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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial and
Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant research
project, while simultaneously developing links with international students and academics in the
field. An allied objective is to bring a variety of international researchers to South Africa to give
them a glimpse of the dynamic environment that is developing at UCT in the African Institute of
Financial Markets and Risk Management. The primary goal, however, is for students to learn to
work in diverse teams and to be exposed to a healthy dose of fair competition.

The Eighth Financial Mathematics Team Challenge was held from the 10th to the 20th of July 2023.
The challenge brought together four teams of Masters and PhD students from Austria, Switzer-
land, Lesotho, Zambia, South Africa and the UK to pursue intensive research in Financial Mathe-
matics. Each team worked on a distinct research problem over the twelve days. Professional and
academic experts from Switzerland, Iceland, Australia, South Africa, and the UK individually
mentored the teams; fostering teamwork and providing guidance. As they have in the past, the
students applied themselves with remarkable commitment and energy.

This year’s research included topical projects on (a) Bayesian Model Averaging Applied to Im-
plied Expected Signature Models, (b) Physics-informed Neural Networks for Option Pricing and
Hedging, (c) Sequential Monte Carlo for Index Tracking with Transaction Costs, and (d) South
Africa’s Carbon Opportunity. These were either proposed directly by our academic/industry
partners or chosen from areas of current relevance to the finance and insurance industry. In order
to prepare the teams, guidance and preliminary reading was given to them a month before the
meeting in Cape Town. During the final two days of the challenge, the teams presented their
conclusions and solutions in extended seminar talks. The team whose research findings were
adjudged to be the best was awarded a floating trophy. Each team wrote a report containing a
critical analysis of their research problem and the results that they obtained. This volume contains
these four reports, and will be available to future FMTC participants. It may also be of use and
inspiration to Masters and PhD students in Financial and Insurance Mathematics.

FMTC IX, which will take place in July 2024, is already being organised!

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

When faced with limited market price data for a specific category of financial prod-
ucts, it becomes essential to find techniques to effectively exploit this information
to determine prices of other financial products within an arbitrage-free market. In-
spired by the approach of Arribas et al. (2020) and Cuchiero et al. (2023a), we use
signature payoffs with the intention of applying them for a non-standard calibra-
tion technique based on so-called Bayesian model averaging (BMA).

The problem of model calibration is frequently encountered in finance, where se-
lecting appropriate models based on data from the derivative market is crucial.
These models serve various purposes, such as risk management and pricing of
other more exotic derivatives. To solve the calibration problem, we shall pursue an
approach which differs substantially from the standard least-square minimization
between market prices and model prices. We derive a specific market-based quan-
tity known as the market-implied expected signature. These market-implied prices
of signature payoffs, independent of any specific model, enter into the likelihood
function in our Bayesian model averaging. Thus, this allows us to select only the
cloud of models whose expected signature is close to the market-implied expected
signature.

Signature payoffs are a collection of path-dependent derivatives characterized by
iterated integrals. Due to their nature, signature payoffs encapsulate a wealth of
information encompassing approximations of all possible path dependent payoffs.
In mathematical terms, let S := (St)t≥0, t ∈ [0, T ] be a stochastic process, represent-
ing the price of the underlying, where t represents time and which can be modelled
in either discrete or continuous time. The derivative market exhibits different stan-
dard payoffs. For example, the payoff of a vanilla call option, at maturity Ti and
strike Kj , is given by:

F = (STi −Kj)
+.

The market data provides a price, p, of such a derivative. This market price should
then be reproduced by models such that:

EQ[F ] ≈ p,

where Q denotes a pricing measure. In our case, we ignore the effects of inter-
est rates, as well as market frictions. Examples of such frictions include bid-ask
spreads, transaction costs and price impacts. Via market-implied expected sig-
nature and Bayesian averaging, we want to choose a cloud of models S which
matches the observed market prices, p, for the payoffs, F , well.

The standard model selection approach builds on a parametric class of models and
chooses one specific parameter set in an effort to reproduce the set of prices ob-
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served on the market. However, there are flaws evident in such an approach.
Firstly, the selected model class may be incorrect, which causes difficulty when
predicting the assets’ future behaviour (see Duembgen and Rogers (2014)). Sec-
ondly, numerical difficulties may arise due to Monte Carlo pricing in each of the
optimization steps. Therefore, in this report, we attempt a Bayesian model averag-
ing approach.

