

minerals to metals

Can South Africa's mineral wealth be leveraged for the transition?

Beneficiation through the lens of economic complexity

Contents

Context – Localising the transition

Background

South African Mineral landscape

Research questions

Manganese case study

Industrial Policy and Beneficiation through the lens of Economic complexity

Opportunities and challenges

A cross-disciplinary research process

- Stage 1: Refining the focus of the research study (DPRU + M2M)
- Stage 2: Identification of products residing in manganese value chain (M2M)
- Stage 3: Map manganese value chain products to trade data (DPRU + M2M)
- Stage 4: Applying the frontier product approach to identify manganese value chain products that are both feasible (distance/density) and desirable (complexity) (DPRU)
- Stage 5: Techno-economic analysis to assess the opportunities and challenges associated with manganese value chain products (DPRU + M2M)

Background

Shifting to a low-carbon future

Critical technology for a low-carbon future and green economy

More materials will be needed for the transition.....

Current value chains for "critical" materials

South African Mineral Landscape

Strategic minerals for a low carbon future

South Africa's mineral landscape

Percentage of Global Production

Percentage of Global Reserves

USGS, 2020; Minerals Council, 2020

80

100

South Africa's mineral landscape

South Africa mineral exports vs local use

Research Questions

Stage 1: Refining the focus of the research

SA's potential for materials for a low-carbon future

Key Questions

• How do we leverage SA's mineral potential for "critical materials" for the energy transition to create more local value chains?

- How do we identify the beneficiation options and industry capabilities using an economic complexity lens?
- What are the opportunities and barriers for increasing the beneficiation of downstream materials?

Manganese Case Study

Stage 2: Identification of products residing in manganese value chain

Manganese case study

- Manganese is currently categorised as a critical mineral
- Potential for use for infrastructure and energy storage (batteries)
- South Africa produces about 30% of global production and holds 40% of global reserves
- Opportunities for linkages with other mineral value chains

The potential for manganese in a low carbon economy

Structural steel for renewables' infrastructure e.g. wind turbines High strength steel which is used to make lighter weight automotive and EV car bodies

Cathode in Lithium-ion batteries for EVs and energy storage

South Africa's Manganese industry

Manganese ferroalloy industry

- 90% manganese ferroalloys produced worldwide are used in steel, consumption and production closely follow the production of crude steel.
- There are currently four producers of manganese ferroalloys in South Africa Metalloys, Assmang, Transalloys, and Mogale Alloys.
- Manganese alloy industry faced with similar challenges as steel industry, particularly rising electricity costs.
- There is an increasing demand for High Strength Steels (HSS) from automotive and EVs industry. HSS are produced using regular low-carbon compositions strengthened with manganese (Mn).

Manganese in the battery industry

- Manganese ore is processed into manganese compounds which are used to produce battery components.
- Manganese is specifically used in the cathode of lithium-ion batteries.
- Manganese is mostly used in high-energy nickel-manganesecobalt lithium ion batteries

Battery value chain

Current SA manganese battery industry

- There is one manganese battery compound producer, MMC (Manganese Metal Company) which is the largest EMM (electrolytic manganese) producer outside of China.
- Various manganese products are combined with other battery compounds to feed lithium-ion battery precursors value chains (mid-stream or intermediates processing).
- Global development of battery chemistries and competition highly influence battery product routes.

Reframing South Africa's value chain development

- Realign beneficiation policy lack of major progress on beneficiation strategy.
- Need to understand product capability shift and potential for economic complexity
- Beneficiation options and potential for lower-cost production routes
- Maximising localisation and establishing linkages with other value chains to support manufacturing growth and job creation

Industrial Policy and Beneficiation through the lens of Economic complexity

Using Economic Complexity and Industrial Relatedness metrics to inform industrial policy in a data-centric manner

Identifying frontier manganese value chain products

Stage 3: Mapping manganese value chain products to trade data

61 total Mn products

Stage 4: Applying the frontier product approach

To identify frontier manganese value chain products – those that are feasible, in terms of having the capabilities to produce, and desirable, in terms of growth potential – we consult two literatures:

- Economic complexity
- Industrial relatedness

The ideas and metrics that emerge from these literatures inform industrial policy type questions in a data centric manner

Economic Complexity (Desirability)

Source: Own calculations using trade data from BACI data (HS 6-digit revision 1992) and GDP per capita data from the World Development Indicators.

