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Preamble
The Financial Mathematics Team Challenge (FMTC) was born in February 2013 out of one
of the casual, contemplative conversations we often have. We were mulling over a few
ideas around facilitating an event for South African postgraduate students in Financial and
Insurance Mathematics where they could focus on a topical research project with industry
relevance while simultaneously developing links to international students and academics
in the field. We had been inspired in part by Nadim Sah drawing our attention to the
MITACS Industrial Math Summer School. We also wanted the event to serve as an oppor-
tunity to bring international researchers to South Africa, and to give them a glimpse of the
dynamic environment that is developing at the University of Cape Town in the African In-
stitute for Financial Markets & Risk Management. A final, indispensable ingredient had to
be that the participating students would work in teams and be exposed to a healthy dose
of fair competition.

The first FMTC was held from the 3rd to the 13th of July 2014 at the University of
Cape Town, South Africa. The Challenge brought together postgraduate students from
France, South Africa and the UK to pursue intensive research in Financial Mathematics.
Four teams of Masters and PhD students each worked on a different research problem
during the ten days. Professional and academic experts from France, South Africa and the
UK individually mentored the teams, fostering teamwork and providing guidance. The
students applied themselves with incredible dedication and exemplary vigour.

The research included topical projects on multi-curve interest rate modelling and coun-
terparty risk valuation adjustments, pricing and hedging of commodity gap options, and portfolio
diversification measures. They were either proposed directly by our industry partners or cho-
sen from areas of current relevance to the finance industry. In order to prepare the teams,
guidance and preliminary reading was given to them a month before the meeting in Cape
Town. During the final two days of the challenge, the teams presented their conclusions
and solutions in extended seminar talks. The team whose research findings were elected
as the best won a cash prize and was awarded a floating trophy.

The teams were asked to write a report containing a critical analysis of their research
problems and the results that they had obtained. This volume contains these four reports,
and will be available to future FMTC participants. It may also be of use and inspiration to
Masters and PhD students in Financial and Insurance Mathematics.

The first Financial Mathematics Team Challenge was a wonderful opportunity for stu-
dents to interact and collaborate on research in Risk, Investments, Insurance and Financial
Mathematics. Motivated by its success, we are already planning its second edition.

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 The Problem

1 In the FX market, the spot exchange rate and the future exchange rate possess an
elastic relationship due to the behaviour of the future exchange rate being driven
by current interest rate dynamics. Thus, when the spot exchange rate changes,
provided interest rates remain unchanged, the futures curve will undergo a parallel
shift.

This allows for a long position in the spot to be hedged by a short position in
the future. When the spot falls, it is expected that the near-dated future position
will also move downwards, as the overall shape of the futures curve remains un-
changed.

Commodities prices exhibit mean reversion, essentially driven by the market’s
view that the price of a commodity will return to some long run mean. This prop-
erty causes a unique behaviour in the relationship between the commodity spot
price (often referred to as the ‘cash price’) and the commodity futures price. In
the commodities market, when spot prices fall significantly, more often than not
the futures curve will be upward sloping, as the market expects the price to return
to some long-term mean. And vice versa, when spot prices increase significantly
there is typically a downward sloping forward curve. The result of this is ‘double
exposure’.

Consider an investor who takes a long position in the spot commodity and
attempts an offsetting hedge with a short position in the future. If the spot prices
rise, the investor may show a gain on both positions, as there is not a corresponding
rise in the future. However, should spot prices fall, the investor may lose on both
positions, as the future value may increase. The relationship between the spot and
the future in commodities is inelastic.

A commodity spread option would allow the investor to take a call or put on
the difference between two points on the futures curve and, hence, it could be used
as a form of protection against the losses in the situation described above.

The payoff of a call option on the spread would be given by

Dt = (G(t, T1)−G(t, T2)−K)+,

where t is the expiry of the option, K is the strike and G(t, T1) and G(t, T2) are the
prices of the futures expiring at t < T2 < T1 respectively.

This report will investigate implementing a model for the commodities market
that will allow for the efficient pricing and hedging of the European spread option
described above under the real-world evolution of the futures curve. The remain-
der of this section proceeds with an overview of the relevant literature and then
highlights the choice of the model for implementation. Section 2 will investigate
the analytical dynamics of the chosen model, whereas Section 3 will cover the im-
plementation of simulation and pricing under the model dynamics. The calibration
of the model parameters to real world LME Copper futures is then discussed in Sec-
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tion 4, before a brief digression into a potential modelling approach of the seasonal-
ity effect present in natural gas prices. Finally, the report concludes with the results
of the model when applied to pricing and hedging a European spread option on
the LME Copper futures, instantiating at 11 December 2012. Here, it is found that
the model captures enough complexity to realistically price and hedge the relevant
option, under the constraint of a well-specified forward-looking volatility.

1.1 Modelling Commodities

There are four “stylised facts” regarding the behaviour of the commodity market
and commodity term structure and it is possible to categorise models for commod-
ity markets according to their ability to capture these features. These features are
presented below.

1. Backwardation and Contango
The commodity futures curve is in contango when it is upward-sloping or in
backwardation when it is downward-sloping. Often the shape of the curve
is described in terms of the ‘basis’, which is the difference between the spot
price and the futures price. Thus when in contango there is a negative ba-
sis as future prices are greater than spot prices, and when in backwardation
the basis is positive as future prices are less than current prices. A humped
futures curve is also common.

There are two main approaches to explaining the dynamics driving the changes
in the futures curve shape. The ‘Hedging Pressures’ approach, dating back to
[Key30] is based on the premise that “hedgers on average hold a short posi-
tion in the futures market” and hence are “willing to pay a risk premium in
order to hedge their exposure to spot price”, the net result of this is “futures
prices are a downward biased estimator of future spot prices” [BP13]. The
more widely accepted approach is called the ‘theory of storage’. This branch
relates the spot and futures price by the idea of a ‘convenience yield’. Using
the definition from [Sch97], the convenience yield can be viewed as the gain
or “flow of services” that is experienced by the holder of the underlying spot
but not by the holder of the future.

Typically, the convenience yield is modelled as net convenience yield, which
is equal to the gross convenience yield less the cost associated with holding
the underlying spot [BP13]. Thus the net convenience yield can be negative.
According to the theory of storage, the spot-futures price relationship is

G(t0, T ) = St0 exp (r − δ)(T − t0),

where δ is the net convenience yield and r is the risk-free rate (here both are
assumed constant). This implies that the slope of the futures curve is positive
if the risk-free rate is greater than the convenience yield and negative if it is
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not. Relating this to the concepts of supply and demand, the inverse rela-
tionship between price and inventory levels means that the equation above
implies an inverse relationship between convenience yield and inventory lev-
els.

2. Mean-reversion
There is a strong mean-reverting behaviour in spot commodity markets [NS04],
largely believed to be due to the dynamics of supply and demand interac-
tions. Essentially, prices rise when shortages occur and this tends to raise
the level of investments which will push up supply and bring price down
again (see [BP13]). Whilst there are some studies which question the pres-
ence of mean reversion in some commodities (see [BLO97]), it is generally ac-
cepted that mean-reversion is an important aspect of the commodities market
[Pin01].

3. The Samuelson Effect
[Gem05] describes the ‘Samuelson Effect’ as the observation that, all else be-
ing equal, the volatility of futures prices tends to increase as the time to ma-
turity decreases. It is believed that this is due to the increased sensitivity of
the futures price to current information as it nears its time to maturity as was
originally proposed in [Sam65].

4. Seasonality
Seasonality is common in some commodities (see [Gem05]), and is driven
by supply side factors (seasonal production cycles, such as agricultural com-
modities) or demand side factors (such as an increase in demand in the USA
for natural gas during the winter months). Beyond the seasonality in the price
level and convenience yield, there is evidence of seasonality in the volatility
corresponding to that exhibited in the spot.

1.1.1 Reduced-form Versus Structural

There exist two distinct approaches used to model commodities and their futures
prices. The ‘structural approach’ has an economic grounding and attempts to
model commodity price behaviour by first analysing the underlying economic prin-
ciples that drive the factors affecting the supply and demand, such as invento-
ries. The ‘reduced-form’ approach is typically based on stochastic models and are
widely used in the financial world as they often result in closed-form solutions
for certain options. A criticism of this approach is that it often leads to very lit-
tle economic insight [BP13]. [Pir11] and [RSS00] both raise concerns on the use of
reduced-form models, however both acknowledge the usefulness of the reduced-
form framework when applied to derivative pricing.

Within the reduced-form class of models, again, a distinction can be drawn
between two broad types of model, namely ‘spot price models’ and ‘no-arbitrage
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models’. Spot price models are primarily concerned with modeling the spot price,
and the futures prices are derived from the modelled spot price dynamics using
arbitrage arguments, however as a result one may find that the term structure of
these implied futures prices do not conform to the term structure observed in the
market [BP13]. No-arbitrage models include the current market futures prices as an
input to the model, and the dynamics of the futures curve is inferred by enforcing
no-arbitrage assumptions [BP13].

For the purposes of solving the research problem, it is only necessary to con-
sider the prominent reduced-form models. The earliest models used were typically
one factor models for the commodity spot price using geometric Brownian motion.
One of the most popular of these models was the [BS85] model:

dSt = µStdt+ σSStdWt

where St is the spot price, µ is the drift of the spot price, σS is the spot price volatil-
ity and dWt is standard Brownian motion.

The pitfalls of this model were its inability to capture mean-reversion and the
Samuelson effect particularly well. To overcome this [Sch97] proposed a one factor
mean-reverting process to model the spot price;

dSt = Stκ(µ− lnSt)dt+ σStdWt

where κ is the speed of spot price adjustment and µ is the long run mean log price.
There are other one factor models (see [Bre91]), but those outlined above largely

contributed to the further development of term structure models. One factor mod-
els are unable to capture all the characteristics of the term structure of commod-
ity futures prices, for example some models fail to capture the Samuelson effect,
as well as the fact that basis behaves differently in contango and backwardation
[Lau03].

1.1.2 Two Factor Models

The natural progression was to add another factor to improve model performance.
The [Sch97] model (referred to hereafter as the Schwartz97 model), which was an
enhancement of [GS90], became one of the “most famous term structure models of
commodity prices” [Lau03]. In this model, the two factors are the spot price and the
convenience yield. Some models have implemented the second state variable as the
long-term price (see [Gab91]) or some quantity analogous to the convenience yield.
The dynamics of the Schwartz97 model are examined in Section2. The addition of
the second state variable has in most cases allowed for “richer shapes of curves”
[Lau03], however it increases the complexity of the modelling.

There has been some development of three factor models, mainly with the goal
of allowing for stochastic interest rates. However, it appears that the improvement
in the models performance does not outweigh the extra computational work that
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is required to calibrate the extra state variable. The three factor model by [Sch97],
which models the long-term forward price as the third factor, is compared to the
Schwartz97 model in [Lau03] and the results appear “empirically very similar”.

In this report the Schwartz97 two-factor model is implemented. This model
captures many aspects of forward curve term structures that one factor models can
not, and performs as well as most three factor models. It allows for contango and
backwardation of the futures curve, mean-reversion of the spot price as well as the
Samuelson effect. Lastly, it appears to have been received very favourably in the
literature [Lau05]. It does however, not address seasonality (see Section 5).

2 The Model

2.1 The Schwartz97

The typical “stylised facts” of commodity markets, as described in Section 1.1 are
spot price mean reversion, contango or backwardation in the futures curve and
the decreasing volatility of the futures curve in maturity. In order to capture these
phenomena the Schwartz97 futures curve is used. In order to broadly capture the
“stylised facts” Schwartz [Sch97] posits a mean reverting stochastic convenience
yield in conjunction with the spot price process. The futures curve is then derived
from deterministic interest rates, the prevailing (but often unobservable) commod-
ity spot price and the stochastic convenience yield. The interplay of the interest
rate, convenience yield and spot price as well as their long-term averages imply
the shape of the futures curve. That is, the contango or backwardation as well
as the curvature of the futures term structure depends on the relationships of all
these variables. In addition the model allows for (but does not enforce) decreasing
volatility of the futures curve in maturity.

The joint dynamics of the convenience yield and the commodity spot price
serve to proxy the more fundamental dynamics of the spot price and inventories.
Simplistically, when inventories are high, spot prices become depressed and there
is a low marginal reward for physically holding the commodity and, hence, a low
convenience yield. Schwartz [Sch97] captures the relation through the correlation
of changes in the convenience yield and log spot.

In order to allow for mean reversion in the spot price, the drift of the spot price
is linked to the level of the convenience yield. So, through their joint relationship
and the mean reversion in the convenience yield there is mean reversion in the spot.
The prevailing spot and convenience yield, their respective long-term averages and
rates of mean reversion are combined with the interest rate to form the futures
curve.

Schwartz’s two factor model [Sch97] is presented here in the notation of Erb et
al [Erb14]. The commodity spot price St and the stochastic convenience yield δt
are modelled as joint stochastic processes. Their stochastic differential equations
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under the real world measure P are given by

dδt = κ(α− δt)dt+ σεdW
(ε)
t

dSt = (µ− δt)Stdt+ σSStdW
(S)
t

where W (S) and W (ε) are correlated Brownian motions, with instantaneous corre-
lation dW (ε)

t dW
(S)
t = ρdt.

The dynamics of the convenience yield are that of an Ornstein-Uhlenbeck pro-
cess with long-term meanα, rate of mean reversion κ and convenience yield volatil-
ity σε. The spot price can then be seen as an asset with return µ and volatility σS
with an addition stochastic dividend yield in the form of the convenience yield.
Note that a positive correlation between the returns on the spot and the conve-
nience yield will induce mean reversion in the spot. Probabilistically, when St is
large, δt will be large and thus the drift of the spot price will be reduced and may
even become negative.

This model has two sources of risk and, thus, in order to construct a risk neutral
measure Q it is necessary to have both a market price of spot risk and a market price
of convenience yield risk. The market price of spot risk is written as

µ− r
σS

,

where r is the instantaneous risk-free rate. The market price of convenience yield
risk is written as a single constant parameter λ. This implies the risk neutral dy-
namics of the factors will be

dδt = [κ(α− δt)− λ]dt+ σεdW̃
(ε)
t

dSt = (r − δt)Stdt+ σSStdW̃
(S)
t

where W̃ (ε) and W̃ (S) are Q Brownian motions with instantaneous correlation dW̃ (ε)dW̃ (S) =
ρdt. For simplicity, it is convenient to write the risk neutral dynamics of the conve-
nience yield as

dδt = [κ(α̃− δt)]dt+ σεdW̃
(ε)
t

where α̃ = α− λ/κ.
Since a risk neutral measure can be constructed, futures prices with maturity

T at t0 can be expressed as a risk neutral expectation of the spot price at maturity.
That is,

G(S0, δ0, t0, T ) = EQ[ST |Ft0 ] (1)

= St0e
A(T−t0)+B(T−t0)δt0 (2)
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where A and B are the functions given by

A(T − t0) =

(
r − α̃+

σ2
ε

2κ2
− σSσερ

κ

)
(T − t0) +

1

4
σ2
ε

1− e−2κ(T−t0)

κ3

+

(
κα̃+ σSσερ−

σ2
ε

κ

)
1− e−κ(T−t0)

κ2
,

B(T − t0) = −1− e−κ(T−t0)

κ
.

2.1.1 Futures Term Structure

Schwartz’s formulation allows for varied shapes in the futures curve, depending
on the relationships between the parameters. In the same vein as Lautier [Lau05]
the effect of various changes to the parameters on the futures term structure under
Schwartz’s two factor model is presented to illustrate its adaptability.

The first characteristic is that the curve can be either in backwardation or con-
tango, based on the size of the long-term mean convenience yield α and its relation
to the risk-free rate r. If the long-term mean convenience yield is comparatively
low then the futures curve is upwards sloping. If the long-term mean average con-
venience yield is comparatively high then the futures curve is downward sloping.
This corresponds with the economic intuition, as outlined by Geman [Gem05], that
backwardation occurs when the benefits of holding the asset in physical form out-
strip the financing (opportunity) costs associated with purchasing the commodity.
Conversely, contango occurs when the benefits of holding the commodity in fi-
nancial form, that is a futures contract and cash deposit, outstrip the benefits of
physically holding the asset. The Schwartz97 model can capture a range of these
phenomena. Hypothetical futures curves for different values of α are plotted in
Figure 1 demonstrating a flat curve and curves in contango and backwardation.
The risk-free rate and convenience yield used for these plots was 1%.

The convenience yield is modelled as a stochastic process and short term vari-
ations in the convenience yield lead to curvature in the futures term structure.
Again, this has an economic interpretation, short term gains (falls) in the conve-
nience yield imply a higher (lower) value associated with holding the commodity
in physical form. This is observed in the effect of convenience yield variations on
the short end of the futures term structure, where humps or saddles can occur. Hy-
pothetical futures curves are plotted in Figure 2 showing the effect of the prevailing
convenience yield on the same curves as before.

2.1.2 Volatility Term Structure

The Samuelson effect can be captured by the Schwartz97 model. However it will
emerge in the futures curve model if and only if the volatility of the convenience
yield is sufficiently small. This can be seen as follows.
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Figure 1: Hypothetical futures curves as calculated in the Schwartz two factor
model with different long-term mean convenience yields

The log futures price at t for a given maturity T can be written as

lnG(St, δt, t, T ) = lnSt +A(T − t) +B(T − t)δt.

Now, both St and δt are random variables. For a fixed t, the variance of the futures
contract maturing at time T can be written as

Var[lnG(St, δt, t, T )] = Var[lnSt] +B(T − t)2Var[δt] +B(T − t)Cov[lnSt, δt].

Since lnSt and δt do not depend on the future’s maturity T , only B(T − t) needs to
be analysed. It is clear that B decreases as T increases

dB(T − t)
dT

= − exp(−κ(T − t)) < 0.

However, since B(T − t) is negative it does not follow that volatility of a futures
contract always decreases as maturity increases. In fact

dVar[lnG(St, δt, t, T )]

dT
= 2B(T − t)dB(T − t)

dT
Var[δt] +

dB(T − t)
dT

ρSDev[lnSt]SDev[δt]

= (2B(T − t)SDev[δt] + ρSDev[lnSt])
dB(T − t)

dT
SDev[δt]
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Figure 2: Hypothetical futures curves as calculated in the Schwartz two factor
model with different long-term mean convenience yields and different convenience
yields

12



is negative if and only if

SDev[δt] ≤ −
ρSDev[lnSt]

2B(T − t)
.

This inequality has an intuitive interpretation. Since the level of the convenience
yield affects the curvature of the futures curve as shown in Figure 2, if the conve-
nience yield is excessively volatile relative to the spot, the entire futures curve will
be volatile.

Regardless of the volatility of the convenience yield there is a limit to the volatil-
ity of the futures curve. As Lautier [Lau05] shows, the limit of the futures contract
volatility is given by

lim
T→∞

Var[lnG(St, δ0, t, T )] = Var[lnSt] +
Var[δt]
κ2

− Cov[lnSt, δt]

κ

This is an important feature of the Schwartz model.

3 The Simulation

The Schwartz97 two-factor model is especially amenable to Monte Carlo simula-
tion as it is possible to derive the joint transition density for Xt0 = ln(St0) and the
convenience yield δt0 , see [Erb14]. Under Q, it is given by(

Xt0

δt0

)
∼ N

((
µ̄X(Xt0 , δt0 , τ)
µ̄δ(δt0 , τ)

)
,

(
σ2
X(τ) σXδ(τ)

σXδ(τ) σ2
δ (τ)

))
, (3)

with parameters

µ̄X(Xt0 , δt0 , τ) = Xt0 +

(
r − 1

2
σ2
S − ᾱ

)
τ + (ᾱ− δt0)

1− e−κτ

κ

µ̄δ(δt0 , τ) = e−κτδt0 + ᾱ(1− e−κτ )

σ2
X(τ) =

σ2
ε

κ2

(
1

2κ
(1− e−2κτ )− 2

κ
(1− e−κτ ) + τ

)
+ 2

σSσερ

κ

(
1− e−κτ

κ
− τ
)

+ σ2
Sτ

σ2
δ (τ) =

σ2
ε

2κ
(1− e−2κτ )

σXδ(τ) =
1

κ

{(
σSσερ−

σ2
ε

κ

)
(1− e−κτ ) +

σ2
ε

2κ
(1− e−2κτ )

}
Thus, Monte Carlo samples can be generated for the log spot and convenience

yield at any time, t0, through(
Xt0

δt0

)
=

(
µ̄X(X0, δ0, τ)
µ̄δ(δ0, τ)

)
+ LZ, (4)
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Figure 3: Monte Carlo call price for Option 1 with three standard deviation bounds.
The first figure represents the initial price and the second the price one month be-
fore expiry. The black line is the analytical solution.

with X0 and δ0 given, Z a 2 by 1 vector of standard normal random numbers and
L the Cholesky decomposition of the covariance matrix from Equation (3).

