3 7.1% -99.5% 0.60% 2.9 ·10−5 0.60% 2.95% 5.82%
31-12-2013 0.23 5.6% 1.16 5.7% -98.6% 0.59% 4.6 ·10−5 0.60% 2.91% 5.73%
29-12-2012 0.05 0.35% 0.44 0.00% 20.1% 0.53% 5.6 ·10−5 0.53% 2.62% 5.16%
30-12-2008 0.34 14.16% 2.11 14.99% -99% 0.68% 9.5 ·10−3 0.68% 3.34% 6.57%

Table 1: Model parameters for different valuation dates.

As we see in the figure and the table above the estimation and calibration results are
reasonable. Volatility and speed of mean reversion parameters appear to be reasonable and
consistent with other empirical studies. See e.g. Cuchiero (2006). One-, five- and ten-years
default probabilities implied by the model also appear to be reasonable. We also observe that
our simple credit risk model is able to capture only a constant credit spread. Of course, this is
not realistic given the data. However, the result is not too bad in the context of the valuation
problem, since for the callable floating rate note with write down features we only need a
single credit spread.

9 Valuation results

In this section we implement the valuation models (Equations 14 to 20) for various parameters
estimated and calibrated from the data, using the methodologies outlined in Section 8. No
closed-form solutions to the valuation equations (see Equations 14, 16, 18 and 20) exist,
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and these equations moreover contain first-hitting time random variables. Therefore, we
implemented a Monte Carlo simulation.

Our Monte Carlo simulation exercise did not contain any nested simulation, therefore
rendering our simulation exercise added efficiency from a computing point of view. We
jointly simulated realisations of the short rate process (r(t))t≥0 as well as the zero-coupon
bond prices P(t,T ) (for t and T ≥ 0), and the market spread S(t,T ) for maturity time T . We
chose the particular form of interest rate model because the bond prices P(t,T ) are in closed
form (see Theorem 5.2), so no nested Monte Carlo simulation is necessary.

From the point of view of the credit risk factors, the model for the underlying hazard
process, Λ(t) =

∫ t
0 λ (u)du, was chosen on the grounds of tractability. The solution to the

stochastic differential equation for the hazard rates follows a log-normal distribution. In
addition, if independence is assumed between the short-rate risk factor and the hazard rate
risk factor, explicit formulae for the spread can be computed - see Equation 26. This explicit
formula was used in simulating the spread process, and furthermore made the computation
simpler. We did realise that it is also possible to simulate assuming dependence between the
short-rate and hazard rate risk factors, however, owing to time constraints, this was left as an
opportunity for further refinement to the simulation.

Fifteen simulation exercises were executed in order to ascertain the change in market
spread adjustment estimates to changes in the model parameters. We firstly analysed the
behaviour of the estimate of the market spread adjustment to changes in the spread ceiling S -
this may be an interesting relationship to consider, because issuers of these callable floating-
rate notes are often at liberty to alter S, and by using this chosen value of S they may be able
to approximate a market price for the instrument. Secondly, we analysed the behaviour of the
market spread adjustment with respect to (reasonable selected) changes in the parameters of
the credit model. There were two parameters in this model - σλ and λ0 - and each parameter
was analysed in turn.

Because of time constraints, for each market spread adjustment simulation, we employed
a sample size of 20 000. This is approximately one-fifth of that required by internal banking
regulation, but because of time and computing constraints we were constrained to this value.
We did attempt to calculate values with samples ranging in size from 10 000 paths to 20 000
paths, together with three standard deviation error bounds. Indeed, for each of the fifteen
simulation exercises, we observed both the standard deviation error bounds as well as the
Monte Carlo estimates to stabilise as the sample size increased from 10 000 paths to 20 000
paths.

Before proceeding to the results of the simulations for a FRN with coupon periods of 3
months, it is necessary to present the parameters used in the valuation model. We selected
the parameters to be reasonable values reasonably representative of those calibrated and
estimated from the data - and in some cases, the parameters employed were precisely those
from the estimation and calibration. Table 2 below shows the values used for the fixed
parameters.
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Variable Value
a 1
b 1
σ 0.01
η 0.01
ρ -0.5
T 10
T 5
δ 0.1

S/S0 0.75

Table 2: Fixed variables.

We now discuss the simulation results. In Figure 9 we observe that the value of the
option to the issuer increases as credit spread volatility increases. Secondly, we observe that
callability after time T is worth more than the one at time T . In Figure 10 we observe the
value of the write-down to the issuer also increases if volatility increases. The value to the
issuer of both the callability and the write-down is shown in Figure 10. In particular, we see
that the value of the write-down is reduced considerably by callability after time T compared
to callability at time T , because the issuer has a higher chance of closing the bond before the
write-down may happen. In Figures 12 to 14 we study sensitivity with respect to the upper
bound S. Clearly the value of the write-down is decreasing in S. We see that the option value
is not considerably affected by this bound. Moreover, we observe that that the total value
of the contract drops compared to the stand-alone value of the write-down, because when
the option is exercised the write-down feature ceases to exist. This means that the value of
the option and the write-down tend to be negatively correlated (see Section 4.1.4 for why we
intuitively believe this to be the case). The dependence of the value on S can also be used
conversely to imply a value of S from market prices, which may be useful for both issuers
and investors in such instruments. In Figures 15-17 we observe that the value of the option
(and write-down) tend to decrease (increase) as the probability of default increases. However,
we see a mixed behaviour in the case of the option. This may be explained by the fact that
higher value of the default probability means higher initial credit spread which makes the
value of a FRN reissue higher to the issuer if the option is exercised.
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Market spread valuation adjustment (%)
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Figure 9: Monte Carlo market spread valuation adjustments (added to the time 0 market
spread in order to compensate the investor for the risk of the issuer reissuing the FRN at a
lower coupon), for a reasonable range of values of σλ . Each Monte Carlo estimate is based
on a different sample of 20 000 paths, and plotted alongside each estimate is the 3 standard
error bound. We set λ0 = 0.03 and S = 2S0.
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Market spread valuation adjustment (%)
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Figure 10: Monte Carlo market spread valuation adjustments (added to the time 0 market
spread in order to compensate the investor for the risk of the issuer writing down the nominal
of the FRN) for a reasonable range of values of σλ . Each Monte Carlo estimate is based on a
different sample of 20 000 paths, and plotted alongside each estimate is the 3 standard error
bound. We set λ0 = 0.03 and S = 2S0.
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Figure 11: Monte Carlo market spread valuation adjustments (added to the time 0 market
spread in order to compensate the investor for the risk of the issuer reissuing the FRN at
a lower coupon and/or the issuer writing down the nominal of the FRN) for a reasonable
range of values of σλ . Each Monte Carlo estimate is based on a different sample of 20 000
paths, and plotted alongside each estimate is the 3 standard error bound. We set λ0 = 0.03
and S = 2S0.