Notes: The sample of countries is reduced to those for which we estimate complexity measures.

Economic complexity metrics indirectly measure:

- the presence of productive capabilities, and hence, the productive capacity of an economy,
- by using information on the diversity and ubiquity of an economy's productive structure

Stylized Facts:

- ECI is positively correlated with economic development
- ECI is a significant predictor of long-term economic growth
- See Hidalgo & Hausmann, 2009; Hausmann et al., 2014; Chavez et al., 2017; Christelli et al., 2015

Building economic complexity allows an economy to graduate to higher levels of economic development

Industrial Relatedness (Feasibility)

The success of a location entering an economic activity depends on cognitive and technological proximity between the new activity and a location's prior activities.

Relatedness is indirectly measured by looking at the collocation of activities within and across locations.

• Distance index

Stylized Facts:

- Relatedness predicts the activities (products) that a location (country) will enter or exit in the future (Hidalgo et al., 2007; Neffke & Henning, 2013)
- Structural transformation is a path dependent process (Hausmann et al., 2014)

Measures of industrial relatedness allow one to identify feasible diversification opportunities

Frontier Product Approach: Data-Centric Lens to Inform Industrial Policy

Complexity methods help characterize detailed economic structures and provide a quantitative basis for industrial policy efforts:

- EUs <u>Smart Specialisation Strategy</u> (Balland et al., 2018)
- Mexico's <u>Smart Diversification Strategy</u>
- Canada's <u>Supercluster Initiative</u>
- China's Special Economic Zones (De Waldemar & Poncet, 2013)

Frontier Product Approach: Complexity Criterion

Frontier Product Approach A:

Follows Hausmann & Chauvin (2015)

Desirability criteria

- Product Complexity Index (PCI) > Economic Complexity Index (ECI)
- Opportunity Gain Index > 0

Feasibility criteria

• Distance Index < median distance of non-RCA products

Frontier Product Approach B:

Follows Hausmann, Cunningham, Matovu, Osire & Wyett (2014)

Desirability criteria

- Product Complexity Index (PCI) > Economic Complexity Index (ECI)
- Opportunity Gain Index > 0

Feasibility criteria

- Take into account the trade-off between *PCI* and *Distance* and include products that are distant only if they are correspondingly complex
- The gain in complexity compensates for the substantial investment in productive capabilities needed to overcome the distance gap

Frontier Manganese Value Chain Products

Frontier Products: Approach A

products

		Product	
H06 Code	Product Description	Community	Type of Mn Product
271312	Calcined petroleum coke	Mineral products	Indirect manganese product
		Chemicals & allied	
282739	Chlorides, nes	industries	Indirect manganese product
		Chemicals & allied	
283691	Lithium carbonates	industries	Indirect manganese product
	Polyethylene having a specific gravity		
390110	<0.94, i	Plastics/rubbers	Indirect manganese product
	Polyethylene having a specific gravity		
390120	>=0.94,	Plastics/rubbers	Indirect manganese product
390230	Propylene copolymers, in primary forms	Plastics/rubbers	Indirect manganese product
	Bars and rods of silico-manganese steel		
722820	nes	Metals	Direct manganese product
	Wire of refined copper of which the		
740819	max cross s	Metals	Indirect manganese product
750400	Powders and flakes, nickel	Metals	Indirect manganese product
	Parts of hydraulic & pneumatic & other		
841290	power en	Machinery/electrical	Indirect manganese product
	Chassis fitted with engines for the		
870600	vehicles of	Transportation	Indirect manganese product