At t0, the entire futures curve, for all maturities T , is determined by St0 and δt0
via Equation 1.

This allows for Monte Carlo simulation of the futures curve at any point and the
extension to a simulation of the time-development of the futures curve is obvious.

3.1 Pricing a European Call

Under the Schwartz97 model, an analytical solution exists for the case of a Euro-
pean call written on a commodity future (see [MS98] and [HR98]). This serves as
an useful check on the implementation of the Monte Carlo simulation.

Keeping with the notation of [Erb14], but expanding to the case when t0 does
not equal 0, the analytical price for a European call, CG, expiring at t, on the com-
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Figure 4: Monte Carlo call price for Option 2 with three standard deviation bounds.
Initial price and one month before expiry. The black line is the analytical solution.

modity future G expiring at T with strike K is given by

CG = EQ[e−r(t−t0)(G(St, δt, t, T )−K)+]

= e−r(t−t0)[G(St0 , δt0 , t0, T )Φ(d+)−KΦ(d−)], (5)

with

d± =
ln

G(St0 ,δt0 ,t0,T )
K ± 1

2σ
2

σ
,

and

σ2 = σ2
S(t− t0) +

2σSσερ

κ

(
1

κ
e−κ(T−t0)(eκ(t−t0) − 1)− (t− t0)

)
+
σ2
ε

κ2

(
(t− t0) +

1

2κ
e−2κ(T−t0)(e2κ(t− t0)− 1)− 2

κ
e−κ(T−t0)(eκ(t−t0) − 1)

)
.

Figures 3 and 4 illustrate the Monte Carlo pricing of a 9-month call on the 12-
month future (Option 1) and a 3-month call on the 9-month future (Option 2). The
necessity of checking the effectiveness at two different points during the lifetime of
the options will become clear in the next section.
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Figure 5: Monte Carlo call delta for Option 2 with three standard deviation bounds.
Initial delta and one month before expiry. The black line is the analytical delta.

3.1.1 Delta Hedging

From Equation (5) it is possible to derive the analytical delta of the call option with
respect to the underlying future,

∂CG

∂G
= e−r(t−t0)Φ(d+). (6)

This can be used to test the effectiveness of the implementation of a Monte Carlo
central-difference delta, which will be necessary for the spread option where a
closed-form delta does not exist. It is important to note that the central-difference
delta can only be computed with respect to the processes that are being simulated.
The central-difference delta with respect to the spot commodity price is given by

∆S =
ĈG(St0 + ∆St0)− ĈG(St0 −∆St0)

2∆St0
, (7)

where ĈG(St0 + ∆St0) is the Monte Carlo price of the call option generated with
the initial spot price shifted upward by ∆St0 . This is an approximation to ∂CG

∂S and
an application of the Chain Rule is necessary to relate it to the delta with respect to
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the underlying future,

∂CG

∂G
=
∂CG

∂S

∂S

∂G

≈ ∆Se−A(T−t0)−B(T−t0)δt0 .

It is possible to compute the central-difference delta with a shift in δt0 instead,
but from a practical perspective it is more sensible to specify the sensitivity with
respect to a move in the underlying future, ∆Gt0 , which is simple to relate to a
move in the spot by

∆St0 = ∆Gt0e
−A(T−t0)−B(T−t0)δt0 . (8)

Figure 5 compares the central-difference delta approximation to the analytical delta
for a 3-month call struck on the 9-month future at inception and one month before
expiry. If the analytical adjustment owing to the Chain Rule wasn’t applied, the
right-hand figure would show a clear bias whereas the delta at inception would be
unaffected.

3.1.2 Profit and Loss Simulations

After establishing the Monte Carlo pricing and central-difference delta, a pathwise
profit and loss simulation can be constructed to test the coherence of the system.

The profit and loss is computed from the perspective of a market participant
selling the option, using the following framework:

1. At the initial time, t0 = 0, the hedger sells the option and buys the delta of the
underlying. He borrows capital if necessary, otherwise he invests the surplus
at the risk-free rate.

2. At each time-step before the maturity, the hedger updates his position in the
underlying to the new delta by buying the difference between the delta at this
time-step and the previous time-step at the current price of the underlying.
He retains his short position in the option and his cash position accumulates
from the previous time-step.

3. At maturity, he converts his holding of the underlying into cash and pays out
the payoff of the option (if in-the-money).

The hedger’s total profit and loss at the end of the period is his final portfolio value.
Two example paths are presented for Option 1 and Option 2 in Figure 6.
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Figure 6: Examples of pathwise profit and loss. The solid black line is the evolving
option price, where the black and blue dashed lines are the profit and loss of the
hedge portfolio using analytical and central-difference delta hedging respectively.

3.2 Pricing the European Spread Option

The price of the European spread option will be the expectation under the risk-
neutral measure of its final payoff,

Dt0 = EQ[e−r(t−t0)(G(St, δt, t, T1)−G(St, δt, t, T2)−K)+].

Although no closed-form analytical solution has been determined1, this option can
be priced via the Monte Carlo simulation of the joint underlying processes.

Without a closed-form solution, the resultant Monte Carlo price cannot be checked
for accuracy. However, it is possible to examine the behaviour of the solution as the
number of contributing paths is increased. This behaviour is illustrated in Figure
7. Qualitatively, it appears that the solution is converging.

For the rest of this section, consider Spread Option 1 as a 9-month European call
on the difference between the 16-month and 12-month futures and Spread Option
2 as a 3-month European call on the difference between the 18-month and 9-month
futures.

1Although [AV07] calculate analytic approximations to spread options based on two-dimensional
geometric Brownian motion, the results cannot be applied in this case.
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Figure 7: Behaviour of the Monte Carlo spread option price at inception and one
month before maturity as a function of increasing sample size.

3.2.1 Delta Hedging

To hedge the spread option, positions must be taken in each of the underlying
futures. This requires the delta to be computed with care, using the Chain Rule for
partial derivatives.

For ease of presentation, the dependence on the current time, t0, will be omitted
from the notation. Let D(GT1 , GT2) be the price of the spread option with GT1(S, δ)
andGT2(S, δ) the underlying futures. The derivatives of interest are ∂D

∂GT1
and ∂D

∂GT2
,

which must be expressed in terms of ∂D
∂S and ∂D

∂δ and deterministic expressions,
as these are the only derivatives that can be computed via the central-difference
Monte Carlo simulation.

This can be achieved by simultaneously solving the equations,

∂D

∂S
=

∂D

∂GT1
∂GT1

∂S
+

∂D

∂GT2
∂GT2

∂S

and

∂D

∂δ
=

∂D

∂GT1
∂GT1

∂δ
+

∂D

∂GT2
∂GT2

∂δ
.
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Figure 8: Behaviour of the Monte Carlo Spread Option 1 delta with respect to each
underlying one month before maturity as a function of increasing sample size.

This results in

∂D

∂GT1
=
∂D

∂δ

[
1

GT1 [B(T1 − t0)−B(T2 − t0)]

]

+
∂D

∂S

 1
GT1

S [1− B(T1−t0)
B(T2−t0) ]

 ,
with the obvious symmetric extension to ∂D

∂GT2
.

Now central-difference approximations can be used for ∂D
∂S and ∂D

∂δ to com-
pletely determine the delta of the option with respect to each underlying future.
Calculating the standard deviation of the Monte Carlo central-difference approxi-
mation is beyond the scope of this work, but the qualitative behaviour of the above
expression is illustrated in Figure 8. Spread Option 1 is a 9-month European call on
the spread between the 16-month and 12-futures (7- and 3-month futures at option
maturity).

The deltas for the spread option possess an interesting feature: they approx-
imately mirror each other. Standard Chartered’s Jayson Dunne intuited that it
should be possible to hedge the spread option by taking a position in the spread
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itself (as opposed to different positions in each of the underlying futures), despite
their imperfect correlation. This appears to be confirmed by the central-difference
delta calculations.

3.2.2 Profit and Loss Simulations

As for the call option, having an expression for the delta with respect to each un-
derlying allows for a hedging simulation. In the same framework as before, sample
paths are simulated and a hedge portfolio is constructed. For illustrative purposes,
two sample paths for Spread Option 1 and Spread Option 2 are displayed in Figure
9. The distribution of the simulated profit and loss is displayed in Figure 10.

The histogram was generated using 4500 samples of the profit and loss. Each
profit and loss was computed using daily delta hedging with a 21-day month. Each
daily price and corresponding delta was computed from independent 50 000 sam-
ple Monte Carlo simulations. The total simulation was spread across 6 computers
and ran for approximately 2 hours.

The histogram is encouraging: the mean is slightly to the left of zero, which is
to be expected when discretely hedging a continuous time model. It also alludes to
the premium that should be charged to account for the fact that all risk, specifically
convenience yield risk, is not hedgeable. This qualitatively validates the internal
consistency of the implementation.
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Figure 9: Examples of pathwise profit and loss for Spread Option 1 and Spread
Option 2. The solid black line is the evolving option price, whereas the dashed
black line is the profit and loss.
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Figure 10: Histogram of profit and loss for Spread Option 1 and Spread Option 2. 4500 sample paths were used, and each point on each sample path was
priced and hedged using 50 000 Monte Carlo simulations. This simulation was distributed over 6 workstations.
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4 The Calibration

In general option pricing requires parameters which will apply over the life of the
option. However, it is not possible to get forward looking estimates for many of
the parameters in the model. The volatility of the spot price and convenience yield
can be obtained from forward looking market data, but the remaining parameters
must be estimated historically

One of the chief advantages of the Schwartz97 model is that it allows for cal-
ibration of the parameters to historical term structures. This is not an easy task.
Both the factors which drive the model are unobservable and in conjunction with
the parameters, form futures curves in a highly non-linear fashion. However, due
to the model structure it is possible to calibrate with the use of a Kalman filter.
Schwartz [Sch97] states that it is appropriate to implement a Kalman filter because
we have an observed process which is a function of Markovian state variables (the
two factors of the model). This is because the two factor model can be written as
a pair of linear state space equations. Using this state space representation of the
model it is possible to apply a Kalman filter to the data and thereby estimate pa-
rameters for the model. There are many reviews of the Kalman filter, which was
initially published by Kalman [Kal60]. One of the most comprehensive and straight
forward introductions is given by Welch and Bishop [WB95].

4.1 The Kalman Filter

4.1.1 State Space Representation of the Schwartz 2 Factor Model

The Kalman filter can be used to essentially minimise the mean square error associ-
ated with the model’s futures curves and the observed futures curves. In the event
that these model residuals are normally distributed then the parameters found will
also be maximum likelihood parameter estimates. While the observations can be
written as a linear function of the state variables, they are non-linear in the parame-
ters. Consequently, the procedure of calibrating the Schwartz97 model implements
an extended Kalman filter [Jav03]. Ljung [Lju79] highlights that depending on the
implementation it is not guaranteed that the extended Kalman filter will yield un-
biased, or indeed even consistent (i.e. convergent in sample size) estimates of the
parameters. Ljung [Lju79] proves that divergence can occur if the filtering algo-
rithm used is not sufficiently sensitive to the changes in the parameter estimates,
the residuals are large and/or the sample size is small.

Despite these challenges, the Kalman filter is widely used to calibrate the Schwartz97
model. Javaheri et al [Jav03] discuss in detail the specific issues associated with im-
plementing an extended Kalman filter for the calibration of the Schwartz 2 factor
model. The chief challenges are the specification of the initial conditions for the
filtering process, the biases introduced when linearising the state space and the
sensitivity of the algorithm to the residuals’ covariance structure.
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The implementation of the Kalman filter for the Schwartz 2 factor model by Erb
et al [Erb14] is presented here. In order to fully explain the parameter estimation
via the Kalman filter we follow the explanation of Zivot [Ziv06]. Erb et al [Erb14]
build a linear state space representation of the model;

yt = dt + Ztωt + εt

ωt = ct + Ttωt−1 +Rtηt.

where the first equation is termed the measurement equation and the second is
termed the transition equation. The measurement equation has N × 1 Gaussian
white noise εt which has a covariance matrix Ht, the transition equation has a 2× 1
vector of serially uncorrelated Gaussian innovations ηt. The observation, yt, in this
context is an N × 1 vector of the log futures prices for maturities T1, T2, ....TN , and
the state vector, ωt, is a 2 × 1 vector of the log spot Xt = ln(St) and convenience
yield δt. So we can write

yt =

 ln(F (1))
...

ln(F (N))

 , ωt =

[
Xt

δt

]
.

The remaining matrices dt, Zt, ct, Tt and Rt are matrices which specify the pa-
rameterisation of the system. The state space parameterisation for the Schwartz97
model is given by Erb et al [Erb14] as follows;

dt =

A(T1 − t)
...

A(TN − t)

 , Zt =

1 B(T1 − t)
...

...
1 B(TN − t)

 ,
ct =

(µ− 1
2σ

2
S − α)∆t+ ω

κ (1− e−κδt
)

α
(
1− e−κδt

)
 ,

Tt =

1 1
κ(e−κ∆t − 1)

0 e−κ∆t

 , RtR
′
t =

 σ2
X(∆t) σXδ(∆t)

σXδ(∆t) σ2
δ (∆t)

 .
Note that that the covariance structure applicable to Xt and δt is enforced by mul-
tiplying the independent components of εt by Rt, this is conceptually different to
the measurement noise which ηt represents. The Kalman filter specifies that the
measurement error should be serially uncorrelated across time and within contem-
poraneous errors. Thus we can write the measurement error covariance matrix Ht

as

Ht =


h2

11 0 · · · 0
0 h2

22 0
...

. . .
...

0 · · · · · · h2
NN

 .
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4.1.2 Parameter Estimation via the Kalman Filter

For a linear state space with a given set of parameters the Kalman filter supplies
estimates of the underlying state processes ωt. The estimate of ωt−1 can be used
for an a priori prediction of the observation vector yt. The errors associated with
these predictions from the Kalman filter have a Gaussian distribution. So we can
find the parameters which maximise the log-likelihood of the prediction errors.
This corresponds to minimising the prediction errors associated with the Kalman
filter. Thus the calibration process is complex as there are two levels of iteration:
the Kalman filter is an iterative process which is wrapped inside an iterative log-
likelihood maximisation.

The detailed calculation of the log-likelihood which Zivot [Ziv06] outlines is
presented here. Firstly, it is necessary to understand that the Kalman filter is a
recursive process which moves forward over time. At each time point two sub cal-
culations take place; a prediction step and an updating step. The prediction step
rolls the state process forward, and gives a prediction of the observation process
yt|t−1. The correction step adjusts the previous state space estimate for the error
between the predicted observation and the actual observation vt = yt − yt|t−1. We
distinguish between the a priori estimate of the state vector, wt|t−1, and the a posteri-
ori estimate (or the filtered estimate) of the state vector wt and their corresponding
mean square errors, Pt|t−1 and Pt. This process is then repeated over the sample.

The equations associated with this process are given in Zivot [Ziv06] as follows.
The prediction step equations are given by

wt|t−1 = E[ωt|Ft−1] = Ttwt−1 + ct

Pt|t−1 = E[(ωt − wt−1)(ωt − wt)′|Ft−1]

= TtPt−1T
′
t +RtR

′
t

yt|t−1 = Ztwt|t−1 + dt.

The prediction error vt and its corresponding mean square error Ft are given by

vt = yt − yt|t−1

Ft = E[vtv
′
t]

= ZtPt|t−1Zt +Ht.

These two components are used to correct the a priori state space estimate and its
mean square error. The correction step equations are given by

wt = wt|t−1 + Pt|t−1Z
′F−1
t vt

Pt = Pt|t−1 − Pt|t−1Z
′
tF
−1
t ZtPt|t−1.

If the assumption of normality in the measurement errors and state space innova-
tions hold, then the prediction errors are also normally distributed. Consequently,
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the log-likelihood of the prediction errors as a function of the parameter vector
θ = (κ, ω, λ, σS , σε, ρ)′ is

ln(L(θ|yt)) = −Nn
2

ln(2π)− 1

2

n∑
t=1

ln(det(F (θ)))− 1

2

n∑
t=1

vt(θ)F
−1
t (θ)vt(θ).

This function is maximised over θ to calibrate the model.

4.1.3 Difficulties Associated with Calibration

Erb et al [Erb14] state “Estimation of the Schwartz97 model parameters is statisti-
cally fragile and computationally demanding”. This idea is echoed in Javaheri et
al [Jav03], who also emphasise the difficulty of implementing a Kalman filter to
estimate parameters for a Schwartz 2 factor model.

One of the most problematic areas is the choice of starting values for the Kalman
Filter, that is the choice of a0 and P0. In the event that ωt and yt are covariance
stationary then there are analytical expressions for the starting values, as given
by Zivot [Ziv06]. However, the Schwartz97 model explicitly has covariance non-
stationarity. Thus, it is matter of judgment to choose the starting values. One solu-
tion proposed by Javaheri et al [Jav03] is to estimate the initial states using the first
few observations in the sample. The initial convenience yield can be taken as

δ0 = r − ln(G(t, T1))− ln(G(t, T2))

T1 − T2

and the initial spot, S0 can be taken as the price of the shortest-dated futures con-
tract. The estimate of P0 can be a diagonal matrix, with elements being sample
variances of the corresponding points on the futures curve in the first 30 observa-
tions.

An additional issue pointed out by Javaheri et al [Jav03] is the measurement
error covariance matrix Ht. If the volatility of the measurement errors become
too unstable then it can lead to numerical difficulties, particularly relating to the
invertability of Ft. The use of the linearised state space also means that care must
be taken to avoid bias in the parameter estimates.

There are also issues related the log-likelihood and parameters. Erb et al [Erb14]
highlight that local maxima often exist in log-likelihood function. Consequently it
is necessary to allow for many iterations in an optimisation procedure as well start
the procedure from different initial parameter estimates. Finally many of the pa-
rameters have constraints, which adds another layer of complexity to the estima-
tion.

4.1.4 Calibration Process

Due to the time constraints in place it was necessary to budget the amount of time
set aside to implement the Kalman filter parameter estimation. It was necessary
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to implement the filter in a short amount of time. Unfortunately, it proved too
difficult to develop an estimation procedure within the time constraints. Conse-
quently, an existing package designed specifically for estimating parameters of the
Schwartz97 model was used. The package was designed for the R statistical com-
puting language by Erb et al [Erb14]. The package implements the procedure de-
scribed above with additional steps and methodologies to control for the numerical
instability inherent in the method.

The package supplies model output which can be used to asses both the ro-
bustness of the estimation procedure and the parameter estimates. The process
can be started at multiple initial parameters to ensure that the estimates found do
not correspond to local maxima. It is also important to note that there is scope
to choose which points, on the futures curve, can be pushed into the calibration
procedure. The granularity and length of the futures curve used can be altered.
Using too granular a futures curve is likely to incur too much residual error which
may skew the estimates obtained. Using too sparse a curve may lead to insufficient
calibration to the existing term structure. Ideally a set of points which allow for a
sufficient representation of the futures term structure without inducing too much
residual error should be used. This is an empirical problem and so the estimation
stability and final use of the parameters should also be taken into account when
deciding what data to use.

A final issue is the choice of a risk-free rate over the sample period. It was
decided to use a risk-free rate of 3 per cent over the sample period.

4.2 Applying the Kalman Filter

4.2.1 The Data and Model Results

The model was calibrated to data from the Copper futures curve. 48 Month Copper
futures curves observed daily from 1 January 2002 until 30 June 2014 on a daily ba-
sis were obtained from Bloomberg. Figures 11 and 12 demonstrate the Samuelson
effect and backwardation and contango respectively in the sample. No seasonal-
ity in the market for metals was expected. The mean reversion is difficult to asses
before parameters are estimated.

It was decided to calibrate the Schwartz97 model using 3 month points on the
futures curve for a futures curve of length 1.5 years. This data yielded the most sta-
ble parameter estimates in the calibration, in addition it corresponds to the length
of the futures curve required to price the spread option in question.

