

Can fibre-rich plants serve the joint role of remediation of degraded mine land and fuelling of a multi-product value chain?

Towards Resilient Futures Community of Practice Project

Project team

Prof Sue Harrison

Project leader

Shilpa Rumjeet

Engineer & researcher

Xihluke Mabasa

MPhil candidate

Mike Solomon

Mining engineer & expert

Bernelle Verster

Researcher

2019/05/28

CoP workshop 2019

Background to study

- Over 5900 abandoned mines in SA
- Over 300 000 mine job loses since 1987 in SA
- 27,5% unemployment rate in SA
- Loss of biodiversity

Creating a new economy..

- Land remediation
- Beneficial use of metals
- Generating new economic outputs

Phyto-mining and multi-product fibrous economy

Phytoremediation

Phytodegradation

Pollutants are degraded or mineralised by specific enzyme activity

Phytostabilisation

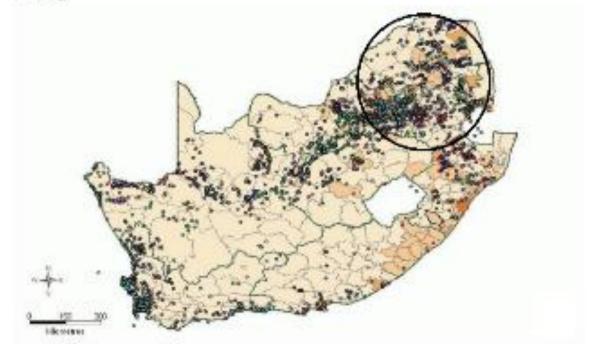
Pollutants are immobilised by the soil

Phytoextraction

Pollutants are accumulated in harvestable parts of the plant

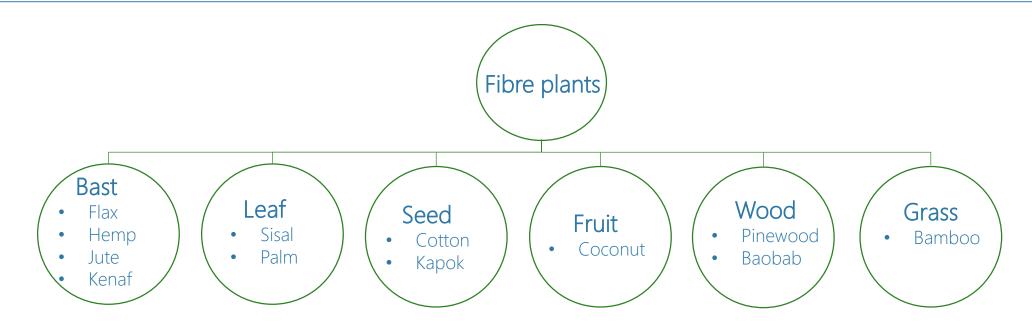
Phytovolatisation

Pollutants are released into volatile form through plant


Developing a fibrous economy

Example sites for case studies

Illustration 1: Correlation between abandoned mines in South Africa and population density



- Degraded mine land
- Surrounding areas are densely populated
- Water pollution and scarcity
- Potential arable land in terms of pH, rainfall and climatic conditions 2019/05/28 CoP workshop 2019

Example sites - Characteristics

Potential Sites	Metals Found	Soil Texture	Soil pH	Rain (mm pa)	Temp (°C)
Carletonville, Gauteng	Au – Pb, As, Ni, Cd, Cu, Zn, Hg, Co & U	Shallow - rocky	5.6 – 6.4	100 — 200	7 – 33
Witbank, Mpumalanga	Coal - Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Si, S, N	Sandy-clay Ioams	5.5 – 7.2	100 - 300	7 - 31
Rustenburg	Pt – Pd, Rh, Ni, Au, Ir, Cu	Loamy topsoil on rocks	5.5 – 6.4	100 - 200	10 — 30
Amandelbult	Pt – Pd, Rh, Ni, Au, Ir, Cu	Clay-rich	6.8 - 6.9	100 - 300	7 - 32