Bayesian model averaging (BMA) is an expanded approach to Bayesian inference
that goes beyond traditional methods. In BMA, parameter uncertainty is not only
captured through the prior distribution, but it also incorporates model uncertainty.
By applying Bayes’ theorem, BMA enables the derivation of posterior distributions
for both model parameters and the models themselves. This framework facilitates
direct model selection, as well as combined estimation and prediction, providing a
comprehensive approach to addressing uncertainty in both parameter estimation
and model choice Fragoso et al., 2018. Hence, BMA allows for a direct combination
of models to obtain combined parameter estimates or predictions.

In a nutshell our approach can be summarized as follows:

• We derive market-based quantities referred to as market-implied expected
signatures from prices of standard derivatives in a purely regression based
way.

• We use these market-implied expected signatures, because signature is an
easy to handle, model independent basis for all path dependent derivatives.

• We exploit that signature payoffs can be explicitly priced in the large polyno-
mial class containing most of the models used in finance.

• We use market implied expected signature as indicators for the quality of a
cloud of parametric models of polynomial type.

• We construct this cloud of likely models in a Bayesian sense and average over
it to price and potentially hedge. This is purely integration based, optimisation-
free and takes model uncertainty into account. Moreover, recalibration by
updating the market information can be done consistently without switching
each day to a new model.

The structure of this report is as follows. Section 2 provides an overview of pre-
vious research conducted on signatures and polynomial diffusion models, as well
as some background to the different models and methods employed in this report.
Section 3.1 outlines the mathematical background on signatures and pricing of sig-
nature payoffs. In Section 4, the methodology of the first task is presented, which
is how to obtain market-implied expected signatures from available derivatives’
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data. This is essentially a linear regression task, namely regressing signature pay-
offs on standard (call) payoffs. Section 5 provides the details and results of task
two, which involves the calculation of the expected signature under a polynomial
diffusion model. The third and final task, namely Bayesian model averaging ap-
plied to implied expected signature models, is described in Section 6. This will be
accompanied by the final results obtained from this task. Recomendations and lim-
itations will be provided in Section 7. Finally, concluding remarks will be stated in
Section 8.
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2 Literature review and background

2.1 Background on Signature Literature

Original studies of iterated integrals were conducted by Chen (1957), where smooth
piece-wise paths were considered. Extensions of this to bounded variation and
rougher paths have been explored in Lyons (1998), where the theory of rough paths
has been introduced. This is a branch of analysis where signatures play an impor-
tant role.

There are also many practical applications of signatures. The exploration into ap-
plications in the area of machine learning and time series analysis was done by
Chevyrev and Kormilitzin (2016) and Levin et al. (2013), and studies in the area
of finance by Gyurkó et al. (2013). More recently there have been some papers
on the methods of kernalization of the signature, see e.g. Király and Oberhauser
(2019). Furthermore Boedihardjo et al. (2020) study tail asymptotics of signatures
for rough paths. Signatures have also been utilised in the approximation of solu-
tions to Stochastic Differential Equations (SDEs) by Kusuoka (2004) and Gyurkó
and Lyons (2010). So-called signature-SDEs are explored in Cuchiero et al. (2023b)
where the perspective is taken from affine and polynomial processes. This was
inspired by Arribas et al. (2020) have who developed an alternative to so-called
neural SDEs by introducing a specif sig-SDE model for quantitative finance. This
was further developed in Cuchiero et al. (2022) and Cuchiero et al. (2023a). These
models offer a new approach to calibration and pricing of exotic non-linear finan-
cial products.

2.2 Background to Financial Models

2.2.1 Affine and Polynomial Models

Affine and polynomial processes give rise to an abundance of stochastic models,
both in finite and infinite dimensions. Examples include Ornstein-Uhlenbeck pro-
cesses, the Black-Scholes model (Black and Scholes, 1973), the Heston model (Hes-
ton, 1993), Lévy processes and curve models. Affine and polynomial processes can
be described as a specific class of time-homogeneous Markov processes (Cuchiero
et al., 2012) which exhibit highly useful tractability properties that we shall exploit
subsequently. Applications of these processes in the area of mathematical finance
include

• Pricing of options,

• Term structure of interest rates,

• Credit risk,
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see e.g. Duffie et al. (2003) for further details.