Table 1 shows the parameters found using the Schwartz97 package to imple-
ment a Kalman filter log-likelihood maximisation. The parameters seem consistent
with market observable phenomena. The historical spot volatility of 0.36 per cent
is in line with what is expected from a metal commodity, especially since the cali-
bration period includes the 2008 crisis. The strongly positive correlation parameter
implies that there will be mean reversion in the spot price which is also a desir-
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Figure 11: Sample volatility structure for Copper from 2002 to 2014.

Table 1: Parameter Estimates for the Schwartz 2 factor model

Parameter Estimate
µ 0.9991
σS 0.3626
κ 0.5212
ω 0.3513
σε 0.1023
ρ 0.9207
λ 0.1698
α 0.3513
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Figure 12: Selected Copper futures curves from 1 Jan 2003 and 1 Jan 2012 exhibiting
backwardation and contango respectively.

able factor. In addition, the volatility of the convenience yield sits below the bound
discussed in section 2.2, so the Samuelson effect is recovered. Figure 13 shows
the actual forward curves and the forward curves projected using the parameters
found as well as the filtered estimates of the convenience yield and the spot price.
There is a favourable correspondence between the two plots. Much of the behavior
of the curve in the sample is captured in the model.
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Figure 13: Plots of the actual and model projected forward curves over the sample period
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4.2.2 Model Assessment

One of the shortfalls of the Schwartz97 package is that standard errors for the pa-
rameter estimates are not readily available. However other forms of model check-
ing are available. The primary method is to assess the distribution of the residuals
associated with the Kalman filter. Figure 14 shows the distributions of the stan-
dardised residuals for each point on the futures curve. These distributions seem
close to normal. There is evidence of skewness in the residuals indicating some
structure that the models do not capture. Overall, given the time period over which
estimation took place, this is to be expected given the flat interest rate assumption
which was made.

The estimation procedures runs successfully, with the parameter estimates con-
verging to their final values. Figure 15 shows this for selected parameters.

5 Bonus: Seasonality

The effect and impact of seasonality in commodity markets has been well docu-
mented in the literature, and there exists a small subset which attempts to model
the seasonality in futures curves. [Gab91] uses a combination of sine and cosine
functions in his models of the spot price and the long-term price, similar to the
work done by [RS02]. They implement the Schwartz97 model, however they ex-
pand the model by including a stochastic volatility in the spot price which allows
for seasonality. [Mil03] takes this approach one step further by attempting to model
as closely as possible the term structure of futures and futures curves observed in
the market as well as “the current term structure of future and futures volatilities,
and the inter-temporal pattern of the volatility of the future and futures prices” as
observed in the market. Miltersen models the underlying spot price with geomet-
ric Brownian motion and the convenience yield with a mean reverting process, and
obtains greater flexibility in the model by “allowing the volatility of the spot com-
modity price, the speed of mean-reversion parameter, the mean-reversion parame-
ter, and the diffusion parameter of the spot convenience yield all to be time-varying
deterministic functions”. Finally, [BG06] suggested a more unique approach to
modelling the seasonality in futures curves by modelling the average long-term
price, which exhibits no seasonality, as well as a factor similar to the convenience
yield which she terms the “seasonal factor”. This factor is responsible for the ran-
dom changes in the futures curve shape as well as the the seasonal premia that
result in the seasonal shape of the curve.

The problem under consideration is the pricing and hedging of the European
spread option (as stated above) on a commodity with a seasonal futures curve.
The previous methodologies for modelling futures curves all necessitate estimating
parameters, mostly by using some form of quasi-likelihood maximisation.

Time constraints prevented the implementation of a new parameter estimation
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Figure 14: Plots of the actual and model projected forward curves over the sample
period
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Figure 15: Plots of the parameters as over the likelihood maximisation
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Figure 16: Forward curve for natural gas on 14 Feburary 2002. Monthly forward
prices from one month out to 48 months.

procedure (see Section 4) and thus the investigation was limited to models for sea-
sonality whose parameters could be estimated under the current implementation
of the Kalman filter.

This constraint was the largest factor preventing the implementation and as-
sessment of the approaches outlined in the literature.

5.1 Modelling Seasonality

Figure 16 is the natural gas curve at 14 Feburary 2002 with monthly points from
one month out to 48 months.

The seasonal pattern is clearly visible in Figure 16 above. Empirically, one can
see the effect of the increased demand for natural gas in the winter months, hence
the higher premium for futures expiring during those months, and during the sum-
mer months when demand is slightly lower, the premium is lower. Another impor-
tant observation is that this seasonal effect appears constant year on year, i.e this
yearly seasonal pattern does not appear to be changing over time.

Developing this idea further, if one only connected the future prices one year
apart (i.e connecting the one month and 13 month, the 13 month and 25 month etc)
one would have a futures curve with, predictably, no seasonality, but more impor-
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Figure 17: Illustration of the shape of the forward achieved by connecting points
on the forward curve exactly one year apart. This is demonstrated for the forward
curve on 7 January 2002.

tantly, the curve would maintain the general shape of backwardation or contango
experienced over the period. This is displayed in Figure 17.

Thus each day, if one only looked at the futures curve implied by plotting the
yearly future prices from the one month future price today, one would have a fu-
tures curve maintaining the general contango or backwardation shape, and to ob-
tain the monthly prices in between these points, one can apply a set of monthly
seasonal adjustments.

The approach will be to obtain the monthly adjustments mentioned above,
henceforth called ‘seasonal premia’, and use these to remove the seasonality from
the observed market futures curves for natural gas. These futures curves will then
be used in the calibration procedure in the same way the copper futures curves
were used. The futures curves estimated from using the calibration data will ex-
hibit no seasonality as the model is set up to ignore seasonality and the seasonal
premia can be added back to introduce seasonality to the resultant futures curves.

It is assumed that the yearly seasonality is constant over time, which appears
to be a justifiable assumption(see Figure 16). Secondly the assumption is made that
the seasonality can be expressed as a multiplicative monthly factor or premium. In
other words, each day a futures curve exists with monthly future prices from one
month onwards. There are 13 seasonal premia that determine the seasonal shape
of the curve between the one month and the 13 months future prices, and these
same premia dictate the seasonal shape of the curve between the 13 month and 25
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month future prices.

5.1.1 The Model

If we let XS(t0, T ) be the seasonal future price at time t0 for delivery at time T ,
and XDS(t0, T ) the corresponding ‘deseasonalised’ future price, then the model
proposed is as follows:

XS(t0, T ) = SP (t0,m(T ))XDS(t0, T ) (9)

for t = 1, 2, . . . , 252, T = 1, 2, . . . and

m(i) =

{
Rem( i

12) when Rem( i
12) > 0,

12 when Rem( i
12) = 0,

where Rem(xy ) is the integer remainder of xy .

Hence the seasonal premia will take the form of a 252 by 13 matrix. The func-
tion m(i) ensures that no matter how large T is, it is always related to the correct
monthly premium. Also note that as a result of the model design and assumptions:
SP (t, 1) = SP (t, 13) = 1 for all t.

5.1.2 The Data

Daily futures curve data from 2 January 2002 up until 30 June 2014. Each daily
futures curve consists of futures prices from one month out to 37 months. In the
computation, a trading year of 252 days is assumed, thus 21 days each month.
During the period, any years with more than 252 trading days were edited (i.e the
253rd day was removed).

Also it must be noted that the convention used in the natural gas market is that
the future price today expiring at some time T is quoted in terms of the price of
the nearest to expiry future of term T . In other words the price quoted today and
tomorrow for a one month future will both be linked to the nearest to expiry one
month future. And once this future expires, the pricing jumps to being in terms of
the next nearest one month future.

5.2 Applying the Model

5.2.1 Estimating the Seasonal Premia

The seasonal premia are estimated by first obtaining unique daily seasonal premia
and then calculating overall average seasonal premia. This is outlined below.

37



1. Unique daily seasonal premia.
In this first step, the seasonal premia are estimated using each day’s unique
futures curve out to 37 months. To estimate the seasonal premia, straight
lines are fitted between the one month and the 13 month future prices, the 13
month and the 25 month future prices and the 25 month and the 37 month
prices. The prices on the actual futures curve are then divided by the points
along the straight line. Hence a per month factor is computed showing how
much higher(or lower) that month’s price is compared to the straight line.
This is then averaged with the corresponding month factors obtained in the
13 month to 25 month segment, and the 25 month to 37 month segment.

A set of 13 seasonal premia for each day from 2 January 2002 to 30 June 2014
were obtained during this step.

2. Overall average seasonal premia.
In this step, the seasonal premia are averaged over the corresponding day in
each year, so as a result a set of 252 seasonal premia is obtained, correspond-
ing to the future prices monthly from one month to 13 months.

Figure 18 shows the final seasonal premia for each month. There are 252 lines,
each showing the corresponding seasonal premia. The apparent clustering effect is
a result of the nature of the natural gas data (see Figure 16). The seasonal effect is
clearly visible.

Figure 19 shows a cross-section of Figure 18. Each subplot shows the monthly
premium that would be applied at each given day over the course of the 252 day
year. It shows early in the year that the premiums on the 9, 10 and 11 month natu-
ral gas futures are high, as is to be expected. Also, it is reassuring to see this price
premium move in a predictable way as the winter season is approached. Also the
red lines shown on the subplots emphasise the stepped nature of the curve, again
which is to be expected given the nature of the natural gas data. Essentially, ev-
ery 21 day sequence is in reference to the same futures contract, hence exactly 12
of these red lines can be superimposed and they conform almost exactly to the
stepped nature of the curves. Consider the one month future prices for each of the
first 21 trading days of the year. They all give very similar seasonal premia as they
reference the same contract. This then shifts as that contract expires and the next
21 observations reference the next one month contract, hence the stepped nature of
the curve.
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Figure 18: The daily set of seasonal premia. Each line represents one of 252 days,
and it indicates the seasonal premia observed in the monthly forward prices, from
one month to 13 months.
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Figure 19: The 13 monthly premia that would be applied to each day. The x-axis shows the day number from one to 252.
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Figure 20: The market forward curves exhibiting seasonality, alongside the same
curves with seaonality removed.

5.2.2 Application of Seasonal Premia

First, seasonality is removed from the market futures curves via the inverse of
Equation (9),

XDS(t0, T ) = (SP (t0,m(T )))−1XS(t0, T ).

Figure 20 shows two examples (one in contango and one in backwardation) of a
futures curve as seen in the market and the same futures curve stripped of sea-
sonality through the application of the proposed method. It is observed that the
overall contango and backwardation shape is maintained as well as a large portion
of the seasonality has been removed.

Small traces of seasonal patterns still remain to a reasonable extent. These fu-
tures curves with seasonality removed were then run through the Kalman filter for
calibration. Owing to time constraints, the process was not completed as rigorously
as the parameter estimation for the Schwartz97 model. Moreover, the results were
not investigated as thoroughly as desired, however, the provisional results of the
run through the Kalman filter were favourable. Figure 21 indicates the deseason-
alised natural gas futures curves passed through the Kalman filter, whereas Figure
22 shows the curves constructed from the resulting estimated parameters.

There is clear evidence that some seasonality has persisted, particularly in the
2008 period where prices were extremely volatile. The positive result is that the
Kalman filter parameters appear to be able to capture the general shape of the nat-
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Figure 21: The full range of deseasonalised forward curves that were used for the
implementation of the Kalman Filter.
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Figure 22: The corresponding forward curves that were computed using the pa-
rameters estimated from the Kalman Filter.
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Figure 23: Two plots of the forward curves modelled by the Kalman Filter adjusted
for seasonality, plotted against the market-observed forward curves at the same
point during a relatively low volatility period.

ural gas futures curves, particularly in relatively stable periods, for example the
past hundred trading days.

The futures curves plotted from the Kalman filters, as expected, do not have
any seasonal component. This can now be added back, to finally replicate fully the
market observable futures curves using the extracted seasonal premia,

X̂S(t0, T ) = SP (t0,m(T ))X̂DS(t0, T ).

Figure 23 shows two cases of the futures curves generated by adding back sea-
sonality against the corresponding original market observable futures curve during
a period of relatively low volatility period.

Figure 24 is a similar plot, however taken over a period of relatively high volatil-
ity.

The result is an apparent ability to model the general seasonality. However it
must be noted that the ability of the futures curves to accurately model the market-
observed futures curves during extremely volatile periods (mainly during the mar-
ket crisis of 2008) was particularly poor. However, for the remainder of the period
from 1 January 2002 to 30 June 2014 the model performed adequately.
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Figure 24: Two plots of the forward curves modelled by the Kalman Filter adjusted
for seasonality, plotted against the market-observed forward curves at the same
point during a relatively high volatility period.

6 Hedging

The final test of the effectiveness of the model is its ability to hedge the spread
option under the real-world evolution of the futures curve.

The full time period considered is 9-months of 21 trading days each starting on
11 December 2012 and finishing on 22 September 2013. The data was LME Copper
Futures with one month maturities out to 48 months. A historical profit and loss
simulation was implemented, pricing and hedging the relevant options during this
period, using the model parameters estimated in section 4.

6.1 Historical Profit and Loss

6.1.1 The European Call

Two call options are considered. Option 1 is a 9-month European call on the 12-
month future (3-month future at expiry). Option 2 is a 3-month European call on
the 9-month future (6-month future at expiry). The option is struck at the money:
the value of the LME 12-month and 9-month Copper futures, as on 11 December
2012, respectively.
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Figure 25: Historical profit and loss for a call option on a commodity future under
Schwartz97.

The value of the convenience yield is estimated each day using the Kalman
filter. The value of the spot is then reverse-engineered from the current value of the
underlying future using the analytical equation for the future (Equation (1)). This
ensures that each day’s value of St0 and δt0 is consistent with the current market
price of the underlying future. The results for each option are displayed in Figure
25.

For Option 1, the hedge produces a final loss of capital of approximately 10 per
cent of the initial option price. For Option 2, the hedge produces a final loss of
approximately 1 per cent of the initial option premium. The results for Option 2
are encouraging, as this is well within expected bounds for daily hedge-slippage.
This result would indicate that the model is capturing most of the features of the
underlying future’s dynamics. The larger loss for Option 1 is primarly owing to
several large drops in the option price over short time periods, that occur after
the expiry of Option 2. These drops could be considered to be jumps, which the
Schwartz97 model fails to capture and thus fails to fully hedge.

6.1.2 The Spread Option

Two spread options are considered. Spread Option 1 is a 9-month European call
on the difference between the 16-month and 12-month futures (7-months and 3-
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Figure 26: Historical profit and loss for a spread option on commodity futures
under Schwartz97, using the historical convenience yield volatility.

months respectively at maturity) and Spread Option 2 is a 3-month European call
on the difference between the 18-month and 9-month futures (15-months and 6-
months respectively at maturity.)

The value of δt0 and St0 are determined each day by solving Equation (1) to
simultaneously match the market price of each underlying future.

Figure 26 displays the results under the historical parameter estimation. For
Spread Option 1 the resultant profit is approximately 78 per cent of the initial op-
tion price. For Spread Option 2, the resultant profit is approximately 70 per cent of
the initial option price.

The clear conclusion is that both options are being overpriced. After investiga-
tion, it was determined that the historical volatility of the convenience yield is ap-
proximately five times higher than the realised volatility over the 9-month period
of Spread Option 1 and 10 times higher than the realised volatility over the lifetime
of Spread Option 2. Whenever an option is sold (and hedged) with a much higher
volatility than what is realised, the hedging portfolio will show a large profit.

As a check, the historical profit and loss simulation was re-run using the re-
alised volatility of the convenience yield. The result is displayed in Figure 27. In
this case, for Spread Option 1 the resultant portfolio lost 15 per cent of the initial
option price and for Spread Option 2 the resultant portfolio lost 5 per cent of the
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Figure 27: Historical profit and loss for a spread option on commodity futures
under Schwartz97, using the realised volatility of the convenience yield.

initial premium. This is well within reason considering the previously generated
profit and loss distribution (see Figure 10).

6.2 Conclusion

Although the call options appear to be hedged appropriately using historical pa-
rameter estimates for the volatility of the spot and convenience yield, it is clear
from Figures 26 and 27 that a forward-looking volatility is needed to price and
hedge the spread options.

This is not surprising, as option pricing should always occur with a view to-
wards capturing the true volatility experienced by the option over its lifetime. Var-
ious possible solutions exist to obtaining a forward-looking volatility for the spot
and convenience yield, but unfortunately owing to time constraints these solutions
could not be thoroughly explored.

In conclusion, the implemented framework provides suitable parameter esti-
mates for those for which forward-looking estimates would be insensible (or im-
possible). Barring the need for obtaining forward-looking volatilities, it is possible
under the implemented framework to price and hedge commodity spread options
under the real-world evolution of the futures curve.
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1 Introduction

The credit crisis and the ongoing European sovereign debt crisis have highlighted
the native form of credit risk, namely counterparty risk, valued as the so-called
Credit Valuation Adjustment (CVA). Moreover, as banks themselves have become
risky, counterparty risk must be understood in a bilateral perspective (CVA and
Debt Valuation Adjustment DVA), where the counterparty risk of the two parties
are jointly accounted for in the modelling. In this context the classical assump-
tion of a locally risk-free asset, which is used for financing purposes (lending and
borrowing as needed), is no longer sustainable. This shortcoming raises a related
issue: proper accounting of the funding costs of a position (Funding Valuation Ad-
justment FVA). See Brigo, Morini, and Pallavicini (2013) and Crépey, Bielecki and
Brigo (2014), respectively for a more financial and mathematical perspective, and
the latter for recent counterparty risk references in book form. In addition, since
August 2007, the emergence of systemic counterparty risk has also been recorded.
This type of risk refers to various significant spreads between quantities that were
very similar before, e.g. between OIS rates and LIBOR swap rates of different
tenors. For a variety of so called multi-curve models, see, among others, Kijima,
Tanaka, and Wong (2009), Kenyon (2010), Henrard (2007, 2010), Bianchetti (2010),
Mercurio (2010b, 2010a, 2010c), Fujii, Shimada, and Takahashi (2011, 2010), Moreni
and Pallavicini (2014), Bianchetti and Morini (2013) and Crépey, Grbac, Ngor and
Skovmand (2013). Through its relation with the concept of discounting, this sys-
temic component of counterparty risk has impacted all derivatives markets.

Given its dual regulatory and accounting implications, counterparty risk must
be both “measured” under the statistical probability P and “priced” under a pric-
ing measure Q.Moreover, due to netting clauses (for the good sake of counterparty
credit risk mitigation at the portfolio level), counterparty risk requires consistent
modelling across different asset classes. Because of the optional feature of counter-
party risk (that only bears on the in-the-money side of the position), the modelling
also needs to be dynamic, for which a parsimonious Markov structure is impor-
tant. In view of these elements, an approach that looks particularly appropriate
is based on the modelling of the pricing kernel (see e.g. Rogers (1997), Cochrane
(2005), Flesaker and Hughston (1996), Akahori, Hishida, Teichmann and Tsuchiya
(2014), Akahori and Macrina (2012), Macrina (2014), Brody, Hughston and Macrina
(2008)). Accordingly, this project explores the possible use of such an approach un-
der the form of the so called bA models for dealing with interest rate derivatives
in post-crisis markets, including multi-curve and counterparty risk features. We
note that other recent uses of related models include Cuchiero, Keller-Ressel and
Teichmann (2012), for moment computations in financial applications, and Cheng
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and Tehranchi (2014), motivated by stochastic volatility modelling.
Our report is organised as follows. Section2 situates the bA models in the pric-

ing kernels universe. Section3 deals with the pricing and calibration of swaptions.
Section 4 discusses counterparty risk.

NB: The mathematical parts of this report rely mainly on Crépey et al. (2014)
that had been provided to our team as pre-challenge package. The main contri-
bution of this work are the numerical sections 3 and 4. All the computations were
done in Matlab and we were given access to the code of the related paper Crépey,
Grbac, Ngor and Skovmand (2013). Otherwise, such an implementation and ex-
perimentation work, by us in six days, would not have been possible.