Fibrous plants grown in SA

2019/05/28

Fibrous plants selection

Name	Preferred soil type	Preferred annual rainfall (mm/yr)	Temp. tolerance	pH tolerance	Annual/perennial
Bambusa balcooa	Clay, loamy	400 - 4500	9 – 35 °C	4.5 – 7.5	Perennial
Baobab	Clay, sandy	< 1500	Cannot tolerate cold climate	7	Perennial
Coconut	Coarse sand, clay	1500 - 2500	13 – 35 °C	5.5 - 7	Perennial
Cotton	Sandy loam	500 - 1250	21 – 37 °C	5.5 – 7.5	Annual
Flax	Loamy	450 - 750	10 – 27 °C	5 - 7	Annual
Hemp	Clay, silt loam	500 -700	19 – 28°C	6 - 6.5	Annual
Jute	Silt, sandy Ioamy, clay	1000 - 2500	24 - 37 °C	4.8 – 5.8	Annual
Kapok	Loamy soil	750 - 3000	17 - 38 °C	5 – 6.5	Perennial
Kenaf	All soil types	240 - 490	15 - 27 °C	4.3 - 8.2	Annual
Pinewood	Sandy soil	850 – 950	> 13	5 - 6	Perennial
Sisal	All except clay	500 - 1500	10 – 32 °C	4 - 6	Perennial

Fibrous plants selection

Name	Dry biomass (tons/ha)	Harvest time	Fibre yield (tons/ha)	Preferred annual rainfall (mm/yr)	Potential products	
Bambusa balcooa	20 – 40	5- 6 years	12 - 18	400 - 4500	Paper products, furniture, bioenergy etc	
Flax	3 – 5	100 days	1 - 2	450 - 750		
Hemp	10 - 20	120 days	2.2 – 8.1	500 -700	Pulp, chemical products	
Kenaf	14.8 – 24.7	90 – 125 days	5 - 7	240 - 490	 from oilseeds, composite products, energy products 	
Sisal	13 - 17	2 – 4 years	1 - 4	500 - 1500		

Fibrous plants selection

Name	Preferred bioaccumulation site	Metal selectivity	Metal uptake/absorption/concentration
Bambusa balcoola	Roots, shoots	Pb, Zn, Cr, Fe	Pb: 36; <u>Zn: 43 (mg/kg of biomass)</u>
Flax	Roots, capsule	Pb, Cd, Zn	Pb: 311; Cd: 13.1; <u>Zn: 490 (</u> mg/kg soil)
Hemp	Roots, shoots, leaves, stems	Ni, Pb, Cd, Zn, Cu	Ni: 123; Cd: 151; <u>Cu: 1530 (</u> mg/kg leaves)
Kenaf	Roots, shoots, leaves and seed capsule	Pb, Cd, Zn	<u>Pb: 42.2 (mg/kg soil)</u>
Sisal	Leaves	Cd, Zn, Cu	<u>Cd: 1850</u> ; Cu: 1340 (mg/kg sisal fibre)

Role of hyper-accumulators

Plant	Rainfall (mm/year)	pH preference	Temp preference (°C)	Harvest time	Metals selected	Major metals location	Dry biomass (tons/ha)	Metal uptake (mg/kg dry weight) in leaves
Berkheya coddii	35 -250	4.2 -7.4	4.3 – 21.7	4 months	Ni, Cd, Cu, Fe, Pb, Zn, Au*, Pd, Pt, etc	Leaves	22	<u>Ni: 13979</u> ; Cu: 33; Fe: 3771;
Senecio coronatus	35 - 250	4.2 – 7.2	9 - 32	5 months	Ni plus Ca, Cu, Fe, K, Mg, Mn, P and Zn	Leaves, roots	10	Ni: 12000; <u>Ca:</u> <u>26000</u> ; K: 8700; Mg: 15000;
Cynodon dactylon (grass)	50 -500	2.0 – 8.5	6 - 28	5 – 6 months	Mn, Zn, Cu, Pb, Cd and Co	Leaves, roots and stems	5 - 15	<u>Mn: 232</u> ; Zn: 40; Cu: 48;