2.2.2 Heston Model

The Heston model was introduced by Steven Heston in 1993 (Heston, 1993). This
model is a stochastic volatility model and is more flexible for pricing of deriva-
tives than the standard Black-Scholes model (Heston, 1993). Under the physical
measure, the asset price in this model follows the diffusion

dSt = µStdt+
√
νtStdWt, (1)

with some parameter µ and W a Brownian motion. The dynamics of the variance
process v are given by a Cox-Ingersoll-Ross (Cox et al., 1985) process of the form

dνt = κ(θ − νt)dt+ α
√
νtdBt,

where B is another Brownian motion correlated with W and κ, θ, α are nonnegative
parameters.

2.2.3 Bachelier Model

Louis Bachelier, regarded as the father of option pricing theory, developed the
Bachelier model (Bachelier, 1900). Bachelier realised that the underlying distri-
bution of stock prices needed to be understood in order to price option contracts
(Sullivan and Weithers, 1991). A normal distribution was derived for these move-
ments, by making use of the central limit theorem of the successive price changes.
Modulo a constant volatility this limit then corresponds to a Brownian motion. The
Black-Scholes and Bachelier model share conceptual similarities for option pricing.
One difference is that the Bachelier model can produce negative prices, but their
probability can be made small by choosing appropriate starting values. The Bache-
lier model dynamics for the price of an asset are described as

dSt = σNdWt,

where σN represents the volatility and W a standard Brownian motion.

2.3 Bayesian Averaging

Bayesian model averaging (BMA) provides a robust framework for incorporating
prior information and updating it with data, leading to improved forecasts and
more accurate inference. For this reason, BMA has seen growing applications in-
cluding energy (see, Zhang and Yang (2015)) and commodity forecasting and pric-
ing (see, Amrouk and Heckelei (2020)) and as well as mixture models for asset
prices in spirit of (Duembgen and Rogers, 2014).
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Hinne et al. (2020) and Steel (2020) summarize some of the advantages of BMA
approaches. Firstly, BMA addresses overconfidence by considering model uncer-
tainty, which is often underestimated when a single model is selected. Further-
more, BMA acknowledges the uncertainty associated with model choice ensuring
a more robust analysis. Secondly, BMA provides optimal predictions under vari-
ous loss functions, even though the true model may be unknown. This approach
mitigates the errors caused by inconsistent model identification. Thirdly, BMA
avoids the rigid all-or-nothing approach of classical hypothesis testing by retaining
model uncertainty throughout the inference process, allowing for a more nuanced
analysis. Additionally, BMA gracefully updates estimates and model weights as
new data accumulate, preventing sudden shifts in estimates and reducing vari-
ance across experiments. However, this comes at the expense of assigning nonzero
probabilities to potentially incorrect models. Lastly, BMA avoids the incoherence
of resurrecting previously rejected models based on new data, ensuring a more
coherent and adaptive approach to model selection.
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3 Foundations of signatures

3.1 The signature of a path

A path is a mapping from an interval [a, b] to Rd. The signature of a path cap-
tures important geometric and analytical properties of the path (Chevyrev and Ko-
rmilitzin, 2016), by estimating numerous path-dependent quantities (Gyurkó et al.,
2013). This section will delve into the basic notations, definitions and properties of
signatures. These are adapted from Cuchiero et al. (2022). The n-th tensor product
of Rd is represented by

(Rd)⊗n := Rd ⊗ . . .⊗ Rd for n ∈ N0.

We introduce the extended tensor algebra as

T ((Rd)) := {a := (a0, . . . , an, . . .) : an ∈ (Rd)⊗n}.

Likewise, the truncated tensor algebra of order N is

TN (Rd) := {a ∈ T ((Rd)) : an = 0, ∀n > N},

with the tensor algebra T (Rd) :=
⋃

N∈N TN (Rd).
Let X be a path of bounded variation denoted X : [a, b] → Rd. The increment of
the i-th coordinate X at time t ∈ [a, b] is denoted as

S(X)ia,t =

∫
a<s<t

dXi
s = Xi

t −Xi
0.

The double-iterated integral for any pair i, j ∈ {1, . . . , d} is defined as

S(X)i,ja,t =

∫
a<s<t

S(X)ia,sdX
j
x =

∫
a<r<s<t

dXi
rdX

j
s .

In the aforementioned formulas, S(X)ia,s and Xj
s are real-valued paths (Chevyrev

and Kormilitzin, 2016). This can be extended by iterating recursively through a
collection of indices i1, . . . , ik for integers k ≥ 1. The iterated integrals can be
written as

S(X)i1,...,ika,t =

∫
a<tk<t

. . .

∫
a<t1<t2

dXi1
t1
. . . dXik

tk
.