2 From Pricing Kernels to bA Models

We model a financial market by a filtered probability space (Ω,F ,P, {Ft}0≤t≤U )

whereU is a finite time horizon, P denotes the real probability measure, and {Ft}0≤t≤U
is the market filtration. By no arbitrage principle, the price process {StT }0≤t≤T<U
of an asset paying dividend stream {Dt}0≤t≤T<U up until a maturity T satisfies

StT =
1

πt
EP[πTSTT +

∫ T

t
πuDudu|Ft],

where {πt}0≤t≤U is the pricing kernel that needs to be modelled. In Macrina (2014),
the following heat pricing kernel is introduced

πt = f0(t) + f1(t)

∫ U−t

0
E[F (t+ u,Xt+u)|Xt]w(t, u)du,

where (Xt)0≤t≤U is a Markov process generating the market filtration {Ft}0≤t≤U .
Once the pricing kernel is specified, the OIS discount bond price {PtT }0≤t≤T≤U is
determined by the formula

PtT =
1

πt
EP[πT |Ft].

2.1 Bottom-up Risk-Neutral Construction of bA Models

Under suitable specification of the Markov process (Xt) and the functions F (t, x)

and w(t, u), the price processes of the OIS discount bond and of a (non-dividend
paying) asset S are shown to be of the following “bA”-form:

StT =
S0T + b2(T )A

(2)
t

P0t + b1(t)A
(1)
t

, PtT =
P0T + b1(T )A

(1)
t

P0t + b1(t)A
(1)
t

,
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where the bi(t) are nonnegative nonincreasing functions and where the A
(i)
t =

Ai(t,X
(i)
t ) are martingales, not necessarily under P, but rather under an equivalent

auxiliary measure Mt, where Xt = (X
(1)
t , X

(2)
t ) is the market factor. In this section

we present a self-contained bottom up, risk-neutral construction of bA models. In
this perspective, we model the short risk-free rate rt and the corresponding risk-
neutral discount factor Dt as

rt = − Ṗ0t + ḃ1(t)A
(1)
t

P0t + b1(t)A
(1)
t

, Dt = e−
∫ t
0 rsds, (2.1)

where A(1) is an Ft-martingale starting from 0 under a probability measure M,
related to a risk-neutral probability Q via

dQ
dM
|Ft = ν

(1)
t , 0 ≤ t ≤ T, where ν(1)t = E

(∫ .

0

b1(t)dA
(1)
t

c1(t) + b1(t)A
(1)
t−

)
.

As established in Crépey et al. (2014, Lemma 2.2), the M supermartingale h = Dν(1)

satisfies
ht = P0t + b1(t)A

(1)
t , t ≥ 0. (2.2)

The OIS bond price process satisfies

PtT =
1

Dt
EQ[DT |Ft] =

1

Dtν
(1)
t

EM[DT ν
(1)
T |Ft] =

1

ht
EM[hT |Ft] =

P0T + b1(T )A
(1)
t

P0t + b1(t)A
(1)
t

.

(2.3)
Hence, the process h plays the role of the pricing kernel of the OIS market under
the measure M. Similarly, the Libor M kernel LS,T can be modelled in terms of
another M-martingale A(2) as

LS,T =
L(0;S, T ) + b2(S, T )A

(2)
S

P0S + b1(S)A
(1)
S

, (2.4)

which results in a (forward) Libor process

L(t;Ti−1, Ti) :=
1

ht
EM
t [hTiLTi−1,Ti ]

equal, for t ≤ Ti−1, to

L(t;Ti−1, Ti) = EM
t

[
EM
Ti−1

[hTi ]LTi−1,Ti

ht

]
=
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t

P0t + b1(t)A
(2)
t

. (2.5)

The above results in a HJM setup where, in the spirit of Heath, Jarrow and Mor-
ton Heath, Jarrow and Morton (1992), the initial term structuresP0Ti andL(0;Ti−1, Ti)

are fitted by construction.
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3 Swaptions Pricing and Calibration

The next questions are the pricing of and calibration to Libor derivatives, especially
swaptions that are quite liquidly traded on the market.

3.1 Pricing

First, an interest rate swap (see e.g. Brigo and Mercurio (2006)) is an agreement
between two counterparties, where one stream of future interest payments is ex-
changed for another based on a specified nominal amount N . A popular case of
interest rate swaps is the exchange of a fixed rate (contractual swap spread) against
the LIBOR rate at the end of successive time intervals (Ti−1, Ti) of length δ. Such
a swap can also be viewed as a collection of n forward rate agreements. The swap
price Swt at time t ≤ T0 is given by the following model-free formula:

Swt =
n∑
i=1

Nδ[KPtTi − L(t;Ti−1, Ti)].

Next, a swaption is an option between two parties to enter the above swap at
the expiry Tk (date of maturity of the option). Its price at time t ≤ Tk is given by
the following M formula:

SwntTk =
1

ht
EM[hTk(SwTk)+|Ft]

=
1

ht
EM

[
hTk

(
n∑

i=K+1

Nδ[KPTkTi − L(Tk;Ti−1, Ti)]

)+ ∣∣∣Ft] ,
where PTkTi and L(Tk;Ti−1, Ti) are determined by (2.3) and (2.5). Based on this
formula, swaption prices at time t = 0 can be efficiently priced by various numeri-
cal schemes, including (depending on the specification of the driving martingales):
Fourier schemes based on Eberlein and Raible (1999, Theorem 2.2), Hurd and Zhou
(2010, Theorem 1) or Caldana and Fusai (2013, Proposition 1) (possibly also in-
volving the linear boundary approximation of Singleton and Umantsev (2002)) or
Monte Carlo schemes, as well as the Jamshidian schemes (see Jamshidian (1996))
studied by Team 3 in their project. In our computations we used Fourier and Monte
Carlo schemes.

Calibration

As done by Crépey, Grbac, Ngor and Skovmand (2013), we used the following EUR
market Bloomberg data of January 4, 2011 to calibrate our model: Eonia, 3m Euri-
bor and 6m Euribor initial term structures on the one hand (fitted by construction
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Figure 1: Initial term structures. Left: Zero coupon rates. Right: Discrete forward
rates.
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in our HJM setup, see Fig. 1), 3m and 6m tenor Libor swaptions on the other hand.
Since there are no liquid OIS derivative data available in the market today, we sim-
ply used deterministic OIS rates rt, i.e. A(1) = 0 (hence, b1 plays no role either).
The calibration of the residual model ingredients b2 and A(2) is divided into two
phases.

1. In the first phase, we calibrate the non-maturity/tenor dependent parameters
(parameters of the driving martingales A(1), A(2)) to the smile of the 9y × 1y

swaption with (most liquid) tenor δ = 3m. The market smile corresponds
to a vector of strikes [−200,−100,−50,−25, 0, 25, 50, 100, 200] bps around the
underlying swap spread. This phase also gives us the values of b2(9, 9.25),
b2(9.25, 9.5), b2(9.5, 9.75) and b2(9.75, 10), which we assume to be equal for
the calibration efficiency.

2. In the second phase, in order to calibrate the remaining values of b2, we use
at-the-money swaptions data with tenor δ = 3m and 6m, termination Tn =10
years and expiries Tk ranging from 1 to 9 years.

3.2 Lognormal Calibration

As a first example of the market factor, we assume that A(2) has the form

A
(2)
t = exp

(
a2X

(2)
t −

1

2
a22t

)
, i = 1, 2,
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where (X
(2)
t ) is a standard Brownian motion. Hence, in the first phase, we calibrate

the parameter a2 and b = b2(9, 9.25) = b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10).
Starting from the initial values

a2 = 0.5, b2 = 0.03,

a nonlinear least squares optimisation1 of the distance between the swaption mar-
ket and model implied smile resulted in the following parameters (see Fig. 2-4):

a2 = 0.0544, b2 = 0.1083.

Figure 2: Lognormal calibration. Initial versus calibrated fit to market data
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3.3 exp-NIG Calibration

With the above Brownian driven market factor A(2), we were able to fit the level of
the volatility smile but the model implied skew is quite different from the market
skew. To overcome this, we now use a richer family of Lévy processes, namely nor-
mal inverse Gaussian (NIG) processes (see e.g. Cont and Tankov (2003)). The pa-
rameters that need to be calibrated at the first phase are ν, θ, σ and b = b2(9, 9.25) =

b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10). The initial values are

b2 = 0.03, ν = −0.05, θ = −1.1, σ = 0.8.

After the optimisation, we obtain (see Fig. 5-7):

b2 = 0.0426, ν = 0.2491, θ = −0.0244, σ = 0.1603.

1Using the Matlab function “lsqnonlin”.
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Figure 3: Lognormal calibration. (Left) Fit to ATM swaption implied volatility term
structures. (Right) Calibrated values of the b2 parameters. (Top) δ = 3m. (Bottom)
δ = 6m.
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4 Counterparty Risk

So far we focused on so called clean computations, ignoring counterparty risk and
funding costs in excess over the risk-free rate. In reality, one or both counterparties
in the contract may default, so different adjustments need to be computed to ac-
count for counterparty risk and the related excess funding costs. In this section this
is illustrated in the case of a basis swap, a typical multicurve product consisting in
the exchange of two streams of floating payment based on a nominal N , or more
generally, one counterparty pays a floating leg against another floating leg plus a
fixed leg. Note that in the classical one-curve setup the time-t value of such a swap
is zero. Since the crisis, markets quote positive basis swap spreads that have to be

9



Figure 4: Lognormal calibration. Histograms based on 105 scenarios of
the calibrated model implied L9y(9y, 9.25y) (yellow), L9y(9.25y, 9.5y) (blue),
L9y(9.5y, 9.75y) (red) and L9y(9.75y, 10y) (turquoise).
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Figure 5: exp-NIG calibration. Initial versus calibrated fit to market data

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Initial values smile fit

im
v
o
l

Strike

 

 

Market vol

Calibrated vol

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Calibrated smile fit

im
v
o
l

Strike

 

 

Market vol

Calibrated vol

10



Figure 6: exp-NIG calibration. (Left) Fit to ATM swaption implied volatility term
structures. (Right) Calibrated values of the b2 parameters. (Top) δ = 3m. (Bottom)
δ = 6m.
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added to the smaller tenor leg.

4.1 Exposures

First, we use the exp-NIG calibrated parameters to study the counterparty risk ex-
posure (price process with mean and quantiles) of a basis swap. We consider a
10-year length basis swap exchanging LIBOR 6m tenor payments against LIBOR
3m tenor payments plus a fixed spread. The two streams start and end at the same
points T0 = T 1

0 = T 2
0 , T = T 1

n1
= T 2

n2
. The time-t value of the basis swap with
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Figure 7: exp-NIG calibration. Histograms based on 105 scenarios of the calibrated
model impliedL9y(9y, 9.25y) (yellow),L9y(9.25y, 9.5y) (blue),L9y(9.5y, 9.75y) (red)
and L9y(9.75y, 10y) (turquoise).
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spread K is given, for t ≤ T0, by

BSt = N

 n1∑
i=1

δ6mi L(t;T 1
i−1, T

1
i )−

n2∑
j=1

δ3mj (L(t;T 2
j−1, T

2
j ) +KBt(T

2
j ))

 .

The time-t value after the initiation, i.e. for T0 ≤ t < T , is given by

BSt = N
(
δ6mit L(T 1

it−1;T
1
it−1, T

1
it) +

n1∑
i=it+1

δ6mi L(t;T 1
i−1, T

1
i )

−δ3mjt (L(T 2
jt−1;T

2
jt−1, T

2
jt) + Pt(T

2
jt))−

n2∑
j=jt+1

δ3mj (L(t;T 2
j−1, T

2
j ) +KBt(T

2
j ))
)
,

where T 1
it

, respectively T 2
jt

denotes the smallest T 1
i , respectively T 2

i , strictly greater
than t. The spread K is chosen to be the fair basis swap spread at T0 so that the
basis swap has nil value at inception, i.e.

K =

∑n1
i=1 δ

6m
i L(T0;T

1
i−1, T

1
i )−

∑n2
j=1 δ

3m
j L(T0;T

2
j−1, T

2
j )∑n2

j=1 δ
3m
j BT0(T 2

j )
.

We illustrate numerically our methodology on a basis swap with notional N =

100 and maturity T = 10y, in the calibrated model of Sect. 3.3. The above formula
yields the time-0 basis swap spread K = 15bps, which is added to the 3m leg so
that the basis swap is incepted at par. The time 0 value of both legs is then equal to
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Figure 8: Exposure of a basis swap (price process with mean and quantiles) in the
exp-NIG calibrated model.
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28e89. The resulting exposure is displayed in Fig. 8. Assuming that under the real
world probability P, the market factor A(2) (recall A(1) = 0) has the law of a Lévy
random bridge generated by the NIG process, the M-exposure can be converted
into P-exposure by using the change of measure weights defined in Macrina (2014,
Proposition 5.1)(see Fig. 9 and Hull, Sokol and White (2014)).

4.2 Credit Model

As we shall see below, the above exposures can be used to effectively compute CVA
(credit valuation adjustment), DVA (debit valuation adjustment) and LVA (liquid-
ity funding valuation adjustment). For such computations we shall consider the
basic reduced-form approach of Crépey (2012) in which the first default time of a
party τ = τb ∧ τc (where b respectively refer to the bank and its counterparty) is
modeled as a Cox time

τ = inf

{
t > 0

∣∣ exp

(
−
∫ t

0
γsds

)
≥ E

}
, (4.6)
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Figure 9: Exposure of a basis swap (price process with mean and quantiles) in the
exp-NIG-RB calibrated model.
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where {γt} is an {Ft}-adapted intensity process and E is an independent exponen-
tially distributed random variable. For this purpose, we can extend with credit the
bottom-up approach of Sect. 2.1 as explained in Crépey et al. (2014, Sect.4). The
reference (or market) filtration is defined as Ft = X (0)

t ∨ X (1,2)
t , t ≥ 0, where {X (0)

t }
and {X (1,2)

t } are the usual-made filtrations of independent M Markov processes. In
addition to the risk-free rate rt modeled by (2.1) and the LIBOR rates modeled by
(2.4), the first-to-default intensity of the two counterparties is modeled as

γt = − ċ0(t) + ḃ0(t)A
(0)
t

c0(t) + b0(t)A
(0)
t

,

where the b0 and c0 are nonnegative nonincreasing functions of time with c0(0) = 1

and where A(0) (resp. A(1), A(2)) is an {X (0)
t } (resp. {X (1,2)

t }) adapted nonnegative
{Ft} martingale, hence an {X (0)

t } (resp. {X (1)
t } and {X (2)

t }) martingale, starting
from 0. In addition, we assume that the pricing measure Q satisfies

dQ
dM

∣∣∣
Ft

= ν
(0)
t ν

(1)
t 0 ≤ t ≤ T,
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where

ν(0) = E

(∫ ·
0

b0(t)dA
(0)
t

c0(t) + b0(t)A
(0)
t−

)
, ν(1) = E

(∫ ·
0

b1(t)dA
(1)
t

c1(t) + b1(t)A
(0)
t−

)
.

Denoting by Zt = e−
∫ t
0 γsds the Azéma supermartingale of τ, the credit analog of

(2.2) yields the M supermartingale k = Zν(0) (couterparty risk M kernel) explicitly
given, for T ≥ 0, by

kT = c0(T ) + b0(T )A
(0)
T .

In the end, the primitives of the multi-curve Libor model with counterparty risk
(recalling also Sect. 2.1) are the couterparty risk kernel kT , the OIS kernel hT and
the Libor kernel LS,T (kernels under M, the related P pricing kernels being given
as M times the latter, e.g. π = Mh).

4.3 CVA

In the simplest case of unilateral counterparty risk without collateralisation, the
time-0 CVA on interest rate derivatives with mark-to-market Pt is (assuming zero
recovery rate of the counterparty)

CV A0 = EQ
∫ T

0
P+
s DsZsγsds =

∫ T

0
EQ(DsP

+
s )EQ(Zsγs)ds,

where

EQ(Zsγs) = −∂sEQ(Zs) = −∂sEM(ν(0)s Zs) = −∂sEM(ks) = −ċ0(s),

and
EQ(DsP

+
s ) = EM(hsP

+
s ).

Hence,

CV A0 = −
∫ T

0
EM(hsP

+
s )ċ0(s)ds,

In the case of an interest-rate swap, EM(hsP
+
s ) corresponds to the mark-to-

market of the swaption with expiry s on the swap, which can be recovered ana-
lytically if available in the model specification at hand (see section 3). In general,
it can be retrieved numerically by simulation (see Sect. 4.1). For instance, in case
of a counterparty with a constant γ = 100bps, we obtain for the above basis swap
CV A0 = 0.1626.
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4.4 LVA

To simplify the LVA computation, people in the industry often neglect the involved
nonlinearity (see Crépey, Bielecki and Brigo (2014)), working with a LVA coefficient
exogenously proxied by

lvat = b̄tΓ
+
t − btΓ

−
t + λ̃t

(
Pt − Γt

)+ − λt(Pt − Γt
)−
, (4.7)

where

• Γt = Γ+
t − Γ−t , where Γ+

t (respectively Γ−t ) represents the value of the col-
lateral posted by the counterparty to the bank (respectively by the bank to
the counterparty), e.g. Γt = 0 (used henceforth unless otherwise stated) or
Γt = Pt,

• b̄t and bt are the spreads over the OIS (risk-free) short rate rt for the remuner-
ation of the collateral Γ+

t and Γ−t posted by the counterparty and the bank to
each other,

• λt (respectively λ̃t) is the liquidity funding spread over the OIS short rate rt
corresponding to the remuneration of the external funding loan (respectively
debt) of the bank. By liquidity funding spreads we mean that these are free
from credit risk.

The data Γt, bt and b̄t are specified in a credit support annex (CSA) contracted be-
tween the two parties. The time 0 linearised LVA resulting from (4.7) is given as

LV A0 = EQ
∫ T

0
DsZslvasds =

∫ T

0
EQ(Dslvas)EQ(Zs)ds

where
EQ(Dslvas) = EM(hslvas), EQ(Zs) = EM(ks) = c0(s).

Hence,

LV A0 =

∫ T

0
EM(hslvas(0))c0(s)ds.

In case of no collateralisation, Γs = 0, we have

lvas(0) = λ̃sP
+
s − λsP−s .

In case of continuous collateration, Γs = Ps, the formula becomes

lvas(0) = b̄sP
+
s − bsP−s .
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Hence, in each of these cases, as for the CVA, the LVA exposure in controlled by
the clean process P, but for “scaling parameters” depending on the case under
consideration. For instance, for λ̃ = 200bps and λ = 0, and still with a constant
γ = 100bps so that c0(t) = e−γt, the LVA on basis swap (if non-collateralised) is
0.0325.
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Crépey, S., T. R. Bielecki, and D. Brigo. Counterparty Risk and Funding–A Tale of
Two Puzzles. Chapman and Hall/CRC Financial Mathematics Series (2014).
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1 Introduction

This paper investigates the use of a pricing kernel model to price a multi-curve
derivative, specifically a swaption written on LIBOR. We use the weighted heat
kernel framework outlined by Macrina[13] and Crepey et al. [7]. Direct modelling
of the pricing kernel is one approach to interest rate modelling, and can be ex-
tended to more general asset pricing. In particular, it can be used to tackle a multi-
curve problem, where there is a risky rate in addition to the risk-free rate. This
does not involve accounting for counterparty risk in the Credit Value Adjustment
(CVA) sense, but only for the spread over the risk-free rate.

In section 2, background regarding multi-curve modelling and the pricing ker-
nel approach is developed. Section 3 introduces the weighted heat kernel model
from [13], both for interest rate modelling and general asset pricing. This model
uses an auxiliary probability measure which is introduced and expounded in sec-
tion 4 – we add a small note to [13]. Section 5 specialises the model to a LIBOR
swaption, following [7] and applying the findings of section 4. Section 6 tackles the
evaluation of the derived swaption expression, using numerical integration. Sec-
tion 7 looks at the significant challenge of calibrating the swaption model. Section
8 concludes the paper.

2 Background

2.1 Multi-curve models

The classical theory of derivative pricing laid down by Black-Scholes [3] is rela-
tively straightforward – a hedging argument allows us to discount the expectation
of future cash flows under the risk-neutral measure using the assumed-constant
risk-free rate. This theory was extended to interest rate derivatives in the Black [4]
model, where the risk-free rate is also assumed to be constant and deterministic.
The Black model for the pricing of interest rate derivatives can be extended to re-
lax the assumption of a constant risk-free rate, and instead assume that both the
underlying and the risk-free interest rate are random processes.