Enhancing remediation and product formation

- Combining the use of hyper-accumulators and fibrous plants → offer more possibilities over long term
- Fibrous plants grown on heavily contaminated soils show a reduction in growth, performance and yield
- Remediation can be done quicker and more efficiently using hyperaccumulators
- Offers flexibility in choosing products (fibre vs seed products vs metals)
- Processing will be easier

Scenario Analysis

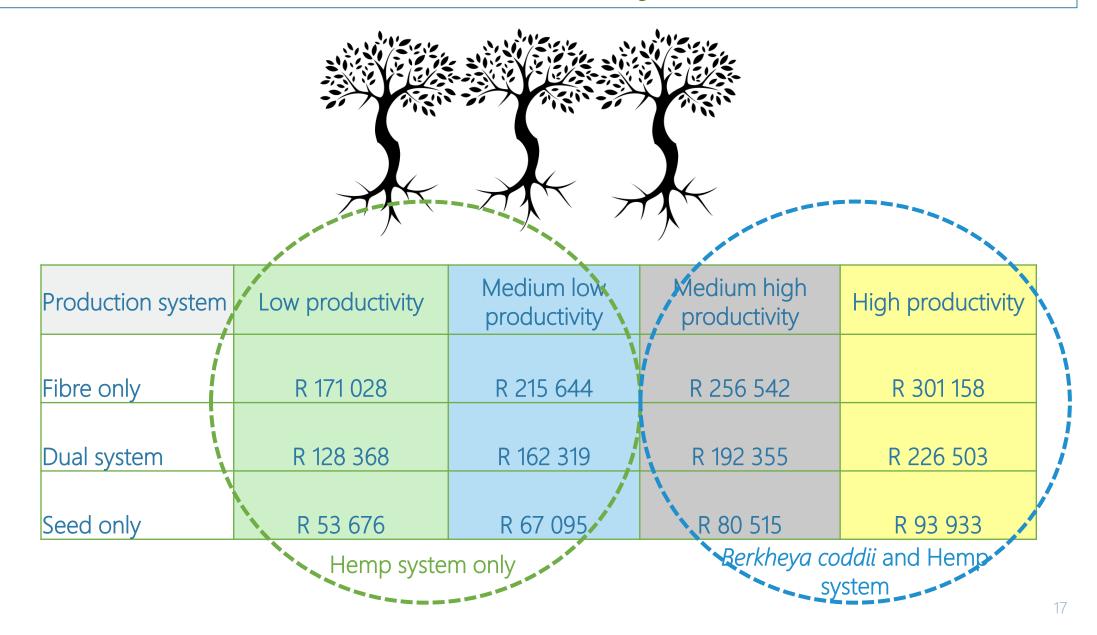
- Using *Berkheya coddii* and hemp on 10 ha of land of contaminated land to extract Nickel and produce fibres and/or hemp seeds
- 1) Value of Ni extracted from Berkheya coddii vs Hemp

Dry biomass of <u>Berkheya</u> <u>coddii</u> for 10 ha (tonnes)	220
Amount of Ni extracted for 10 ha (1% w: w) (kg)	2200
Price of Ni (R/kg)	184
Potential revenue from Ni (R)	404 800

Amount of Ni extracted from <u>Hemp</u> (kg/ha)	0.285 - 2.03*
Amount of Ni extracted for 10 ha (kg)	2.85 - 20
Price of Ni (R/kg)	184
Potential revenue from Ni (R)	524 - 3680