Definition 3.1. Let Xa,b indicate the signature of X : [a, b] → Rd. Thus, Xa,b repre-
sents the infinite sequence of iterated integrals of X

Xa,b =
(
1, S(X)1a,b, . . . , S(X)da,b, S(X)1,1a,b, S(X)1,2a,b, . . .

)
.

If we consider a path X on the interval [0, t], we usually only write Xt for its signa-
ture.
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The set of words, I, is the set of multi-indices, through which the superscripts
moves

I = {(i1, . . . , ik) | k ≥ 1, i1, . . . , ik ∈ {1, . . . , d}}.

The signature consists of lower and higher-order terms, which can be interpreted
in the following manner.

• Lower Order Terms: These terms are at most of order three and exhibit rel-
atively simple geometric interpretations in terms of, increments, areas and
volumes. The first-order terms are the increments of the elements

X
(i)
a,b = Xi

b −Xi
a for i = 1, . . . , d.

• Higher Order Terms: The terms represent the generalised polynomials of the
paths.

3.2 The Shuffle Product

An important property of the signature is the ability to represent the product of
S(X)i1,...,ina,b and S(X)j1,...,jma,b as a sum of a series of S(X)a,b (Chevyrev and Kormil-
itzin, 2016). This series is only dependent on the set of multi-indices, I and J. We
recall the following definition from Cuchiero et al. (2023b).

Definition 3.2. For a multi-index I = {i1, . . . , in}, let the basis elements of
(
Rd
)⊗n

be represented as eI := ei1 ⊗ . . .⊗ein where ei denotes the canonical basis of Rd. Let
now J = {i1, . . . , im} be another multi-index. Then the shuffle product is defined
as

eI � eJ =
(
eI′ � eJ

)
⊗ ein +

(
eI � eJ′

)
⊗ ejm .

Thus, we are able to obtain a linear combination of higher-order terms from the
product of two terms (Chevyrev and Kormilitzin, 2016).

3.3 The Universal approximation property

In view of the so-called universal approximation property, linear functionals of the
signature play an important role. We denote them by

L (Xt) =
∑

0≤|I|≤n

lI⟨eI,Xt⟩ for n ∈ N, lI ∈ R.

The proof of this universal approximation result relies on the Stone-Weierstrass
Theorem. The following properties are required to apply it:

1. Point-separation: the set of all linear functionals of signatures of a time ex-
tended path determine the path uniquely.
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2. Algebra property: the product of two linear functionals of the signature is
again a linear functional of the signature.

Due to these properties the Stone-Weierstrass theorem implies a uniform approx-
imation of continuous (with respect to certain variation norms) paths functionals
via linear functionals of the signature on compact sets of paths.

Note that the second point is a result of the following shuffle product theorem
derived by Ree (1958).

Theorem 3.3. Fix two multi-indices I = (i1, ..., in) and J = (j1, ..., jm). Then

⟨eI ,Xt⟩⟨eJ ,Xt⟩ = ⟨eI�J ,Xt⟩.

3.4 Pricing of Signature Payoffs

In this section, the notion of signature payoffs is introduced. A signature payoff is
simply defined as a linear functional of signature, i.e. linear combination of iterated
integrals. This encompasses a large class of path dependent derivatives as it utilizes
iterated integrals against a certain path (Lyons et al., 2019). The definition below
introduces a signature payoffs as presented in Cuchiero et al. (2022)

Definition 3.4. Suppose that the price process, S, is given by a continuous semi-
martingale on some probability space (Ω,F ,P). A payoff F : Ω → R is said to be a
signature payoff with maturity t if there exists m ∈ N, and ℓ := {ℓ∅, ℓJ : 0 < |J | ≤
m}, such that

F := ℓ∅ +
∑

0<|J |≤m

ℓJ⟨eJ · Ŝt⟩,

where Ŝ denotes the signature of Ŝt := (t, St). It is thus nothing else then a linear
functional of Ŝt.

Hence, the computation of the expected signature of Ŝt under a risk neutral mea-
sure is important for pricing purposes of the signature-payoffs.
Using the above universal approximation property, signature payoffs allow for
the approximation of general (continuous) path-dependent payoffs, as long as the
paths of Ŝ determining the payoffs belong to a compact set with high probability.
The following theorem makes this precise (see (Lyons et al., 2019)), assuming that
Ω is the canonical path space and further conditions on the probabilistic model for
Ŝ (which we do not state here).