‘Multi-curve’ models attempt to model both the interest rate underlying a deriva-
tive, as well as the discounting interest rate. The motivation for these models is the
idea that a widely applicable risk-free rate is no longer a tenable assumption - the
2008 financial crisis has shown that large corporations, banks and even govern-
ments, which were thought of as being ‘too big to fail’, are prone to default, which
means that a truly risk-free interest rate does not exist. It is common for practi-
tioners and academics to use the overnight indexed swap (OIS) rate as a suitable
proxy for the theoretical risk-free rate, because the event of an ‘overnight’ default
of a institution is relatively unlikely. The model contained in this paper holds onto
this notion, and our pricing kernel (a notion explained below), is related to the OIS
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interest rate. We will proceed to tackle derivatives written on LIBOR, the ‘London
Interbank Offered Rate’. This rate is the average interest rate estimated by leading
banks in London that they would be charged if borrowing from other banks. Before
the financial crisis, the difference between the OIS rate and LIBOR was negligible,
however, since 2007 a significant spread has been observed between OIS and LI-
BOR (see figure 1). The spread between OIS and LIBOR indicates that banks are

Figure 1: LIBOR-OIS spread for different tenors. Source: Federal Reserve Bank of
St. Louis.

not risk-free, which requires the pricing of derivatives to take into account the risk
of both parties. In the model introduced in this paper, we will postulate a model
under the statistical probability measure P, and will proceed, in effect, to price the
derivative under a pricing measure Q. We will also postulate an auxiliary measure
M under which the OIS rate, LIBOR and counterparty risk become tractable and
independent.

2.2 Pricing kernels

There are many approaches to interest rate modelling, and a treatise such as Brigo
& Mercurio [5] can be consulted to see the landscape of possible approaches. While
specifying a diffusion for the short rate of interest (such as in the pre-eminent Hull
& White [10]) is popular, here the lesser known approach of directly specifying a
model for the pricing kernel is briefly introduced. While a rigorous axiomisation is
quite involved (see, for example, [9]), a pricing kernel is a fairly intuitive mathe-
matical object: the pricing kernel is a positive process {πt} that when multiplied by
a tradeable non-dividend-paying asset {St} results in a P-martingale. Writing {Ft}
for the relevant market filtration, for an established pricing kernel we therefore
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have

πtSt = EP[πTST |Ft]. (1)

The pricing kernel is also referred to a as stochastic discount factor or (mislead-
ingly in the authors’ opinion) the state price density. Intuitively, the pricing ker-
nel models market time-value-of-money discounting and, simultaneously, market-
aggregate risk preferences. Accordingly, a model for {πt} immediately gives rise
to an interest-rate model; we can specialise the above equation to the case of a dis-
count bond, for which, at time t with maturity T , we write PtT . We have

πtPtT = EP[πTPTT |Ft] = EP[πT |Ft]

as the discount bond is pulled to par. It is advantageous to specify a model for {πt}
of the form πt = π(t,Xt) where {Xt} is a ({Ft},P)-Markov process that generates
the filtration. We can then write

PtT =
1

πt
EP[πT |Xt] (2)

=: P (t, T,Xt).

An examination of equation (2) reveals the key advantage of a pricing kernel ap-
proach to interest rate modelling: 0 ≤ PtT ≤ 1 for all t and T if and only if {πt}
is a P-supermartingale (modulo integrability concerns). This is a fairly straight-
forward and transparent mechanism to exclude negative rates (and therefore to
exclude ‘under-the-mattress arbitrage’, which is borrowing at a negative rate and
‘lending’ at the greater rate of zero) – an issue that plagues diffusion models for the
short rate. Also, the use of a Markov model is advantageous, as only the Markov
processes need to be tracked in order to track the bond system (this puts the bond
model into the Hunt, Kennedy & Pelsser [11] form – see their paper for a thorough
discussion of this issue).

If we suppose that {Xt} is an Itô process (so that it is possible to find the stochas-
tic differential equations of the bond system, in principle at least – it could be diffi-
cult to find P (·, ·, ·) ) and assume relevant differentiability (i.e. assume the standard
definitions for the instantaneous forward rates ftT and short rate rt exist), we can
see how the model for πt has given rise to a complete interest rate model:

ftT =− ∂T ln(PtT )

rt =ftt

dPtT /PtT =µtTdt+ σtTdW
P
t

dPtT /PtT =(rt + λtσtT )dt+ σtTdW
P
t ,

as the P-dynamics have forced the market-price of W P-risk λt = µtT−rt
σtT

, where we
use the fact that λt does not depend on T – a classic result.
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A specification of a pricing kernel model is essentially the specification of a
(suitably flexible) supermartingale, giving rise to a hopefully-tractable bond and
interest model. Below we direct the reader to a few important references in the
pricing kernel model literature. In addition to exploiting the supermartingality-
positivity link, these pricing kernel models can give rise to tractable and useful
models. It will be shown in the next section how the approach can be extended to
general asset pricing in a natural way, and this paper will study the use of a pricing
kernel approach to a multi-curve problem – the pricing kernel will model the risk-
free rate (for which the OIS rate is a proxy) and the extended model will take care
of the LIBOR.

The first pricing kernel model in the literature can be seen in [6], and building
on this work Rogers [14] specified a canonical pricing kernel model of the form

πt := EP
[ ∫ ∞

t
e−αsg(Xs)ds

∣∣∣∣Xt

]
for a time-homogeneous Markov process {Xt}, a positive and integrable function g
and a positive real number α. This specification can easily be shown to be a super-
martingale and can recover a remarkable variety of non-negative interest rate mod-
els, especially when one allows {Xt} to be multi-dimensional. Notice how positive
rates are guaranteed while we still have flexibility over the driving Markov process
{Xt}. In a short rate diffusion, you can guarantee positivity only by restricting the
driver (for example using a log-normal diffusion).

Another noteworthy pricing kernel model by [8], expounded in [15] and [12],
which was initially a direct model of the bond price family, and was shown to come
from a pricing kernel supermartingale in a natural way. In the next section we will
present the pricing kernel specification of Macrina [13], which will be used in the
remainder of this work. This specification built upon [2] and [1].

3 Weighted heat kernel model

In this section we present the [13] pricing kernel model that uses weighted heat
kernels. This is the basis for our approach to pricing LIBOR swaptions.

As a special case of the general πt = π(t,Xt) paradigm, the following pricing
kernel form is postulated:

πt = g1(t) + f1(t)

∫ U−t

0
EP[F1(t+ u,Xt+u)|Xt]w1(t, u)du,

where {Xt} is an ({Ft},P)-Markov process that generates the filtration
Ft = σ({Xs}0≤s≤t). The model requires that g1(t) and f1(t) be deterministic, non-
increasing, positive functions for t ≤ U , where U is some point on the strictly
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positive real line. The function F1(t, x) is chosen to be positive, such that the prod-
uct of the conditional expectation of F1(t, x) and the weight given by w1(t, u) is
integrable. It is required that w1(t, u− s) ≤ w1(t− s, u) for s ≤ min(t, u).

As a result of the structure of the πt specification and the requirements on g1(t),
f1(t) and F1(t, x), it is easy to show that {πt} is a P-supermartingale (the proof in
[2] can be easily adapted). We therefore have a positive interest rate model.

Because no risky rates have been introduced (not yet - notice the subscripts of
1), this pricing kernel, used as the stochastic discounting term, can be thought of as
the OIS-related model.

To see the model at the level of bonds, we put πt into the form of equation (2).
First it is useful to define

Y
(1)
tT :=

∫ U−t

T−t
EP[F1(t+ u,Xt+u)|Xt]w1(T, u− T + t)du.

We then have

πt = g1(t) + f1(t)Y
(1)
tt .

Calibration to the initial term structure is done with g1. To see this, consider

P0t =
1

π0
EP[πt|X0]

=
EP[g1(t) + f1(t)Y

(1)
tt |X0]

π0

=
g1(t) + f1(t)Y

(1)
0t

π0
,

where the last step uses the Tower property and a change of variables in the integral
Y (1). We can solve for g1(t) and substitute back into πt, which is now automatically
calibrated to the initial term structure,

πt = π0(P0t +
f1(T )

π0
(Y

(1)
tt − Y

(1)
0t )).

Calibration freedom for derivative data resides in f1. We can now see a general
bond expression given by

PtT =
EP[πT |Xt]

πt

=
EP[P0T + f1(T )

π0
(Y

(1)
TT − Y

(1)
0T )|Xt]

P0t +
f1(T )
π0

(Y
(1)
tt − Y

(1)
0t )

=

P0T + f1(T )
π0

(
Y

(1)
tT − Y

(1)
0T

)
P0t +

f1(t)
π0

(
Y

(1)
tt − Y

(1)
0t

) ,
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where again we have used the Tower property and a change of variables in Y (1).
We are now in a position to write expressions for interest-rate derivatives with

equation (1), as we have an expression for the bond family and the kernel. In [13],
one can see how elegant simplifications occur here.

Certain choices for F1 and w1 allow Y (1) to be calculated in closed-form and the
above to become

PtT =
P0T + b1(T )A

(1)
t

P0t + b1(t)A
(1)
t

,

where A(1)
t = A(1)(t,Xt) is a P-martingale. To show this, one would need to ma-

nipulate the integral Y (1) and use the change of variables alluded to above – we
refer the reader to section 3 of [13], in which one can also see different choices of
functions that can be integrated analytically. This is a very useful form as expecta-
tions in derivative expressions can be taken with respect to the martingale A(1)

t in
a remarkably neat way. The class of models that can be written in this form will be
referred to as ‘bA’ models.

Next we extend this framework to price general assets. These generalised assets
will be specialised to LIBOR in section 5. We will use assets StT with a finite time
horizon T ≤ U . The natural extension of the above framework is to model the
martingale mtT = πtStT by adjusting our supermartingale machinery

mtT = g2(T ) + f2(T )Y
(2)
tT ,

where g2(T ) and f2(T ) are deterministic, and Y
(2)
tT is defined in an analogous way

to Y
(1)
tT , with new deterministic functions F2(t, x) and w2(t, u). It is required for

F2(t, x) to be measurable, and that the product of the conditional expectation of
F2(t, x) and w2(t, u) be integrable. We also require w2(t, u − s) = w2(t − s, u) for
s ≤ min(t, u). It can then be shown that mtT is a P-martingale (see [13], proposition
6.1). Repeating the steps above, we have an asset price model given by

StT =

S0T + f2(T )
π0

(
Y

(2)
tT − Y

(2)
0T

)
P0t +

f1(t)
π0

(
Y

(1)
tt − Y

(1)
0t

) , (3)

which is calibrated to the initial term structure and asset price. We will consider
cases where equation (3) can be expressed in bA form,

StT =
S0T + b2(T )A

(2)
t

P0t + b1(t)A
(1)
t

, (4)

where both A
(1)
t and A

(2)
t are P-martingales. In section 5, this framework will be

specialised to a LIBOR swaption.
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4 Auxiliary measure M

This section can be considered a note to [13], which makes extensive use of an
auxiliary measure M to make the model more tractable in light of the fact that
the conditional expectation in Y (1) and Y (2) might be difficult to take under P.
Following [13], we define

Y
M(1)
tT :=

∫ U−t

T−t
EM[F1(t+ u,Xt+u)|Xt]w1(T, u− T + t)du, (5)

and Y
M(2)
tT in the same way. {Xt} could be specified as a Lévy random bridge

under P, and then we could identify the measure M under which {Xt} behaves
like a Brownian bridge or Brownian motion, making the conditional expectation
in Y much easier to compute. Focusing on the bA form, the pricing kernel is then
modelled as

πt =
π0
M0

(P0t +
f1(T )

π0
(Y

M(1)
tt − Y M(1)

0t ))Mt

=
π0
M0

[P0t + b1(t)A
(1)
t ]Mt, (6)

where Mt is the change-of-measure density dM
dP |Ft . The machinery of the previous

section is used to produce an M- (rather than P-) supermartingale, and the change-
of-measure density ensures that πt is a P-supermartingale, as we require. A(1)

t =
A(1)(t,Xt) is an M-martingale, and Mt will allow all derivative expectations to be
taken under M, and over the M-martingale A(1)

t . Simple steps and a cancellation
allows us to recover the form

PtT =
P0T + b1(T )A

(1)
t

P0t + b1(t)A
(1)
t

. (7)

This auxiliary measure extension is also applicable to the general asset framework.
We set

mtT =
Mt

M0
(g2(T ) + f2(T )Y

M(2)
tT )

=
π0
M0

(S0T + b2(T )A
(2)
t )Mt, (8)

where Mt ensures that we get a P-martingale from the M-martingale inside the
brackets. We can recover the form

StT =
S0T + b2(T )A

(2)
t

P0t + b1(t)A
(1)
t

. (9)

9



Up to here we have followed [13], but now we clarify the effect of using the auxil-
iary measure. It is crucial to have a clear understanding of the kernel specification
in equation (6). This is clearly a generalisation of the case that does not appeal to
an auxiliary measure – we can see this by setting P = M and Mt = 1 for all t and
recovering the model outlined in section 3. However, it is not a generalisation in
the sense that the modeller can choose any convenient auxiliary measure without
affecting the model. We claim that the choice of the measure M is in fact a mod-
elling ingredient, just like the driver {Xt} and the functions F1 and F2. In other
words, once the model has been fully specified under P, for example {Xt} being a
particular random bridge, two modellers that use different auxiliary measures (one
under which the random bridge behaves like a Brownian bridge, one under which
it behaves like a Brownian motion, say), will get different models.

To see this, suppose that all the modelling ingredients are specified except the
auxiliary measure, which, below, we view as generic. The kernel is then given by

πt =
Mt

M0
[g1(t) + f1(t)

∫ U−t

0
EM[F1(t+ u,Xt+u)|Xt]w1(t, u)du].

One can try to get this back to a form that does not refer to M – this would demon-
strate that the choice of the measure is not integral to the model. However, we
get

πt =
Mt

M0
[g1(t) + f1(t)

∫ U−t

0
EM[F1(t+ u,Xt+u)|Xt]w1(t, u)du]

=
Mt

M0
EM[g1(t) + f1(t)

∫ U−t

0
F1(t+ u,Xt+u)w1(t, u)du|Xt]

=
1

M0
EP[MU (g1(t) + f1(t)

∫ U−t

0
F1(t+ u,Xt+u)w1(t, u)du|Xt)]

=
1

M0
[Mtg1(t) + f1(t)

∫ U−t

0
EP[MUF1(t+ u,Xt+u)|Xt]w1(t, u)du

=:
1

M0
[Mtg1(t) + f1(t)

∫ U−t

0
EP[F̃M

1 (t+ u,Xt+u)|Xt]w1(t, u)du.

TheMU term appears above because the terms in the expectation areFU -measureable.
These steps show that one is unable to get back to the specification that does not
involve the auxiliary measure. Moreover, we can see exactly how the choice of M
changes the model – it modifies the function F . The effect on the first term is not
important, as it will disappear under P-expectation.

This has a few implications. Firstly, when reading the specification equation (6)
from [13], it is unclear whether this is a definition or a result from the basic model.
We can now answer definitively: it is a definition – specifically, it is a definition
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of a more general model that preserves the essential property of πt (namely, P-
supermartingality). If it were a result rather than a definition, we would be able to
recover the specification under P for any choice of M. This is not the case – instead
the function F is modified by the choice of the measure.

This means that one can vary the choice of the measure and experiment with the
model, just as one can vary the choice of the function F . Below, we will do exactly
that – the Brownian bridge and Brownian motion measure will be compared.

One last comment here can be made regarding equations (7) and (9). The Mt

terms have cancelled in the rational form (it is possible to use different measures
for the OIS and the asset model and not get this cancellation, but we have not
explored this). It is interesting to note that if we make a change to {Xt} under P,
for example change the terminal distribution of the random bridge, it will not show
up in equations (7) and (9) (and it will not affect derivative expressions, as we will
see below). It will only affect the P-dynamics of PtT and StT , as they are functions
of {Xt}.

5 Application to swaption pricing

This section will apply the developed framework to a multi-curve context, and we
will specialise to the pricing of swaptions – the original problem of this work. This
follows [7]. The price process underlying the swaption will be the LIBOR, and the
pricing kernel will relate to the OIS rate. L(Ti;Ti−1, Ti) is used to denote LIBOR
for the period from Ti−1 to Ti, which is revealed at Ti−1 and is therefore FTi−1-
measurable, and gives rise to the time Ti cashflow in a forward rate agreement
(FRA) with fixed rate K,

HTi = δi(K − L(Ti;Ti−1, Ti)),

where δi = Ti − Ti−1 and the notional is set to one. The FRA process is then given
by

HtTi =
1

πt
EP[πTiHTi |Xt]

=δi(KPtTi − L(t;Ti−1, Ti)),

where the LIBOR process is defined as

L(t;Ti−1, Ti) =
1

πt
EP[πTiL(Ti;Ti−1, Ti)|Xt].

Even though the LIBOR is not tradeable, this definition is appropriate because LI-
BOR is synthetically tradeable through the FRA and speaks to the time t forward
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LIBOR rate for the period Ti−1 to Ti. [7] uses the asset framework developed above
to model L(Ti;Ti−1, Ti):

L(Ti;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
Ti−1

P0Ti + b1(Ti)A
(1)
Ti−1

.

The indexing is slightly delicate – heuristically, the martingale subscripts arise from
the FTi−1-measurability of the rate; the Ti subscript of the OIS process arise from
the fact that the cashflow is made at Ti and the double argument of b2 is necessary
to keep track of the beginning and end of the FRA.

Note that A(1) and A(2) are M-martingales. To recapitulate the message of sec-
tion 4: even though we cannot see the measure M in the L(Ti;Ti−1, Ti) model, it
will affect the functional form of A(1)

t = A(1)(·, ·) and A(2)
t = A(2)(·, ·), and we need

consistency between these forms and the measure in the expectation.
Applying the definition of L(t;Ti−1, Ti), or by analogy to the general asset pric-

ing model outlined in section 3, we have

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t

P0t + b1(t)A
(1)
t

.

A swap at time t is the sum of n forward rate agreements (FRAs) over various Ti,

Swt =

n∑
i=1

HtTi =

n∑
i=1

δi

[
KPtTi − L(t;Ti−1, Ti)

]
.

Using the developed framework, the price of a receiver swaption (as our FRA re-
ceives the fixed leg) at time t with maturity coinciding with the first reset date, T0,
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of the underlying swap is given by

SwntT0 =
1

πt
EP
[
πT0

(
SwT0

)+∣∣∣∣Xt

]
=

1

πt
EP

[
πT0

(
n∑
i=1

δi

[
KPT0Ti − L(T0;Ti−1, Ti)

])+∣∣∣∣Xt

]

=
1

πt
EP

[(
n∑
i=1

δi

[
KEP[πTi |XT0 ]− EP[πTiL(Ti;Ti−1, Ti)|XT0 ]

])+∣∣∣∣Xt

]

=
1

P0t + b1(t)A
(1)
t

EM

[(
n∑
i=1

δi

[
KEM[P0Ti + b1(Ti)A

(1)
Ti
|XT0 ]

− EM[L(0;Ti−1, Ti) + b2(Ti−1, Ti)A
(2)
Ti−1
|XT0 ]

])+∣∣∣∣Xt

]

=
1

P0t + b1(t)A
(1)
t

EM

[(
n∑
i=1

δi

[
K(P0Ti + b1(Ti)A

(1)
T0

)

− L(0;Ti−1, Ti)− b2(Ti−1, Ti)A(2)
T0

])+∣∣∣∣Xt

]
. (10)

Many steps have been taken above: the relationships between the variables
have been exploited, the positive quantity πT0 has been taken into the maximum
function, the measure has been changed in the way that the specifications allow,
and the martingale property of the As under M is used.

We will now show the necessary steps that need to be taken in order to evaluate
this integral:

1) We first choose a multivariate ({Ft},P)-Markov process {Xt}, which gener-
ates the filtration Ft = σ({Xs}0≤s≤t). Only the behaviour of the processes
{X(i)

t } under M is relevant for us. We have in mind a Lévy random bridge
for the P specification, but we would only need precise specification under P
to simulate paths. Our choice for {Xt}will be standard Brownian motion, i.e.
Xt+u|Ft ∼ NM(Xt, u).

2) The pricing kernel is given by equation (6) (even though we do not need to
see Mt explicitly for our purposes). Our choices for the F and w functions of
the model will be given by Fi(t, x) = x2, andwi(t, u) = (U−t−u), for i = 1, 2.
These choices satisfy the relevant conditions and result in M-martingales A(i)

as we will see.

3) We evaluate the conditional expectations of Fi(t + u,Xt+u) under our auxil-
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iary measure M:

EM[Fi(t+ u,Xt+u)|Ft] = EM[X2
t+u|Xt] = X2

t + u, and

EM[Fi(u,Xu)|F0] = EM[X2
u|X0] = u.