35



Market spread valuation adjustment (%)

S

∆S

0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.05

0.
02

0.
03

0.
05

0.
06

0.
07

Calllable at T
Calllable at T (+3xSE)
Calllable at T (−3xSE)
Callable after T
Calllable after T (+3xSE)
Calllable after T (−3xSE)

Figure 12: Monte Carlo market spread valuation adjustment estimates (added to the time 0
market spread in order to compensate the investor for the risk of the issuer reissuing the FRN
at a lower coupon only), for a reasonable selected range of values of S. Each Monte Carlo
estimate is based on a different sample of 20 000 paths, and plotted alongside each estimate
is the 3 standard deviation error bound. We set λ0 = 0.03 and σλ = 10−4.
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Figure 13: Monte Carlo market spread valuation adjustment estimates (added to the time 0
market spread in order to compensate the investor for the risk of the issuer writing down the
nominal of the FRN only), for a reasonable selected range of values of S. Each Monte Carlo
estimate is based on a different sample of 20 000 paths, and plotted alongside each estimate
is the 3 standard deviation error bound. We set λ0 = 0.03 and σλ = 10−4.
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Figure 14: Monte Carlo market spread valuation adjustment estimates (added to the time 0
market spread in order to compensate the investor for the risk of the issuer reissuing the FRN
at a lower coupon and/or the issuer writing down the nominal of the FRN), for a reasonable
selected range of values of S. Each Monte Carlo estimate is based on a sample of 20 000 paths,
and plotted alongside each estimate is the 3 standard deviation error bound. We set λ0 = 0.03
and σλ = 10−4.
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Figure 15: Monte Carlo market spread valuation adjustment estimates (added to the time
0 market spread in order to compensate the investor for the risk of the issuer reissuing the
FRN at a lower coupon), for a selected range of values of the 10-year probability of default
of the issuer. Each Monte Carlo estimate is based on a different sample of 20 000 paths, and
plotted alongside each estimate is the 3 standard deviation error bound. We set σλ = 10−4

and S = 2S0.
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Figure 16: Monte Carlo market spread valuation adjustment estimates (added to the time 0
market spread in order to compensate the investor for the risk of the issuer writing down the
nominal of the FRN), for a selected range of values of the 10-year probability of default of the
issuer. Each Monte Carlo estimate is based on a different sample of 20 000 paths, and plotted
alongside each estimate is the 3 standard deviation error bound. Note that by changing λ0 we
also modify the initial default probability and issuance spread. We set σλ = 10−4 and S = 2S0.
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Figure 17: Monte Carlo market spread valuation adjustment estimates (added to the time 0
market spread in order to compensate the investor for the risk of the issuer reissuing the FRN
at a lower coupon and/or the issuer writing down the nominal of the FRN), for a selected
reasonable range of values of the 10-year probability of default of the issuer. for a selected
range of values of the 10-year probability of default of the issuer. Each Monte Carlo estimate
is based on a different sample of 20 000 paths, and plotted alongside each estimate is the 3
standard deviation error bound. We set σλ = 10−4 and S = 2S0.

10 Conclusion

In this report, we developed a valuation methodology for callable floating-rate notes which
allowed us to compute market spread adjustments for the issue of such instruments. This
methodology, approached from the point of view of the issuer of the callable floating-rate
note, essentially comprised a vanilla FRN valuation, the valuation of the callability feature
and the valuation of the write-down feature. The valuation formulae did not admit analytical
solutions, however, were straightforward to compute by Monte Carlo simulation. The
tractability and parsimony of the processes assumed for the underlying risk factors added to
the ease and efficiency of the Monte Carlo simulation.

From our valuation methodology, we were able to imply the components of the market
spread adjustment which were attributed to the callability feature only and the write-down
feature only. We found that the write-down component comprised the highest value to the
issuer - this came as no surprise because of the fact that the issuer could write down his or
her debt to zero.

In addition, we were able to develop a method to imply the upper barrier on the credit
spread for the callable FRN, and managed to link this back to the equity of the issuer using
the Merton Model. We believe that if one can imply the upper barrier on the callable FRN,
there will be less opacity in the pricing of these instruments. Currently in the South African
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market there is much opacity when it comes to valuing these such instruments. In sum, we
hope that our research will shed some light on the current valuation practices on callable
FRNs.

We end with a further research question. Given data on price-to-book and book values of
assets from banks, can we find a link between the book value of equity over the book value
of assets ratios and credit spreads using statistical models (e.g. regression)? In addition, is it
possible to determine, based on the trigger for book value of equity over book value of assets
ratios, a trigger value for the credit spread?
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