Theorem 3.5. : Let H : Ω → R be a continuous (with respect to a certain variation
norm) payoff. Let ϵ > 0. Then, there exists a compact set of paths Kϵ ⊂ Ω and a
signature payoff F such that
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1. Q(Ŝ[0,t] ∈ Kϵ) > 1− ϵ for all risk-neutral measures Q;

2. |H − F | < ϵ for all Ŝ[0,t] ∈ Kϵ.
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4 Market Implied Expected Signature

In Gyurkó et al. (2013) signature-based methods were developed in an attempt to
improve the standard approach for model selection. The idea behind this approach
is to calculate the signature of the underlying models, as this is able to classify the
underlying features of the data by utilising only a small number of coefficients.
Later on in (Lyons et al., 2019) signature payoffs, i.e. linear functions of the signa-
ture of the time augmented underlying as defined above, are used to approximate
the payoffs of possibly exotic options.

We go here the other way round and approximate signature payoffs by linear functions
of standardised payoffs, such as calls or puts. Therefore, the initial step is to find a
good way to move from the prices of the standardised derivatives to implied prices
of signature payoffs.
Our solution is on the level of trajectories, i.e. we try to find linear combinations
of the given standardised payoffs Fi(ω) (in our case standard calls), in order to
approximate the signature payoffs as follows:

n∑
i=1

lIi Fi(ω) ≈ XI
T (ω). (2)

Here, ω are model generated trajectories of the financial market and XI(ω) denotes
the signature component corresponding to the multi-index I of the involved model
quantities X(ω), precisely specified below. This reduces to a regression problem,
where lIi are the unknown coefficients which need to be determined for each of the
considered multi-indices I. Consequentially, the first task involves performing a
linear regression.

4.1 SABR Model

In order to tackle the above problem, we need to choose a set of training trajectories,
where the linear equations should hold as well as possible. To generate the training
data we choose the Stochastic-Alpha-Beta-Rho (SABR) model, which is a two-factor
stochastic volatility model. This model was introduced by Hagan et al., 2002. The
process for the price S, and the volatility σt, is given by

dSt = Sβ
t σtdWt,

dσt = ασtdBt.

The parameter β relates to elasticity (see (Choi and Wu, 2021)). The instantaneous
correlation between the two Brownian motions, W and B is

d⟨B,W ⟩t = ρdt.
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This model is a popular stochastic volatility model as it is able to fit to implied
volatility as observed on the market (see (Hagan et al., 2002)) relatively well despite
being quite parsimonious in terms of parameters. This is crucial for risk manage-
ment.

4.2 Methodology

To compute the regression coefficients in (2), calculating the observations (Xti)
N
i=1

is the first step. For this, the SABR model is used where we choose a range of ap-
propriate parameters in line with typical market trajectories. We use the simulated
paths to compute the signature X of X , where

Xt = (St, Vt, t) .

Here, Vt is the instantaneous variance, in the SABR model given by Vt = σ2
t S

2β
t .

Based on the observations (Xti)
N
i=1, the signature components, (Xti)

N
i=1, are com-

puted. In efforts to compute this, the available packages tested were signatory by
Kidger and Lyons (2020) and Reizenstein and Graham (2018) iisignature in Python.
The latter is then used throughout.

4.3 Results

In the simulation, the initial value of S0 is set to 1.0. The ranges of the input pa-
rameters are

β ∈ [0.1, 1],

σ ∈ [0.15, 0.25],

α ∈ [0.2, 0.4],

ρ ∈ [−0.8, 0.2].

The specific set of parameters that is finally chosen is

{S0, σ0, α, β, ρ} = {1, 0.15, 0.25, 0.1,−0.5}.

Using the iisignature package, the signature components are computed up to order
4, for each path, with 100000 paths being generated. This package omits the first
value of the signature, which is the signature corresponding to the empty set and
is always 1. Consequently, we appended the first value to the signature for every
path. For the purpose of performing linear regression, both the linear and ridge
regression packages in Python were tested. A value of 0.05 was used for the regu-
larization parameter in the ridge regression. The linear coefficient results for linear
regression were very large. As a result, we decide to use Ridge regression, in order
to implement a penalty term, and regularize our regression procedure.

15



To check the accuracy of the linear regression, different call payoffs of the form

Fi = (STi −Ki)
+

are computed where ST is calculated using the SABR model simulations. We utlise
10 strikes, K, in the range [0.6, 1.5] and 12 maturities. These are then multiplied
against the computed regression coefficients and compared to the computed signa-
ture components. Figure 1 provides a plot of the expectations of these quantities to
assess predictability.