4) Next, we need to find the expressions for bi(t) and A
(i)
t . We use the defini-

tion of the price process given in equation (8) in order to compute the bi(t)
and A

(i)
t for the price process of L(0;Ti−1, Ti). Suppressing a great deal of

computation, from equation (8) and (9) we can deduce that

b1(T )A
(2)
t =

f2(T )

π0

(
Y

(2)
tT − Y

(2)
0T

)
=

f2(T )

1 + f1(0)
U3

6

[
1

2

(
U − T

)2(
X2
t − t

)]
,

such that

b1(T ) =
f2(T )(U − T )2

2[1 + f1(0)
U3

6

] , and

A
(2)
t = X2

t − t.

Analogously we have that

b1(t) =
f1(t)(U − t)2

2[1 + f1(0)
U3

6

] , and

A
(1)
t = X2

t − t.

These all correspond to Brownian motion. In [13], a measure related to a
Brownian bridge is used and expressions analogous to the above are calcu-
lated. Having derived our own above, we are in a position to use the Brown-
ian bridge for comparison purposes.

6) We substitute the expressions for bi(t) and A
(i)
t and evaluate the price of the

swaption by solving the expectation. The expression for the swaption price is
automatically calibrated to the intial term structure and forward LIBOR rates.

6 Numerical implementation of expectation

This section will provide a method of calculating the expectation in the expression
of the price for a swaption. We suppose that {X(i)

t } follows a normal distribution
given by Nµi, σi), where µi and σi is the mean and standard deviation of {X(i)

t }.
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Taking an expectation is equivalent to calculating an integral of the function in-
side the expectation with respect to the probability measure. In this particular case
this means that we multiply the function inside the expectation with the proba-
bility density function of the random variable and integrate the product over all
real numbers under the Lebesgue measure. Since we cannot integrate over all real
numbers, we define a 99.97% confidence interval for {X(i)

t } given by xi, where

xi =[−3σi + µi, 3σi + µi].

Next, we choose arbitrary large numbers (N1+1) and (N2+1) and divide x1 and x2
into N1 and N2 sub-intervals, respectively. We will denote the grid point distance
of xi by dxi. This allows us to form a mesh grid as follows.

x1

x2

0

A

N2

N1

•Ĩ1
dx1 •

Ĩ2

dx2
• Ĩ3•

Ĩ4

For each of theN1 points in the interval x1, and each of theN2 points in the interval
x2, we evaluate the expression in the expectation of equation (10) over all the legs
of the swaption, i.e.

I(k, j) =
n∑
i=1

δi

[
K

(
P0Ti + b1(Ti)A1(T0, x1(k))

)
− L(0;Ti−1, Ti)− b2(Ti−1, Ti)A2(T0, x2(j))

]
,
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where we index x1 over k, x2 over j. Having established I(k, j) for all k ∈ {0, . . . , N1},
and all j ∈ {0, . . . , N2}, we set all negative results to zero and multiply the result
by its relevant probability density at the point of x1 and x2,

Ĩ(k, j) = max
(
I(k, j), 0

)
N1(x1(k), µ1, σ1)N2(x2(j), µ2, σ2).

Having applied the max function to all points on the grid, we now estimate the
integral across each field on the grid. For example, consider the grid field A in the
grid depicted above. We assign to A the averaged value of the points given by Ĩi,
i = 1, 2, 3, 4., i.e.

A =
1

4

4∑
i=1

Ĩi.

We multiply A by the grid size dx1dx2. The calculations applied to the grid point
A are now applied throughout the entire grid, and each solution is summed. This
will give us a value for the expectation given in equation (10). To further clarify the
calculation, refer to the code extract below.

N1=100; % number of steps for x1
N2=100; % number of steps for x2

x1=linspace(-3*sigma+mu1,3*sigma+mu1,N1); % x1 interval
x2=linspace(-3*sigma+mu2,3*sigma+mu2,N2); % x2 interval
dx1=x1(2)-x1(1); % Change in x1
dx2=x2(2)-x2(1); % Change in x2

swaption=0;

for i=0:N1 % Summation over x1
for j=0:N2 % Summation over x2
integrand(i,j)=sum[delta*(K*(P0T(T(1:n)) + b1(T(1:n))*A1(T0,x1(i)))

-L(0,T(0:n-1),T(1:n))-b2(T(0:l-1),T(1:n))*A2(T0,x2(j))]
integrand(i,j)=max(integrand(i,j),0)*dist1(x1(i),mu1,sigma1)

*dist2(x2(j),mu2,sigma2)
mean=[integrand(i,j)+integrand(i-1,j)

+integrand(i,j-1)+integrand(i-1,j-1)]/4
swaption=swaption+mean*dx1*dx2
end

end

7 Calibration

In this section we implement and calibrate the model obtained for the price of a
swaption given by equation (10), which is automatically calibrated to the initial
risk-free and forward LIBOR term structure (implicitly using g1 and g2).
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First we calibrate to primary market data (initial term structure) and investigate
the model at this level. Then we tackle calibration to derivative (swaption) data.

Calibration to primary market prices

In the first calibration procedure we make use of the initial term structure only,
by fixing both f1 and f2 arbitrarily. The purpose of this is to investigate the dif-
ferent influences on the model, such as the significance of the parameter U , or the
choice of the Markov process {Xt}. To find the swaption prices, we first calculate
L(0;Ti−1, Ti) using the market bond prices, i.e.

L(0;Ti−1, Ti) =
1

δi

(
Plibor(0, Ti−1)

Plibor(0, Ti)
− 1

)
Pois(0, Ti), (11)

where the ‘ois’ and ‘libor’ subscripts indicate the bonds on the OIS interest rate
and the LIBOR respectively. Using the quadratic F function, the expressions for
A

(i)
t and bi(t) are found by following the steps in the previous sections. A par-

ticular swaption price can now be calculated by evaluating the expression given
in equation (10), estimated numerically as described in the previous section. We
compare two different Markov processes under the measure M, namely a standard
Brownian bridge, where we assume that U is the terminal point of the Brownian
bridge, and a standard Brownian motion. The results appear below.

Figure 2: The swaption prices versus strike prices for swaptions with maturity of 3
months, where the underlying swap has 3 month legs over a tenor of 3 years. We
choose U = 25, F (t, x) = x2, and different Markov processes, namely a standard
Brownian bridge process and a standard Brownian motion.

Figure 2 shows receiver swaption prices as a function of strike for different
choices of {Xt}. The standard Brownian motion generally has a higher price than
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the standard Brownian bridge. The graph shows that the price of a receiver swap-
tion is positive even when the strike K is less than zero. This may seem counter-
intuitive, but is caused by the fact that the model allows negative LIBOR. Only the
risk-free rate is guaranteed to be positive; this might be a possible drawback with
the model presented in this paper.

Figure 3: The swaption prices versus the choice ofU for swaptions with maturity of
3 months, where the underlying swap has 3 month legs over a tenor of 3 years. We
choose F (t, x) = x2, and different Markov processes, namely a standard Brownian
bridge process and a standard Brownian motion.

In the figure above we can see the influence of the choice of U on the model.
For identical choices of F (t, x) and w(t, u), the two different processes produce dif-
ferent swaption prices. As U increases, the prices produced by the two processes
converge. The convergence can be attributed to the fact that the Markov process of
a standard Brownian bridge, as the terminal point U becomes large, converges to a
standard Brownian motion in distribution.

Figure 4 displays a pricing surface of the swaption defined in the previous fig-
ures in terms of the strike price K and the choice in U , for the standard Brownian
motion Markov process. It becomes clear the swaption becomes more expensive
for a smaller choice of U . The price of a swaption versus the strike price produces
a characteristic curve for a large choice of U .

The choice of the Markov process and U influence the price of the swaption, as
well as the choice of the function of F . This is intuitively clear, since the Ai terms
in the bA model depend on the conditional expectation of F .
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Figure 4: The swaption price surface as a function of the choice of U and strike
price K, for swaptions with maturity of 3 months, where the underlying swap
has 3 month legs over 3 years. We choose F (t, x) = x2, and define the Markov
processes to be a standard Brownian motion.

Calibration to swaption market prices

The model will now be calibrated to swaption market prices. The model has two
free parameters for calibration, namely f1 = f1(Ti−1, Ti) and f2 = f2(Ti−1, Ti),
which are contained in the functions b1 and b2. Recall that f1 related to the OIS
rate, and since derivatives on the OIS rate do not exist, and we want to calibrate
the model to LIBOR swaptions only, we set it equal to a constant for now, i.e.
f1(Ti−1, Ti) = 1.

The model can now only be calibrated to the swaption market prices through
the parameter f2. We define by Swn(T0, τ, Tn,K) a swaption with maturity T0,
where the underlying swap has a tenor of Tn, and the legs of the swap have length
τ . The strike price of the swap underlying the swaption is given by K. We will
illustrate the calibration with an example. Suppose that the duration of an at-the-
money swap underlying the swaption with maturity T0 = 1 is 1 year, so that Tn = 2
years from today, where the legs of the swap are τ = 0.5 years (6 months) in length,
as shown on the time-line below.
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0

T0

1year

Maturity

T0.5

1.5year

First leg

T1 = Tn

2year

Tenor of swap

The swaption is now fully specified. We make use of the OIS and LIBOR bond
prices in order to evaluate L(0;Ti−1, Ti) as in equation (11). Since we have two legs
in our underlying swap, we will have to calibrate both f2(0, 0.5) and f2(0.5, 1). This
means that we have two unknowns in one known. The f2 function only appears
in the b2 term in the expression for the price of a swaption, given in equation (10).
Examining this equation, one can see that the expectation term is taken to be a
sum over the b2 terms, which are all functions of f2. Therefore we can, without a
loss of degrees of freedom or generality, set f2(0, 0.5) = f2(0.5, 1). We now have
to solve only one unknown, namely f2(0, 0.5) = f2(0.5, 1), to match the swaption
price given by the market. This can be done numerically through several different
root finding algorithms such as the Newton-Raphson method.

0 T0

f2(0, 0.5) f2(0.5, 1)

= f2(0, 0.5)

T0.5 T1

A swaption with the same maturity T0, but a greater tenor will then ‘re-use’ the val-
ues of f2 which were obtained for the previous swaption. For example, consider an
at-the-money swaption with the same maturity and leg length as the above swap-
tion, but with a swap duration of 2 years, so that Tn = 3 years. Suppose that we
have found the values of f2(0, 0.5) = f2(0.5, 1). To keep the f2 term structure for the
shorter tenor swaptions consistent, we keep the f2 terms which we have already
calibrated. We now want to calibrate the remaining f2 values given by f2(1, 1.5)
and f2(1.5, 2). We set the unknown f2 variables equal, i.e. f2(1, 1.5) = f2(1.5, 2).
Since the previous f2 parameters are already known, we need to solve one un-
known parameter, namely f2(1, 1.5) = f2(1.5, 2), to match the swaption market
price.

0 T0

f2(0, 0.5)f2(0.5, 1)

= f2(0, 0.5)

T1

f2(1, 1.5)f2(1.5, 2)

= f2(1, 1.5)

T2 = Tn
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In this way, we can calibrate to all tenors for any given maturity, and figure 5
shows how for a fixed, arbitrary maturity, we have determined f2 so that we are
calibrated to at-the-money swaptions for all traded tenors.

Figure 5: The calibrated f2 values for a swaption with a fixed maturity given by
T0 = 0.5 years, and different tenors. The underlying swaps have 3 month legs. We
choose U = 25, F (t, x) = x2, and a standard Brownian bridge process for the choice
of {Xt}.

All our calibration is for a particular maturity, but the remaining dimension to
explore is across strike. The model returns prices for swaptions in- and out-the-
money, around our calibrated at-the-money price, and we would like to have some
degree of freedom to calibrate here, but it appears we are out of viable calibra-
tion parameters. We noted that f1 should be calibrated to OIS-related derivatives,
but since these do not exist we can consider using this to affect our prices in- and
out-the-money. An examination of equation (10) reveals that this is possible to an
extent, but only the sum of the relevant f1s affects the price. Because the sum of f1s,
residing in b1, is multiplied to the strike K, we can see intuitively that increasing
this sum should steepen the price function (anchored at-the-money to the market
price). Therefore calibration across the smile seems possible, albeit the somewhat
weak form of being able to rotate the function. Figure 6 illustrates this. However,
our ability to rotate the smile appears bounded and time limitations preclude fur-
ther investigation here.
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Figure 6: The swaption prices versus strike prices K, for different f1 values. The
swaption has a fixed maturity given by T0 = 0.5 years, and the underlying swap
has a duration of 1 year. The underlying swaps have 3 month legs. We choose
U = 25, F (t, x) = x2, and a standard Brownian motion process for the choice of
{Xt}.

Our calibration logic appears sound: the relevant sum from f1 is free for rota-
tion as described, and then one could explore using various measures and func-
tions F to find the most appropriate shape, which can be rotated to match the
market as closely as possible. Alternatively one could look at inserting a free pa-
rameter in the function F or the Markov process itself – this might allow us to
control both the rotation and curvature. Further study could interrogate this more
detailed calibration and the boundedness of the rotation.

8 Discussion

Here we briefly summarise and discuss the paper, which started with an outline of
pricing kernel theory, for both interest rate and general asset modelling. A contri-
bution is clarification of the auxiliary measure used in [13]. We go on to specialise
the framework to a LIBOR swaption, following [7]. As a general comment, the
pricing kernel framework gives rise to tractable model – the benefits of the bA
class are enjoyed when applied to swaptions, as well as the Markov nature and
positive rates-supermartingale link. The derived expectation is then numerically
integrated in a neat and efficient way. We find that calibration is possible to an ex-
tent, despite the dimensionality challenge of the swaption market. Further research
could pursue our attempt at matching the market across strike (perhaps undertak-
ing a more detailed investigation of different measures and functions F ) and also
investigating whether our calibration is consistent across maturities.
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1 Problem

Portfolio diversification measures may be segregated into three broad categories:

• Naive Measures - these are based on the premise that an optimally diversi-
fied portfolio is one that is equally weighted across all assets in the invest-
ment universe;

• Lower moment Measures - these are measures based almost entirely on the
second moment of the asset distribution, most commonly in the guise of vari-
ances and covariances, with the premise being that lower metrics for these
measures imply lower return/value dispersion and therefore better diversi-
fication; and,

• Higher moment Measures - these are measures based on higher moments of
the return/value distribution, which incorporate more information about the
structure and consistency of the distribution as opposed to just information
about the first two moments and second order, statistical relationships.

In response to Samuelson (1967), who observed that the measurement of di-
versification using the first two moments of a distribution may be too restrictive
and crude, numerous enhancements to lower moment measures, and new, higher
moment measures of portfolio diversification have since been proposed. Two mea-
sures that have been advocated recently are the Effective Number of Bets (ENB)
(Meucci, 2009) and the Diversification Delta measure (DD) (Vermorken et al., 2012).
The primary research problem is to compare the efficacy of these two measures,
either theoretically or practically, via application to the South African financial
market data.

This report is structured in the following manner:

• Literature Review and Survey of Measures - a review of the literature relat-
ing to portfolio diversification, along with proposed measures for quantifica-
tion;

• Motivation for Higher moment Measures - mathematical and simulation-
based evidence justifying the use of higher moment measures to quantify
portfolio diversification;

• Estimation of Entropy - estimation of the information entropy measure for
discrete and continuous random variables; and,

• Application and Critique - an application of the reviewed and defined mea-
sures to the South African financial market data and the implications thereof.
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2 Introduction

Modern Portfolio Theory centers on minimising the risk given a certain return.
The minimisation of risk in a portfolio is achieved primarily through diversifica-
tion. Diversification is a technique that reduces unrewarded risk in a portfolio by
investing in a variety of assets and asset classes. A diversified portfolio will, on av-
erage, yield higher returns and pose a lower risk than the individual constituents
of the portfolio. The benefits of portfolio diversification are evident from the fact
that when different assets are combined, changes in the value of the portfolio are
not as adverse as the changes in the value of the individual constituents.

Despite the intuitive need for diversification, there is no unique measure that
adequately quantifies diversification and allocates assets optimally in a portfolio.
In the following sections, some of the existing diversification measures that are
commonly used will be surveyed.

3 Naive and Low Moment Measures

In terms of which risky assets to consider, some investors follow the naive rule of
portfolio diversification, which allocates an equal amount of wealth to every asset
available in the investment universe, at each rebalancing date. The naive rule is
easy to implement, as it does not rely on moments of asset returns or optimisation,
and is widely considered to be a benchmark.

3.1 Weight-Based Measures

3.1.1 Weight Entropy

Weight entropy is a measure that quantifies the risk in a portfolio using the weights
of the constituents to compute its entropy. It is defined by:

WE = exp

(
−

N∑
n=1

wi lnwi

)
,

where wi is the weight of the i-th asset in the portfolio. The portfolio weights can
be seen as the probability of being invested in a certain asset. One could then argue
that the entropy difference between these probabilities and the uniform distribu-
tion is a measure of information content and diversification.

3.1.2 Herfindahl Index

Herfindahl Index (HI) is a weight-based measure of concentration. It is defined by:

HI =
N∑
i=1

w2
i
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whereN is the number of assets, and wi is the weight the i-th stock in the portfolio.
Qualitatively, there is little difference between these weight-based approaches

of measuring risk as they lead to the same decision regarding the selection of assets.
These weight-based measures are heavily dependent on the weights and do not

account for the differing risk-return characteristics of the portfolio. This can lead
to the selection of a portfolio with risky assets (Kirchner and Zunckel, 2011).

3.2 Correlation and Variance-Based Measures

In his groundbreaking work on Portfolio Theory, Markowitz (1952) quantified the
risk of a portfolio using variance, which quickly became standard practice in the
financial industry. Variance measures the variability of returns from their mean
return. Consider a portfolio Π with N securities where Ri is the return on each
security, and wi is the weight of the i-th security. The variance of the portfolio is
defined by:

σ2 =
N∑
i=1

wi(Ri −RΠ)2,

where RΠ is the return on the portfolio. An investor aims to achieve a portfolio
with low variance as this translates to low risk. Correlation demonstrates the ben-
efits of diversification by measuring the movement of securities in relation to each
other. The lower the correlation of the securities in a portfolio the greater the diver-
sification.

3.2.1 Intra-Portfolio Correlation

Intra-Portfolio Correlation (IPC) is another commonly used weight-based measure.
Unlike the other weight-based measures the IPC takes into account the correlation
of assets and can be viewed as a weighted, standardised correlation coefficient.
There are many competing definitions in the literature for the IPC, but it is most
commonly defined by:

IPC =
∑
i

∑
j

wiwjρij i 6= j,

where wi and wj are the weights of assets i and j that are invested in the port-
folio, and ρij is the correlation between asset i and j. The IPC ranges from −1 to 1,
with−1 being most diversified and 1 the least (Livingston, 2013). Although the IPC
focuses on correlation (i.e., the standardised measure of co-movement), it is clearly
flawed because it ignores the standard deviations, which are major contributors to
the risk of a portfolio.
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3.2.2 Portfolio Diversification Index

The Portfolio Diversification Index (PDI) measures diversification using principal
component analysis, which calculates the number of independent components in a
portfolio. Given N securities the portfolio diversification index is defined by:

PDI = 2
N∑
k=1

kwk − 1,

where wk are the ordered and normalised covariance eigenvalues of the correlation
matrix of the securities. PDI indicates the following:

• A fully diversified portfolio (wk = 1
N for all k) has a PDI = N ;

• A completely concentrated portfolio ( w1 = 1, wk for all k > 2 ) has a PDI = 1.

The PDI summarises the diversification of large number of securities using a sin-
gle statistic, and can compare the diversification across different portfolios or time
periods. Although the PDI conveniently summarises diversification, it is difficult
to find an optimised PDI portfolio, as the measure is independent of weights and
is completely dependent on the covariance.