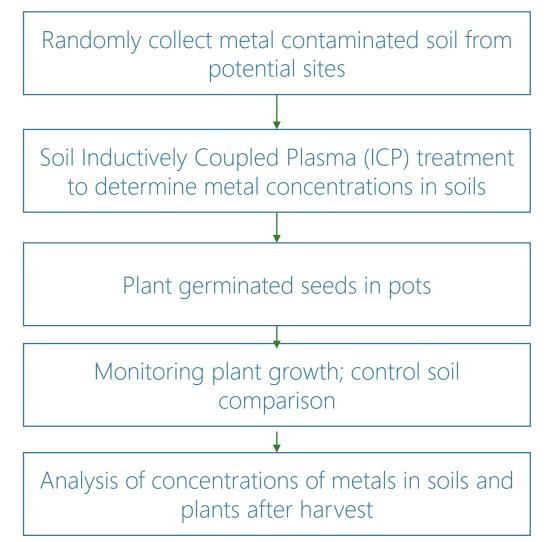
* Considering the shoot harvest only or the entire plant harvest respectively

Scenario Analysis

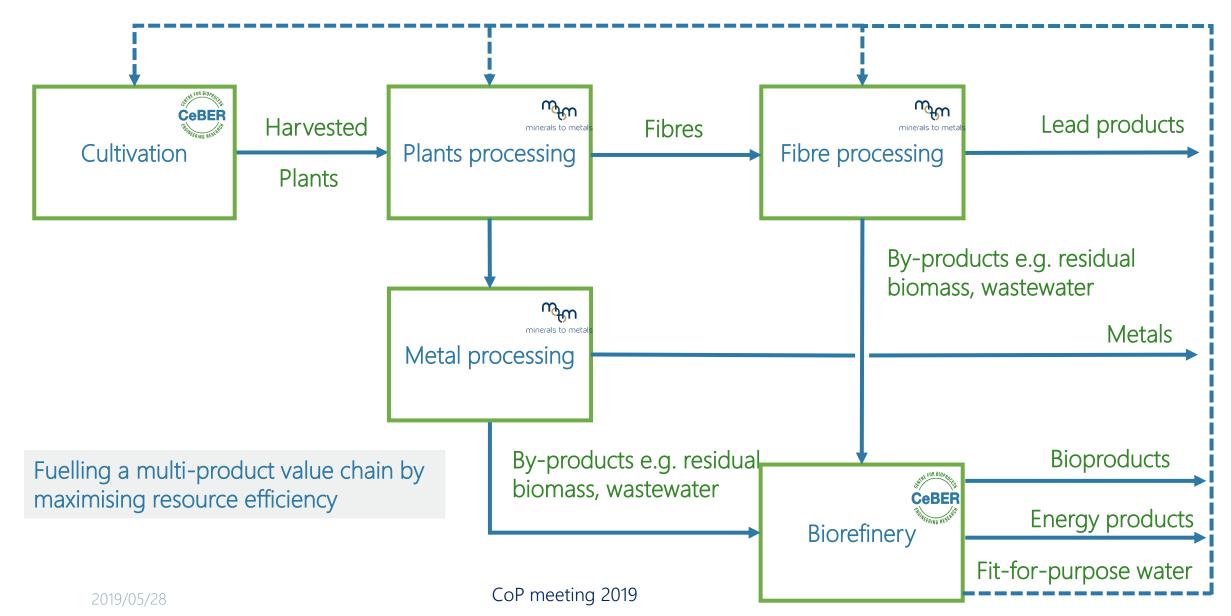

2) Value from Hemp fibre price (\$ 260/ton) and Seed price (\$ 1.38/kg)

Hemp system only

	Low pro	ductivity	Medium low productivity		
Production system	Fibre yield (ton/ha)	Seed yield (kg/ha)	Fibre yield (ton/ha)	Seed yield (kg/ha)	
Fibre only	4.6		5.8		
Dual system	2.2	236	2.8	295	
Seed only		272		340	
Due du stieve existence	Medium high productivity		High productivity-		
Production system	Fibre yield (ton/ha)	Seed yield (kg/ha)	Fibre yield (ton/ha)	Seed yield (kg/ha)	
Fibre only	6.9		8.1		
Dual system	3.3	353	3.9	413	
Seed only		408		476	


Berkheya coddii and Hemp system

Scenario Analysis




Future work – Experimental

Future work - Biorefinery concept

CONTACT US

0

www.CeBER.uct.ac.za

<u>CeBER@uct.ac.za</u>