Figure 1: Sanity check for the computation of expected signatures
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5 Expected Signature Under Polynomial Diffusion Models

This section delves into the model class of polynomial diffusion models. This
model class will be used to compute the expected signatures. The choice of this
model class is due to their flexibility and analytical tractability. Indeed, we can
compute expected signatures in this model class in a highly tractable way. Define
(Yt)t≥0 to be a polynomial diffusion process with the dynamics of the process given
by

dYt = b(Yt)dt+
√

a(Yt)dWt, Y0 = y0.

Here, b : Rd → Rd, a : Rd → R, where a is a positive semi-definite matrix, and
(Wt)t≥0 a d-dimensional standard Brownian motion. We require b to be an affine
function and a to be a quadratic function. We denote the signature by Y. Sub-
sequently, we derive the expected signature of (Yt)t≥0, where the derivation is
adapted from Cuchiero et al. (2022). Define bi(y) and aij(y) as

bi(y) = b0i +

d∑
k=1

bki yk,

aij(y) = a0ij +
d∑

k=1

akijyk +
d∑

h,k=1

ahkij ykyh,

where ahkij = akhij .
We can write these in terms of signatures

bi(yt) = ⟨bi,Yt⟩,

with bi defined as

bi =

(
b0i +

d∑
i=1

bki y
k
0

)
e∅ +

d∑
i=1

bki ek.

To represent aij in terms of signatures, we write

aij(yt) = ⟨aij ,Yt⟩

aij =

a0ij +

d∑
k=1

akijy
k
0 +

d∑
k,h=1

akhij y
k
0y

h
0

 e∅+

d∑
k=1

akij + 2

kh∑
ij

yh0

 ek+

d∑
k,h

akhij ek�eh,

For I = {i1, . . . , in} with |I| ≤ n. The truncated signatures can be written as

d⟨eI,Yt⟩ = ⟨LeI,Yt⟩dt+ ⟨eI′ ,Yt⟩
(√

a(yT )
)
in
dWt,
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with eI′ representing the last element in I being deleted. The truncated signatures,
Yn, are also polynomial diffusions. The operator L, termed the dual operator cor-
responding to Y (Cuchiero et al., 2023a), is defined as

LeI = eI′ � bij +
1

2
eI′′ � ain−1in

=
∑
|J|≤n

ηIJeJ.

This is then used to compute a matrix G ∈ Rdnxdn

GL(I)L(J) = ηIJ,

where dn is the dimension of the truncated signature space and L : {I → |I| ≤
n} → {1, . . . , dn} is a labelling injective function (Cuchiero et al., 2023a). One can
compute the expected values of the signature components, Yn

t via

E


1
YT

Y2
T
...

Yn
T

 = eTG∗


1
0
...
0

 ,

where G∗ the transpose of G and eTG∗
denotes the matrix exponential (Cuchiero

et al., 2023a). This is used to compare with the market implied expected signatures
and to find the parameters of b and a such that the market implied quantities are
matched as closely as possible. The main benefit of this is that the expected signa-
tures can be written as a matrix exponential of the matrix G which is relatively easy
to compute.

5.1 Methodology

The model chosen is the SABR model, with the same dynamics as those depicted
in 4.1 here with β = 0. This is used to compute Yt = (t, St, σt) using Monte Carlo
simulation and to calculate the signature components, Yt, using iisignature. The
expected signatures are derived by taking the expected value over the simulated
the paths. In return, this is compared to the analytical formula which makes use of
Sara Svaluto-Ferro’s code for the computation of the expected signature of a con-
tinuous polynomial process. Before implementing the current SABR model model,
a simple model of two uncorrelated Brownian motions (ρ = 0) is tested. This helps
us become familiar with how the code works, and what inputs are required for the
constant b0i , a

0
ij , linear bki , a

k
ij and the quadratic terms ahkij for the correct execution
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of the code.

The results for the implementation of the two-dimensional uncorrelated Brownian
motion can be found in Section 9.1 of the Appendix.

5.2 Results

For the simulation of the data, we select the following parameter inputs into the
SABR model

{S0, σ0, α, β, ρ} = {1, 0.15, 0.25, 0.1,−0.5}.
The calibrations are performed with a maturity of one year, with N = 100000
Monte Carlo simulations. The calculation of the analytical formula for the expected
signatures is computed using Sara Svaluto-Ferro’s code (Svaluto-Ferro).