3.3 Effective Number of Bets

Consider a market of N securities. Let the returns of these securities be given by
the N -dimensional vector R. A portfolio Π in this market has weights given by the
vector w, and RΠ is the return on the portfolio Π, and is defined by RΠ = w′R. The
covariance matrix of returns Σ is decomposed into uncorrelated risk sources using
principal composition analysis:

E′ΣE = Λ

In the above equation the diagonal matrix Λ ≡ diag(λ1 . . . λn), contains the eigen-
values of Σ, sorted in decreasing order. The columns of the matrix E ≡ (e1 . . . eN )
are the respective eigenvectors. The eigenvectors can be seen as N uncorrelated
principal portfolios whose returns R̃ ≡ E−1R are decreasingly responsible for the
randomness in the market. The portfolio with weights w can also be a combination
of the uncorrelated principal portfolios with weights w̃ ≡ E−1w. Since the prin-
cipal portfolios are uncorrelated, the variance of the n-th principal component can
be defined by:

vn = w̃2
nλn,

and the total portfolio variance by:

V ar(Rw) =

N∑
n=1

vn.
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After normalising the variance, the diversification distribution is given by:

pn =
vn

V ar(Rw)

where pn equals the R2 from a regression of the total portfolio return on the n-th
principal component. The diversification distribution can be interpreted as a set of
probability masses associated with the uncorrelated principal portfolios.

From the diversification distribution it is evident that if the probability masses
pn are equal (i.e., uniformly distributed) then the portfolio is fully diversified. If
the portfolio is concentrated on a single principal component, then it is not fully
diversified, as all the risk will be due to that single component. Therefore portfolio
diversification can be represented by the dispersion of the diversification distribu-
tion, as defined by the exponential of its entropy:

NEnt = exp

(
−

N∑
n=1

pj ln pj

)
.

NEnt represents the true number of uncorrelated bets in a portfolio in a general
market;

• a fully diversified portfolio has a maximum value of NEnt = lnN when the
risk is homogeneously spread over all principal components (i.e., pj = pi =
1
N ).

• A completely concentrated portfolio has a value of NEnt = 0 and indicates
that risk is due to a single principal component.

Meucci (2009) gives a more detailed analysis on the dynamics of finding the op-
timal weights which will maximise diversification in the presence of weight con-
straints.

4 Higher moment Measures

4.1 Entropy

Entropy is a measure of the uncertainty associated with a random variable. This
measure was initially defined by Shannon (1948) for discrete probability distribu-
tions and is defined by:

H(X) = −
∑
i

p(xi) log p(xi)

for a discrete random variable X .
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For a continuous random variable X , the entropy is defined as an expectation
by:

H(X) = −
∫ ∞
−∞

f(x) log f(x)dx.

where f(x) is the probability density function andH(X) is called differential or
continuous entropy.

The greater the uncertainty in the outcome of a random variable, the higher its
associated entropy. A random variable that has only one possible outcome has no
uncertainty, and therefore will have an entropy of zero. In the discrete case, entropy
depends on the probabilities associated with the different outcomes. Therefore,
the uniform distribution, defined over some interval, has the highest uncertainty
amongst all discrete distributions defined over that same interval, as each of the
outcomes under the uniform distribution are equally likely.

In the continuous case, for a given mean and variance, the normal distribution
has the greatest entropy across all distributions defined on the real line.

Furthermore, since probabilities lie between 0 and 1, the entropy for a discrete
random variable will always be positive, while in the case of a continuous random
variable the differential entropy may be allowed to be negative.

4.2 Diversification Delta

The Diversification Delta (DD) was introduced by Vermorken et al. (2012) as a mea-
sure of the diversification on the portfolio. The DD is defined by:

DD(P ) =
exp

(∑N
i=1wiH(Xi)

)
− exp

(
H(
∑N

i=1wiXi)
)

exp
(∑N

i=1wiH(Xi))
) ,

wherewi is the weight of the i-th asset in the portfolio. It is the ratio of the weighted
average entropy of the individual assets minus the entropy of the portfolio, divided
by the weighted average entropy of the assets (Vermorken et al., 2012).

The DD therefore measures the difference in the entropy between the case where
the assets are held individually and the case where they are combined, in their ap-
propriate weightings, to create a portfolio. The DD is a ratio that varies between
zero and one. A value of one indicates that all non-systematic risk has been diver-
sified away by forming the portfolio, while a value of zero indicates that there has
been no improvement in diversification as a result of forming the portfolio.

Vermorken et al. (2012) state that exponentiation of entropy in estimation of
the diversification delta retains the characteristics of the measure that are required,
thus not causing any distortions. Their motivation for the exponentiation is to
avoid the non-singular case where the entropy of the portfolio reaches zero.
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4.3 Entropy, Variance and Higher moments

A natural question to consider is the relationship between entropy and variance.
This relationship may be understood if one considers an approximation of the
probability density function, fX(x), using a Fourier-Legendre series expansion,
first proposed by Ebrahimi et al. (1999). The Legendre polynomials {Pn(x)} are n-
th degree polynomials, which form an orthogonal system over the interval [−1, 1],
and may be defined by:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n , (1)

where the orthogonal property yields the following:∫ 1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn , (2)

where δmn denotes the Kronecker delta function, and Pn(1) = 1. Each Pn(x) satis-
fies the Legendre differential equation:

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0. (3)

Assume the density function, fX(x), has support [−1, 1], then a Fourier-Legendre
series expansion yields the following approximation for the density function:

fX(x) =
∞∑
n=0

anPn(x). (4)

Using (1) or (2), the first three Legendre polynomials are:

P0(x) = 1

P1(x) =x

P2(x) =
1

2
(3x2 − 1) .
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P1(x) = x and 1
3 [2P2(x) + P0(x)] = x2. Equation (4) yields:

E[X] =

∫ 1

−1
xfX(x)dx

=

∫ 1

−1
P1(x)

( ∞∑
n=0

anPn(x)

)
dx

=
∞∑
n=0

∫ 1

−1
anP1(x)Pn(x)dx

=

∫ 1

−1
a1P1(x)P1(x)dx

=
2

3
a1 ,

and

E[X2] =

∫ 1

−1
x2fX(x)dx

=

∫ 1

−1

1

3
[2P2(x) + P0(x)]

( ∞∑
n=0

anPn(x)

)
dx

=
1

3

∞∑
n=0

∫ 1

−1
an[2P2(x) + P0(x)]Pn(x)dx

=
1

3

[∫ 1

−1
2a2P2(x)P2(x)dx+

∫ 1

−1
a0P0(x)P0(x)dx

]
=

1

3

[
4

5
a2 + 2a0

]
.

The resulting variance is given by:

V[X] =
1

3

[
4

5
a2 + 2a0

]
− 4

9
a2

1 .

From the above equations, it is obvious that a1 will be calibrated to the mean, which
implies that the variance is determined by a2 and a0, with all other an being ir-
relevant. Using the Fourier-Legendre expansion, the information entropy of the
random variable X is defined by:

H[X] = −
∞∑
n=0

∫ 1

−1
anPn(x) ln

( ∞∑
n=0

anPn(x)

)
dx .

It can be shown that the partial derivative with respect to an yields:

∂

∂an
H[X] = −

∫ 1

−1
Pn(x) ln

( ∞∑
n=0

anPn(x)

)
dx . (5)
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From equation (5), it can be seen that the information entropy depends on all of the
coefficients of the Fourier-Legendre , which corroborates that it is a higher moment
measure, therefore incorporating and providing more information with regard to
the structural uncertainty or dispersion of the distribution.

4.4 Motivation for Higher moment Measures

A rather simple justification as to why one would consider a higher moment mea-
sure, such as entropy, as a measure of diversification is presented below.

Consider a financial market where an investor has the choice between two in-
vestments, denoted by X and Y , with both expiring at a fixed, finite future time.
The terminal return on investment X has a Laplace distribution, i.e., X ∼ L(α, β),
with probability density function and parameters:

fX(x) =
1

2β
exp

(
−|x− α|

β

)
,

with parameters α and β =
√

µ2+σ2

2 . The terminal return on investment Y is a
mixture of normal distribution, i.e., Y ∼MN (n, {µi}, {σi}, {pi}), with probability
density function:

fY (y) =
n∑
i=1

pi

σi
√

2π
exp

(
−1

2

(
x− µi
σi

)2
)
. (6)

The parameters are n = 2, µ1 = −µ, µ2 = µ, σ1 = σ, σ2 = σ and p1 = p2 = 1
2 . The

mean and variance of these two options are:

E[X] =α ,

V[X] = 2β2 = µ2 + σ2 ,

E[Y ] = − 1

2
µ+

1

2
µ = 0 ,

V[Y ] =
1

2
((−µ)2 + σ2) +

1

2
(µ2 + σ2) = µ2 + σ2 ,

which reveals that both returns have the same variance, but investment Y has an
expected return of α and X an expected return of 0. In the absence of any further
information, assuming that the investor is rational and makes investment decisions
purely on the trade-off between risk and return, he would be indifferent between
the two investments if α = 0.

Now consider the information entropy measure of the return distribution for each
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of these investments. For investment X , the entropy measure is:

H[X] = −
∫ ∞
−∞

1

2β
exp

(
−|x− α|

β

)
ln

[
1

2β
exp

(
−|x− α|

β

)]
dx

= −
∫ α

−∞

1

2β
exp

(
x− α
β

)
ln

[
1

2β
exp

(
x− α
β

)]
dx

−
∫ ∞
α

1

2β
exp

(
−x+ α

β

)
ln

[
1

2β
exp

(
−x+ α

β

)]
dx

= 1 + ln(2β) .

For investment Y , it is first useful to note that the probability density function (6),
with parameters as specified above, may be rewritten as:

fY (y) =
1

σ
√

2π
exp

(
−(x2 + µ2)

2σ2

)
cosh

(µx
σ2

)
.

Then:

H[X] = −
∫ ∞
−∞

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
ln

[
1

σ
√

2π
exp

(
−(x2 + µ2)

2σ2

)
cosh

(µx
σ2

)]
dx

−
∫ ∞
−∞

1√
2πσ

[
exp

(
−(x+ µ)2

2σ2

)]
ln

[
1

σ
√

2π
exp

(
−(x2 + µ2)

2σ2

)
cosh

(µx
σ2

)]
dx

=
1

2
ln(2πeσ2) + (λ2 − I) ,

where λ = µ/σ. I is an integral with no analytical solution defined by:

I =
2

λ
√

2π
exp

(
−λ

2

2

)∫ ∞
0

exp

(
− y2

2λ2

)
cosh(y) ln(cosh(y))dy .

The first part of the above expression, for the entropy of the mixture distribution,
is just the entropy of a normal distribution with variance σ2. In fact, when µ = 0
the mixture reduces to a normal distribution with mean 0 and variance σ2, and
hence the above expression reduces to just the first term. Since the integrand in I
is always positive, we know that I ≥ 0. Further, Michalowicz et al. (2008) show
that I is bounded with analytic upper and lower bounds, that (λ2 − I) monotoni-
cally increases from 0 to ln(2), and provide numerically computed values for I for
different values of λ. These numerical estimates will prove to be critical in the mo-
tivation for higher moment measures of diversification.

Assume now that α = 1, µ = 1 and σ = 1
2 , then the terminal distributions of

the two investment options are shown in the figure below.
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Figure 1: The terminal distribution of investments X and Y .

One can now show, using the results derived in this section that both these
investments have the same variance, which is equal to 1.25. Therefore, an investor
who considers risk and diversification purely from the perspective of the variance
measure will be indifferent between these two investment options. Visually, it is
clear that the risk profile of these two investment options are significantly different.
Measuring the entropy of these two investment alternatives, yields a measure of
1.45815 for X , and 1.64151 for the alternative investment Y (using the numerical
estimate for I = 0.111 as provided by Michalowicz et al. (2008)). Based on this
measure, a rational investor will surely prefer investmentX to investment Y . Note
that the mean of investment X has played no role in the discussion with regard to
risk, which is a common feature with symmetric continuous distributions.

5 Estimation of Higher-Moment Measures

5.1 Entropy and the Diversification Delta

The entropy of a random variable was defined in Section 4.1.
The entropy of a random sample from a distribution can be naively estimated

by using the empirical probabilities for each outcome of the random variable. This
and other procedures for estimating entropy of discrete random variables is not
considered any further as this report concentrates on entropy estimation for con-
tinuous random variables.

Bierlant et al. (1997) provide an overview of several nonparametric methods for
the estimation of differential entropy for a continuous random variable based on a
sample drawn from the distribution. They also discuss the convergence properties
of each of these entropy estimates.

A common method is to “plug-in” estimates, where the density function f(x) is
replaced by an estimate fn(x) based on a sample of size n. In the simplest case, the
estimate is a histogram density estimator. An alternative is the kernel density es-
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timator, which constructs a smoother estimate of the density and generally reflects
the underlying theoretical probability distribution more accurately.

The integral estimate of entropy is one of the “plug-in” estimates discussed and
is defined by:

Hn(f) = −
∫
An

fn(x)logfn(x)dx,

where the setAn usually does not include tail values of the kernel estimator fn. Us-
ing the kernel density estimator, the integral estimate exhibits strong consistency in
that, as the sample size approaches infinity, the estimate approaches the differen-
tial entropy, almost surely. Evaluating the integral however, is difficult and requires
numerical integration. The estimation is even more difficult when dimensionality
is greater than two. In the case where the histogram density estimator is used, the
estimate is more easily evaluated, and Bierlant et al. (1997) further mention that
strong consistency has been proved.

Other “plug-in” estimates discussed by Bierlant et al. (1997) are the resubstitu-
tion estimate, splitting data estimate and cross-validation estimate.

In addition to “plug-in” estimates, Bierlant et al. (1997) also discuss estimates
of entropy-based on sample spacings. They define these estimates only for the one-
dimensional case. For the sampleX1, ..., Xn, order statistics are given byXn,1 < Xn,2 < ... < Xn,n,
and a spacing of order m is given by Xn,i+m−Xn,i. The following density estimate
can be constructed using the m-order spacings:

fn(x) =
m

n

1

Xn,im −Xn,(i−1)m
,

where x ∈ [Xn,(i−1)m, Xn,im). Using this density estimate, one can obtain an en-
tropy estimate using the “plug-in” estimate approach. Alternatively, Bierlant et al.
(1997) specify two m-spacing estimates of entropy that do not require explicit esti-
mation of the density function.

Miller (2003) extends these m-spacing estimates to new classes of entropy es-
timators for the case where the probability density is multi-dimensional. For the
purposes of this report, these estimators are not of particular relevance as the data
considered is of one dimension.

A further non-parametric method for the estimation of entropy due to Stow-
ell and Plumbley (2009) is called k-d partitioning and is used by Vermorken et al.
(2012) in their estimation of entropy and diversification delta.

5.1.1 Estimation of entropy using a histogram density estimator

This approach uses the idea that the sample can be used to produce a histogram,
which can then be used to find the discrete entropy of the sample. In order to do
this, an appropriate number or spacing of bins needs to be specified. Using daily
stock returns from January 2002 to June 2014 on each stock in the FTSE/JSE Top40
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Index, the entropy was computed for each individual stock as well as for a portfolio
based on the stocks. Figure 2 shows the behaviour of the entropy of a single stock
and the portfolio, as the number of bins is varied.

Figure 2: Variation of entropy with number of bins used in histogram density esti-
mator

Figure 3: Variation of diversification delta with number of bins used in histogram
density estimator

Figure 2 shows that the entropy of the portfolio is consistently lower than that
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of the single stock. This reflects diversification and a lower degree of uncertainty
associated with the return on the portfolio. Furthermore, the entropy of both the
stock and portfolio returns increases as the number of bins are increased, converg-
ing to log(N) where N is the number of returns for each stock. This is because as
the number of bins increases, the distribution tends to that of the uniform distri-
bution which has maximum entropy for discrete distributions. The diversification
delta has been plotted for the portfolio in Figure 3. It decreases with increasing
entropy, implying poorer diversification.

Choice of the number of bins is non-trivial, and there is no unique measure that
defines the optimal number of bins. As can be seen from Figure 2, using a large
number of bins will split the data very finely leading to a representation of the
uniform distribution, while using too small a number of bins will give insufficient
precision to the density estimation. There are several rules-of-thumb to determine
the “optimal” number of bins to use, but these are generally dependent on sample
size. For the purposes of comparing entropy of returns across different estimation
periods (and hence different sample sizes) choosing a number of bins in accordance
with these rules is inappropriate because each estimation window will use a dif-
ferent number of bins. This results in different ranges for the histograms, causing
the entropy estimates for the different estimation windows to be inconsistent with
each other and hence incomparable. To counteract this, the number of bins and
intervals are fixed, and the same histogram structure is applied for all estimations
of entropy to ensure that the estimates are consistent with one anothers.

5.1.2 Estimation of entropy using a kernel density estimator

The kernel density estimator for a probability density function for a sample of size
n drawn from an unknown distribution is defined as:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
,

where K(·) is the kernel and h is the smoothing parameter. The kernel can be any
symmetric, positive function that integrates to 1, i.e., a probability density function.
Silverman (1986) provides an overview of this approach to estimating density, as
well as several others, including the histogram density estimate.

A popular kernel is the standard normal distribution, and will be the kernel
used in this investigation.

Akin to choosing the number of bins for the histogram in the histogram den-
sity estimate, a smoothing parameter h (called the bandwidth) must be chosen for
kernel density estimation. Ideally, the bandwidth should be small, but not so small
that it represents the data with spurious accuracy. Too large a value of the band-
width will result in over-smoothing and will distort the structure of the underlying
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distribution. Figure 4 shows kernel density estimators for a sample of normal vari-
ates and the progression from under-smoothing to over-smoothing as the band-
width is varied.

Figure 4: Structure of the kernel density estimate of the underlying distribution as
the bandwidth is varied.

Like Figure 2, Figure 5 shows how the entropies for a single stock on the FT-
SE/JSE Top40 Index and for a portfolio vary with the smoothing parameter. As
the smoothing parameter increases, the bias in the density estimate is more pro-
found and hence the entropy increases. Since normal kernels were used for the
density estimation, the density estimate approaches normality as h increases, and
the entropy therefore approaches that of a normal distribution where the standard
deviation is a function of the bandwidth, h. This occurs for both the single stock
and the portfolio, since at the higher values of h, the density estimate has been dis-
torted and appears to be the same for all stocks and the portfolio. This is reflected
in the diversification delta (Figure 6) as it approaches 0, showing no diversification.

Visually, it appears that only for values of the bandwidth, h, ranging from zero
to 0.5 is there any difference in the entropy and diversification delta, and hence
uncertainty, between the single stock and the portfolio. It may thus be that the
“optimal” value for the bandwidth lies within this range for the purposes of this
investigation.
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Figure 5: Variation in the entropy estimated using a kernel density estimator with
changes in the bandwidth.

Figure 6: Variation in the diversification deltas the bandwidth parameter is varied.

Choosing a value for the bandwidth, like choosing the number of bins, is non-
trivial. For the case where a normal kernel is used and it is believed that the under-
lying distribution is normal, there is an analytical value for the optimal bandwidth
and is given by:

hopt =

(
4σ̂5

3n

) 1
5
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Silverman’s (1986) rule of thumb is that for distributions that appear to be uni-
modal and symmetric, the optimal bandwidth generated by assuming that the un-
derlying distribution is normal will be not too far off from the actual optimal band-
width. In such a case, it may be justified to use the optimal bandwidth assuming
normally distributed variables.

In the case where it cannot be justified that the sample points come from a distri-
bution close to that of the normal distribution, there are several other approaches
to estimating an optimal bandwidth. Raykar and Duraiswani (2006) provide an
overview of several of these methods. The most common criterion involves min-
imising the AMISE (Asymptotic Mean Integrated Square Error) such that the opti-
mal bandwidth is given by:

hAMISE =

(
R(K)

Nm2(K)2R(f ′′)

) 1
5

whereR(g) =
∫
g(x)2dx andm2(K) =

∫
x2K(x)dx and f ′′ is the second deriva-

tive of the underlying density function f .
The unknown quantity in the above expression is R(f ′′) requires an estimate

of the second derivative of the underlying density. This is estimated using a new
bandwidth, athough estimation of this second derivative in turn depends on higher
derivatives of the underlying density. Hence, at some level, a smoothing parameter
is chosen with respect to a reference distribution, usually normal, and the deriva-
tives are computed recursively backwards to eventually obtain the optimal band-
width for the density estimate. Generally, as the number of levels in the estimation
procedure increases, the variance in the estimate of the bandwidth increases. Ac-
cording to Raykar and Duraiswani (2006) the most common choice is to use only
two levels.

For the purposes of this report, the data appear to be symmetrically distributed
around zero and are bell-shaped. Therefore a bandwidth is chosen using Silver-
man’s rule of thumb.