Frontier Products: Approach B

19 products

		Product	
H06 Code	Product Description	Community	Type of Mn Product
		Chemicals & allied	
280461	Silicon containing by weight >=99.99% silicon	industries	Indirect manganese product
		Chemicals & allied	
282520	Lithium oxide and hydroxide	industries	Indirect manganese product
202220	Chloridos, nos	Chemicals & allied	Indirect manganese product
202759	chiondes, nes	Chemicals & allied	indirect mangariese product
283691	Lithium carbonates	industries	Indirect manganese product
200001		Chemicals & allied	
380110	Artificial graphite	industries	Indirect manganese product
	Chemical elements in disk form and	Chemicals & allied	
381800	compounds, d	industries	Indirect manganese product
390110	Polyethylene having a specific gravity <0.94, i	Plastics/rubbers	Indirect manganese product
390120	Polyethylene having a specific gravity >=0.94,	Plastics/rubbers	Indirect manganese product
390230	Propylene copolymers, in primary forms	Plastics/rubbers	Indirect manganese product
390290	Other polymers of propylene or other olefins, i	Plastics/rubbers	Indirect manganese product
722820	Bars and rods of silico-manganese steel nes	Metals	Direct manganese product
722990	Wire of alloy steel, o/t stainless	Metals	Direct manganese product
740822	Wire, copper-nickel base alloy or copper-nickel	Metals	Indirect manganese product
750400	Powders and flakes, nickel	Metals	Indirect manganese product
841280	Engines and motors nes	Machinery/electrical	Indirect manganese product
	Parts of hydraulic & pneumatic & other power		
841290	en	Machinery/electrical	Indirect manganese product
870390	Automobiles nes including gas turbine	Transportation	Indirect manganese product
070350	powereu		indirect mangariese product
870600	Chassis fitted with engines for the vehicles of	Transportation	Indirect manganese product
870710	Bodies for passenger carrying vehicles	Transportation	Indirect manganese product

How do frontier products affect South African development?

- Assume we diversify production to produce all 19 Manganese value chain frontier products
- Relative to the current scenario, Manganese value chain frontier products have the following effect:
 - ECI and Opportunity gain increase relative to current scenario (good)
 - Inequality decreases slightly (good)
 - RLI and Global Demand indicators decrease (not so good)

Policy calculus to aid economic development goals

- Policy makers may have different priorities e.g., promote inclusive growth; promote labour-intensive growth; etc.
- We can model these preferences and their impact on our various indicators.
- Create indicators for complexity; opportunity gain; labour intensity; inequality; global demand; distance from current product portfolio
- Normalise indicators to all lie between 0 and 1, and then create indices where indicators are weighted according to preference:

$$Index = \sum_{i=1}^{n} w_i I_i$$

where w_i are the weights and I_i are normalised indicators.

Policy calculus: Scenarios

- We created different scenarios prioritising different agendas differently.
- These included:
- 1. Strategic approach (Prioritising most desirable/complex products)
- 2. Labour-maximizing approach (Prioritising most labour-intensive products)
- 3. Inclusive growth approach (Prioritising products with lowest inequality indices)
- 4. Pragmatic approach (Prioritising most feasible/closest products)
- In all cases, we choose the top 10 products in the list and assume RCA is achieved in those.

Policy calculus: Results

- Results are very similar for all scenarios, except for changes in demand.
- All scenarios grow economic complexity
- All scenarios have marginal gains in opportunity gain – potential for future diversification.
- RLI and inequality both decrease, but very marginally.

Opportunities and Challenges

Step 5: Techno-economic analysis to assess the opportunities and challenges associated with manganese value chain products

Manganese SA steel value chain potential

Opportunities	Challenges	References
SA's high quality manganese and iron ore grades	High local production costs (electricity and labour). Transport/logistics constraints. Global competition.	Bam and Bruyne, 2019; Van Zyl et al., 2021
SA steel industry growth/support	Scaling up local capacityrising production costs.	Steel Masterplan DTIC, 2021
Expand steel products output for example - high strength steel production for EVs and automotive sector, renewable industry machinery (windmills?, etc.)	In depth understanding of approach to building economic complexity to inform/support enabling policy environment.	Bam and Bruyne, 2019
Potential for SA to produce "green steel" using hydrogen, forming linkage with hydrogen valley development and metal recycling.	Technology implementation and industry integration	Steel Masterplan DTIC, 2021

Manganese SA battery value chain potential

Opportunities	Challenges	References
SA's high quality ore grades more suitable for battery producers	Limited domestic processing capacity and high local input costs (electricity and labour).	Van Zyl et al., 2020
SA is the only producer of EMM (electrolytic manganese) outside of China	Scaling up local capacity and competition with lower-cost EMM output from China, and alternative processing routes from Australia	Moore Stephens, 2018; Van Zyl et al., 2020
Moving down the value chain and leverage strong auto industry capability	In depth understanding of approach to building economic complexity to inform/support enabling policy environment.	
Potential for local battery precursor production - linkages with PGM producers for by-product nickel and cobalt. Regional linkage with neighbouring countries.	Regional corporation and integration of value chains.	

Regional value chain opportunity.....

7777777

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

resilientfutures.uct.ac.za