The dynamics of the model result in the following constant, linear and quadratic
terms for b and a respectively are as follows

b01 = 1, bki = 0 for i, k = 1, 2, 3,

a0ij = 0 for i, j = 1, 2, 3,

akij = 0 for i, j, k = 1, 2, 3,

akhij =


1 if i = j = 1, and k = h = 2

αρ if i = 1, 2, j = 1, 2, and k = h = 2

α2 if i = j = 2, and k = h = 2

0 otherwise .

The analytical value for the expected signatures are then compared against the ex-
pected signatures computed via the Monte Carlo estimates. The MSE is computed
and the graphs of the analytical and Monte Carlo expected signatures are plotted.

Table 1: Mean Squared Error for the Analytical and Monte Carlo Expected Signa-
tures

Mean Squared Error
7.1799603e-09

A graphic comparison of the expected signatures for the analytical formula against
the Monte Carlo simulations can be found in Figure 3. Figure 2 displays the error
values which were calculated by taking the analytically computed expected signa-
tures minus the Monte Carlo computed expected signatures. Figure 2 depicts the
error values that are randomly scattered on the residual = 0 line. The small value
of the MSE, together with the graphic representations show that the analytical for-
mula and the Monte Carlo computations are very close.
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Figure 2: Sanity check for the computation of expected signatures

Figure 3: Sanity check for the computation of expected signatures
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6 Bayesian Model Averaging

We begin with a parametric class of models (Y θ
t ), which, in our case, is the polyno-

mial diffusion model class. To determine the prices for the signature payoffs, we
make use of the analytical formula to compute

Eθ[YI ] = pθI for i = 1, . . . , n

where YI are the signature payoffs, and pθI are the prices we obtain for them.We
then use this for Bayesian Averaging

p =

∫
θ
pθI0

e−
∑

I ||pθI−pI||2

λ

cλ
π(dθ)

where cλ is a normalising factor to normalise the likelihood time the prior to a
probability measure, i.e. cλ is

cλ =

∫
θ
e−

∑
I ||pθI−pI||2

λ π(dθ).

The value of the parameter λ is typically chosen to be small and the integration
occurs over some prior π distribution, for example, the uniform distribution. In a
slightly different setup Duembgen and Rogers (2014) assert that the key require-
ment is to set λ at a value such that the contribution to the log-likelihood from the
moves of the underlying and from the call surface fitting errors should be of similar
orders of magnitude.

The intended meaning of the quadratic term ||pθI − pI ||2 is that the disparity be-
tween the observed market prices,pI , and the Analytical expected signature,pθI .
We take an uninformed prior π, thus drawing from the multidimensional uniform

distribution. The quantity e−
∑n

i=1 ||pθI−pI||2

λ will be relatively large when the com-
puted prices are close to the market prices and small when there is a big difference
between the two. Hence, if there is a big difference between computed and ob-
served, one just throws it away. The question is whether the outputted price, p, is
realistic, in line with market prices.

6.1 Bachelier-Heston Type Model

For the purpose of simulating data, we employ the Bachelier-Heston type model
following Bachelier (1900) and Heston (1993). Here, the dynamics of the underly-
ing asset, S, and variance, V , are given by

dSt =
√
VtdWt,
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dVt = α
√
VtdBt + κ(θ − Vt)dt,

d⟨B,W ⟩t = ρdt,

where Wt and Bt are Brownian motions with constant correlation ρ.

The dynamics of the model result in the following constant, linear and quadratic
terms for b and a respectively

b01 = 1, b03 = κθ,

bki =

{
1 if i, k = 2

0 otherwise

a0ij = 0 for i, j = 1, 2, 3,

akij =


1 if i = j = 1, and k = 2

αρ if i = 1, 2, j = 1, 2, and k = 2

α2 if i = j = 2, and k = 2

0 otherwise

akhij = 0 for i, j, k = 1, 2, 3,

6.2 Model Robustness Diagnostics

Before implementing the Bayesian averaging approach, the robustness of our model
needs to be validated. The following procedure is implemented:

1. Simulate data with a new set of parameters to calculate new payoffs.

2. The new payoffs are regressed against regression coefficients calculated with
the old set of parameters, which represents the new signature components.

3. Calculate the expected signatures for the new set of signature components.

4. Compute the expected signatures using the analytical formula.

5. Compare the Monte Carlo expected signatures using the regression against
the analytical expected signatures.

Firstly, Simulation of data is performed with initial parameters set to

{S0, V0, α, κ, ρ, θ} = {1, 0.0225, 0.04, 1,−0.5, 0.05}.