5.1.3 Estimation of entropy using k-d partitioning

Stowell and Plumbley (2009) developed a new nonparametric method which re-
quires the range of the sample to be partitioned into cells that have equal proba-
bility mass, and then estimate the density function for each interval. They use a
method called k-d partitioning which involves recursively splitting the data using
the median. The algorithm stops when each interval passes the uniformity test and
there are at least

√
n points in each partition.

For each interval Aj , the density function is estimated as:

fA(x) =
pj

µ(Aj)
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for x ∈ Aj and where µ(Aj) is the length of the j-th interval.
The strength of the k-d partitioning method for estimating the density and en-

tropy is that there is no need to make any choices of parameters as in the previous
cases where the bandwidth parameter and bin size or number of bins had to be
chosen. However, it should be noted that requiring a minimum of

√
n data points

in each partition does indeed create an implicit assumption on the number and
range of partitions used.

5.2 Application of diversification delta to South African market data

In this section, the measures of entropy and diversification delta are applied to
South African financial market data. In particular, two South African stock market
indices are considered: the FTSE/JSE Top40 and FTSE/JSE Shareholder Weighted
Top40 Indices.

The FTSE/JSE Top40 and FTSE/JSE Shareholder Weighted Top40 stock market in-
dices constitute the 40 largest “blue-chip” companies listed on the Johannesburg
Stock Exchange by market capitalisation. These indices have the same constituents
but differ in terms of weighting, with the Top40 index adjusting total market cap-
italisation for the percentage of “free floated” shares, i.e. shares that are available
for trading, while the shareholder weighted version further adjusting for share-
holding within South Africa. Given the characteristics of these indices, they serve
as key benchmarks within the South African market serving as benchmarks for
most equity-managed funds and being a tradable index underlying a sizeable pro-
portion of the outstanding equity derivatives exposure at any point in time.

These indices are rebalanced on a quarterly basis, according to the FTSE/JSE
ground rules, and as such are subject to constant fluctuation in terms of constituency,
shares in issues and free float and shareholder adjust factors - all of which con-
tribute to the construction of the index. The data set considered here is a time-series
of daily data of the constituents of these indices as at 30 June 2014. Due to time con-
straints, it was not possible to accurately reconstruct these indices retrospectively
- as such, proxy indices were constructed, using current shares in issue, free float
and shareholding factors. Furthermore, 27 of the 42 constituents were selected to
construct the proxy versions of these indices, as these shares had the longest un-
interrupted histories, going back to the inception of the FTSE/JSE South African
index series (January 2002).

The aim of this section is to compute, compare and interpret diversification delta
estimates produced using each of the three different methods of estimating en-
tropy discussed above. This is repeated for the FTSE/JSE Top40 and FTSE/JSE
Shareholder Weighted Top40 Indices.

Figures 7 to 9 show the estimates of the diversification delta on the FTSE/JSE
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Top40 Index, using estimation windows of 1 month, 3 months, 6 months, 9 months
and 12 months.

Figure 7: Diversification deltas on the FTSE/JSE Top40 Index estimated using the
histogram density estimate.

21



Figure 8: Diversification deltas on the FTSE/JSE Top40 Index estimated using the
kernel density estimate.

Figure 9: Diversification deltas on the FTSE/JSE Top40 Index estimated using the
k-d partitioning approach.

Comparing Figures 7 to 9 it is interesting to note that the estimates of the diver-
sification delta using entropy estimates from the histogram density, kernel density
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and k-d partitioning approach give similar results. Therefore, the method used to
estimate the entropy appears to have little effect on the final estimate of the diver-
sification delta produced. This is important as it reduces the subjectivity associated
with choosing a particular method to estimating entropy.

The estimates for the diversification delta appear to lie between 0.2 and 0.5 for
the histogram and kernel density approaches, while the k-d partitioning approach
produces estimates that reach up to 0.6.

The estimates of the diversification delta are most stable when using an estima-
tion window of 12 months, and least stable in the case of one month, which is as
expected. In the case where estimation windows of one month have been used, the
diversification delta appears to dip slightly below zero when using the histogram
density and kernel density approaches to estimating entropy. However, this hap-
pens only for the one month estimation window and therefore can be attributed to
an issue of few data points.

The diversification delta also appears to vary as expected, for example in 2008,
there is a reasonable drop in the measure reflecting the poorer diversification in the
market at that time.

Diversification deltas are expected to lie between zero and one, and in this case
the estimates reach only up to 0.6. This may be a result of the data itself, and it is
possible that repeating the investigation using a different index could produce di-
versification delta estimates that are higher or lower, reflecting greater and poorer
diversification than the FTSE/JSE Top40 Index, respectively.

Figures 10 to 12 below show the estimates of the diversification delta repeated,
as previously, but now on the FTSE/JSE Shareholder Weighted Top40 Index. The
results obtained are similar to the FTSE/JSE Top40 Index in that the estimates of
the diversification delta are consistent with each other, irrespective of the measure
used to estimate the entropy. Also, the k-d partitioning approach again appears to
give a wider range of diversification deltas.

Diversification delta estimates based on the histogram density and kernel den-
sity approach lie between 0.1 and 0.6, while when using the k-d partitioning method,
the estimates approach 0.7.

Based on the diversification delta estimates, it appears that the FTSE/JSE Top40
and FTSE/JSE Shareholder Weighted Top40 Indices have a similar levels of diver-
sification in the South African market, with the FTSE/JSE Shareholder Weighted
Top40 Index performing slightly better than the FTSE/JSE Top40 in terms of diver-
sification.
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Figure 10: Diversification deltas on the FTSE/JSE Shareholder Weighted Top40 In-
dex estimated using the histogram density estimate.

Figure 11: Diversification deltas on the FTSE/JSE Shareholder Weighted Top40 In-
dex estimated using the kernel density estimate.
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Figure 12: Diversification deltas on the FTSE/JSE Shareholder Weighted Top40 In-
dex estimated using the k-d partitioning approach.

6 Application and Critique

In this section, a practical analysis is undertaken whereby the various measures of
diversification are applied to South African financial market data. The purpose of
this section is two-fold:
(i) the diversification measures defined in the previous sections are applied to two
South African stock market indices, in order to assess the coherence of the infor-
mational content of each of the measures; and,
(ii) efficient frontiers and optimised portfolios are generated for a selected set of
the measures in order to assess the relative behaviour of each of these respective
measures from a risk and performance perspective.

As before, two South African stock market indices are considered: the FT-
SE/JSE Top40 and FTSE/JSE Shareholder Weighted Top40 Indices.

6.1 Comparison of different measures

An analysis of several of the diversification measures mentioned in this report was
conducted using South African financial market data as mentioned above.

The focus of this section will be on the following measures: variance, effective
number of bets and the diversification delta.

Figure 13 below shows the estimates of the variance, effective number of bets
and the diversification delta computed using the stock returns and an estimation
period of 12 months. However, the three measures of diversification are incom-
parable for two main reasons. Firstly there is a scaling factor associated with the
measures. It can be seen that the effective number of bets lies on a range that is
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much higher than both variance and diversification delta. Secondly, the measures
are inconsistent in their interpretation of diversification. While an increase in vari-
ance implies greater uncertainty and poorer diversification, an increase in either
the diversification delta or the effective number of bets actually implies an increase
in the diversification of the index.

Figure 13: Crude estimates of diversification: the variance, effective number of bets
and variance, using daily return data on the FTSE/JSE Top40 Index.

To counteract these issues, a re-based “diversification index” was created for
each measure first. The returns on each of these diversification indices was then
computed over time, using an estimation window of 1 month, 6 months and 12
months. Furthermore, the returns on the variance “diversification index” were
multiplied by -1 to ensure that for all three measures, movements in a particular
direction has consistent implications on diversification.

Figures 14 to 16 below show the returns on each of these diversification indices
for estimation periods of 1, 3 and 6 months respectively. At the lower estimation
periods, due to the smaller number of data points, the return on the diversification
indices is more erratic than that for the longer estimation periods.
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Figure 14: Returns on rebased “diversification index” for each diversification mea-
sure, using daily return data on the FTSE/JSE Top40 Index, and estimation window
of one month.

Figure 15: Returns on rebased “diversification index” for each diversification mea-
sure, using daily return data on the FTSE/JSE /Top40 Index, and estimation win-
dow of six months.
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Figure 16: Returns on rebased “diversification index” for each diversification mea-
sure. Using return data on the FTSE/JSE Top40 Index, and estimation window of
12 months.

From Figures 14 to 16 it can be seen that all three diversification measures -
variance, effective number of bets and diversification delta - rebased as mentioned
above, give consistent results. All three measures move in the same direction, such
that when there is indeed a change in the diversification, it is portrayed by all three
measures. As an example, in the year 2008 it can be seen that all three measures
drop, reflecting the poor diversification that existed in the market at the time.

Furthermore, the variance appears to be more erratic than both the effective
number of bets and the diversification delta, with the diversification delta being
the most stable of the three. This could be as a result of the fact that the variance is
much more susceptible to outliers, since it is only a second moment measure. The
diversification delta and effective number of bets take into account more informa-
tion than the variance when computing the variability of the returns since they are
higher moment measures.

An identical analysis was conducted for the FTSE/JSE Shareholder Weighted
Top40 Index and the corresponding results are displayed in below Figures 17 to 20.
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Figure 17: Crude estimates of diversification: the variance, effective number of
bets and variance, using daily return data on the FTSE/JSE Shareholder Weighted
Top40 Index.

Figure 18: Returns on rebased “diversification index” for each diversification mea-
sure. Using return data on the FTSE/JSE Shareholder Weighted Top40 Index, and
estimation window of one month.
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Figure 19: Returns on rebased “diversification index” for each diversification mea-
sure. Using return data on the FTSE/JSE Shareholder Weighted Top40 Index, and
estimation window of 6 months.

Figure 20: Returns on rebased “diversification index” for each diversification mea-
sure. Using return data on the FTSE/JSE Shareholder Weighted Top40 Index, and
estimation window of 12 months.

Similar results were obtained from these data, in particular that all three mea-
sures are consistent with each other and give similar results for the diversification
of the indices. Also, the variance again appears to behave more erratically, and the
possible reasons are as were discussed previously.
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6.2 Efficient Frontiers

In order to obtain a better understanding of the relationships and subtleties un-
derpinning each of the key diversification measures under consideration, viz. vari-
ance, ENB and diversification delta, mean-diversification efficient frontiers are pre-
sented in this section. All efficient frontiers presented here are based on the full 27
stock universe, using daily data from January 2002 to June 2014 in order to es-
timate expected returns, variances, covariances and all other required statistical
data. In addition, it should be noted that no scaling for time-horizon was effected,
and therefore all statistics presented graphically and otherwise are for a one-day
time horizon. The long-only constraint along with the usual budget considera-
tion were the only optimisation and investment restrictions that were effected in
the generation of all frontiers.

Having created mean-variance, mean-ENB and mean-DD efficient frontiers, the
next six Figures depict these optimised portfolios across all four of these statistical
measures, viz. the mean, variance, ENB and diversification delta. Each Figure also
depicts the optimally diversified portfolio-based on each of the respective mea-
sures.

Figure 21: Mean-diversification efficient frontiers in mean-variance co-ordinates.
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Figure 22: Mean-diversification efficient frontiers in mean-ENB co-ordinates.

Figure 23: Mean-diversification efficient frontiers in mean-DD co-ordinates.

Figure 24: Mean-diversification efficient frontiers in mean-ENB co-ordinates.
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Figure 25: Mean-diversification efficient frontiers in variance-ENB co-ordinates.

Figure 26: Mean-diversification efficient frontiers in diversification delta-ENB co-
ordinates.

Evidence from Figure 21 alone already illuminates the difference between the
ENB measure and the others, along with the surprising similarity between the vari-
ance and diversification delta measures. Intuitively, based on the notion that ENB
is effectively a lower moment measure, one would have expected that the structure
and behaviour of the optimal ENB portfolio would closely resemble the minimum
variance portfolio. Nonetheless, the eigenvalue decomposition of the asset return
space into uncorrelated portfolios appears to incorporate distributional informa-
tion that is understated by the other two measures. Of course this assertion is
not well-founded, being based solely on visual evidence of a single snap shot of
an emerging equity market - it could be the case that incorporating the entire in-
formational content of the return sample via principal component analysis actually
imparts a large degree of noise into the analysis, hence imparting spuriousness into
the inferences that one can make from the ENB measure. Nonetheless, these results
cannot be completely overlooked either - the structure of the mean-ENB index is
consistent with that presented by Meucci (2009), and while the mean-DD frontier
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has not appeared in the literature, neither theoretically not practically, it is difficult
to believe that the structure would deviate significantly from that presented here,
in general.

In the next section, an interrogation of the longitudinal performance of these
measures is effected, through the construction of maximum diversification port-
folios. This section is drawn to conclusion with the presentation of the portfolio
weight composition and diversification distribution of the respective optimal port-
folios.

Figure 27: The portfolio weight distribution of the optimally diversified portfolios
across the 27 stocks.

Figure 28: The diversification distribution of the optimally diversified portfolios
across the 27 uncorrelated portfolios - only 20 are depicted here, since the contri-
bution to the last 7 uncorrelated portfolios are negligible.

It is interesting to note that the diversification optimal ENB portfolio has a con-
centrated weight structure, with the portfolio only comprising of 3 stocks, viz. SHP
(60.45%), MDC (24.58%) and APN (14.64%), yet it has the best diversification dis-
tribution.
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6.3 Optimised Portfolios

In the previous section, the cross-sectional problem of generating mean-diversification
efficient frontiers at a specific point in time was considered. Here the longitudinal
problem of generating optimally diversified portfolios through time is considered.
To this end, we use the same data set as before, i.e. a 27 stock universe consisting of
daily data ranging from January 2002 to June 2014. Again we focus on just three key
measures of diversification, viz. variance, ENB and diversification delta. Five dif-
ferent estimation tenors, 1-month, 3-month, 6-month, 9-month and 12-month, were
considered and diversification optimal portfolios were computed-based on each
the above-mentioned measures on a rolling monthly basis from January 2003 up
until June 2014. Five different rebalancing frequencies,1-month, 3-month, 6-month,
9-month and 12-month, were then also considered in the out-of-sample testing of
the optimised portfolios. This created 75 portfolios in total, 25 based on each di-
versification measure. For the sake of brevity, only 3 portfolios are presented here,
one for each diversification measure, with these reflecting the best risk-adjusted
performance characteristics over the entire out-of-sample period. The graph below
reflects the performance of each of these portfolios along with the proxied versions
of the FTSE/JSE Top40 and Shareholder Weighted Top40 indices mentioned before.

Figure 29: Out-of-sample performance of the best risk-adjusted diversification op-
timised portfolios for each measure versus the proxied FTSE/JSE Top40 and Share-
holder Weighted Top40 indices.

The best risk-adjusted variance- and ENB-based portfolios are optimised using
a 1-month estimation period, while the DD-based portfolio is estimated using a 6-
month period, all of the portfolios are rebalanced annually. The short estimation
period for the variance- and ENB-based portfolios suggests that there may be a
significant amount of volatility in the estimated weight distributions over time,
due to substantial short-term volatility effects in the South African equity market.
This is indeed true, as is reflected in the graphs below.
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Figure 30: Weight distribution through time of the variance-based optimal portfo-
lio.

Figure 31: Weight distribution through time of the ENB-based optimal portfolio.

Figure 32: Weight distribution through time of the diversification delta-based opti-
mal portfolio.
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As the performance graph clearly reflects; the ENB-optimised portfolio outper-
forms the other two portfolios significantly, however, the volatility in the weight
distribution of the ENB-optimised portfolio is substantial. This seems to be a fea-
ture of the ENB-based methodology, as volatility does not reduce significantly as
one increases the length of the estimation period. In order to assess the effect of
such volatile swings in the weight distribution, the graph below reflects an estima-
tion of the trading costs involved - these costs are incurred annually in the simula-
tion, upon rebalancing of each of the portfolios. As one would expect, the trading
costs of the ENB-based portfolio dwarfs that of the other two, with the reason for
this being two-fold: (i) the volatile weight structure; and (ii) the significant capital
growth in the portfolio over time. Both of these factors contribute to higher trading
costs at points of rebalancing. In order to generate the graph below, an assumption
that each purchase and sale of any quantity of a share would attract a cost of 50
basis points - in reality, this is akin to bid-ask spread costs and brokerage, amongst
other fees.

Figure 33: Estimated traded cost on each of the diversification optimised portfolios.

It is fairly evident, that even after an adjustment for trading costs, the ENB-
based portfolio still outperforms the other two. It is intriguing that the ENB-based
portfolio has exhibited the best risk-adjusted performance, despite the volatile op-
timal weight distribution structure. Moreover, one should also note that the DD-
based portfolio underperforms the variance-based portfolio. Accordingly, these
longitudinal results corroborate well with the results of the cross-sectional report
in the previous section, which seems to suggest that the ENB is a better measure
of diversification than the diversification delta. Of course this is circumstantial ev-
idence and may just be particular to the given data set - nonetheless, there appears
to be sufficient indications that one should, at the least, not discount measures such
as the PDI or the ENB when assessing the risk of a portfolio of financial assets.
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7 Consequences and Conclusions

This paper has investigated the landscape of existing risk and diversification mea-
sures for portfolio selection, beginning from naive weight-based measures, and
then moving on to higher order moment measures. Qualitatively, there is little
difference between the weight-based approaches of measuring risk as they lead to
the same decision regarding the selection of stocks. These weight-based measures
are heavily dependent on the weights and do not account for the differing risk-
return characteristics of the portfolio. Covariance-based measures give a broader
understanding of diversification as they link diversification with the risk-return
characteristics of the stocks. However, although the covariance-based measures
give an intuitive feel of the benefits of diversification, they are highly volatile mea-
sures when correlations between returns are high. To mitigate the volatility of
covariance-based measures, entropy-based measures were considered which took
into account the higher order moments of measurement.

There are several different approaches in the literature with respect to the mea-
surement of entropy. In this investigation, three techniques were considered: the
histogram density estimate approach, the kernel density estimate approach and
the k-d partitioning method. Issues pertaining to the subjectivity associated with
these estimates of entropy were discussed, in particular, the problems of selecting
an optimal bin size and/or bin interval in the case of the histogram density esti-
mate approach, and selecting an optimal smoothing parameter h in the case of the
kernel density estimate approach were discussed. For the purposes of the analysis,
these estimates were selected using rules-of-thumb.

Each of the entropy estimate measures were used to estimate the diversifica-
tion delta using South African financial market data. The interesting result is that
although the entropy estimates measured using the three different approaches are
incomparable, the estimates of the diversification delta are consistent and compa-
rable across all three approaches. This is important as it somewhats eliminates the
subjectivity associated with estimating entropy.

A thorough analysis of all the diversification measures mentioned in this pa-
per was conducted, and the following were chosen to be compared: variance, ef-
fective number of bets and diversification delta. Since the measures are directly
incomparable, a “diversification index” was created for each of the measures and
the returns on the indices were measured. The three measures gave consistent re-
sults, although the variance appeared to have the most erratic behaviour, while the
doversification delta appeared to be the most stable. The reason suggested for this
result is that the diversification delta takes higher moment measures into account,
while the variance does not, thus alowing for more information, and is also less
easily affected by outliers.

However, given the circumstantial evidence provided by the cross-sectional
and longitudinal analysis in Sections 6.2 and 6.3, it appears as though the diver-
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sification delta measure does not provide a significant amount of additional infor-
mation regarding the distributional structure of the market, in order to improve
one’s assessment of diversification for linear assets. Nonetheless, a mathemati-
cally rigorous proof of this assertion is required to solidify this notion. The Effec-
tive Number of Bets measure interprets the concept of diversification in an almost
polar opposite manner, in comparison to the traditional and common measures of
dispersion. Moreover, the decomposition of the empirical sample return distribu-
tion into a set of orthogonal or uncorrelated portfolios, with the aim of structuring a
portfolio in such a way to firstly meet the prespecified budget, mandate or other
market-related constraints and secondly to optimise the distribution of your port-
folio exposure across the aforementioned uncorrelated portfolios, seems counter-
intuitive. One could actually be optimising toward idiosyncratic exposures that are
a temporary manifestation of anomalous market behaviour. Therefore, it is diffi-
cult to confidently advocate that the Effective Number of Bets measure is indeed
a better measure of diversification than the diversification delta. The only asser-
tion that can be made with any semblance of confidence, is the fact that these two
measures provides one with tools to quantify and analyse diversification from al-
most diametrically opposing viewpoints - thereby enhancing and illuminating the
overall risk management process.
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