Secondly, the expected signatures are calculated using the analytical formula with
a new set of parameters, Θnew. This was performed separately by increasing each
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parameter in Θ by 20%, decreasing each parameter in Θ by 20% and randomly
increasing some and decreasing other parameters by varying percentage values,
whilst still ensuring the Feller condition is satisfied. The parameters for the third
test were set as

{αnew, ρnew, κnew, θnew, V0new} = {0.9α, 0.85ρ, 1.2κ, 1.1θ, 0.95V0}.

(a) Residuals over signatures for 1.2Θ (b) MC vs Analytical Exp. Signature

Figure 4: Residuals and comparison of expected signatures for 1.2Θ

(a) Residuals over signatures for 0.8Θ (b) MC vs Analytical Exp. Signature

Figure 5: Residuals and comparison of expected signatures for 0.8Θ

23



(a) Residuals for random Θ (b) MC vs Analytical Exp. Signature

Figure 6: Residuals and comparison of expected signatures for random Θ

Based on the parameter selection Θ, it is evident from Figure 4a, 5a, and 6a that
the residuals exhibit a concentration around the zero bound. Notably, when using
a larger parameter set Θ, the Monte Carlo simulations tend to slightly underesti-
mate, while with a smaller parameter set, the Monte Carlo overestimates. How-
ever, for randomly selected parameters, the Monte Carlo simulated residuals align
well with expectations.

Nonetheless, the comparison between Monte Carlo and expected analytical values
for the signatures, as depicted in Figure 4b, 5b, and 6b, indicates a good fit across
all parameter selections. Thus, we can conclude that our model is robust, and
insensitive to varying the initial parameters.

6.3 Methodology

The first step involves checking if the calibration works on simulated data, before
implementing it on market data. Thus, the Bachelier-Heston type model is used
to simulate the stock prices and variances, which, together with time, determine
the path for the signature component computation. Our simulated market data
is calculated by regressing the simulated payoffs against the linear coefficients to
get the expected signature. This allows us to be able to estimate any payoff using
our Bayesian Model Averaging formula and compare this to the simulated market
data, pI . In order to test this, we make use of a standard call. We examine results for
different ranges of initial parameters, together with varying strikes against a fixed
maturity. Once this method has been fine-tuned, we are in a position to implement
the market data on the model.
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6.4 Simulated Market Data Results

To simulate the data with the Bachelier-Heston type model, the set of parameters

{S0, V0, α, κ, ρ, θ} = {1, 0.0225, 0.04, 1,−0.5, 0.05},

is chosen, whilst ensuring that the Feller Condition is satisfied (refer to section 9.4
in the Appendix for more information on the Feller Condition). Bayesian averaging
on a variance swap and on simulated standard call prices is performed with the
following set of initial parameters

Parameters Lower End Upper End
κ 0.5 1.5
θ 0.01 0.09
α 0.01 0.09
ρ -0.9 -0.1
σ 0.01 0.05

Table 2: Interval of parameters for BMA model

6.4.1 Variance Swap

We initially implement variance swaps using the Bayesian averaging method. This
involves utilising the variance swap, as it is one of the most liquid observable mar-
ket signatures for a specific underlying asset, which we use to calculate the price
using the Bayesian model averaging (BMA) approach. A variance swap in our case
is defined as:

E
[ ∫ T

0
(Vt − V0)dt

]
.

We modify the Bayesian averaging formula accordingly to represent our defined
case of a variance swap. The variance swap payoff is a specific word which is cal-
culated from the analytical expected signature. The variance swap price is denoted
as pθI0 where I0 denotes a specific word in our expected analytical signature. The
weighting parameter, λ, chosen in the BMA approach to price a variance payoff is
chosen as 0.01.

To obtain the price, we apply the BMA method to a range of parameter intervals
and perform Monte Carlo simulations. To balance computation time, we conduct
1000 simulations and achieve a relative error of 1% for pricing the variance swap.
This indicates our ability to accurately price a variance swap using simulated data.
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6.4.2 Call Prices

We have thus shown that using simulated market data, we can accurately calculate
the price of a variance swap. We will proceed with calculating prices of standard
call options through the BMA using simulated market data. The price of a standard
call option is defined as:

E[(ST −K)+].

In the BMA formulation, the price for a specific strike and maturity is presented
by pθI0 but no specific word is referenced from the analytical expected signature. It
rather represents a price with a specific strike and maturity. The implementation
of BMA to calculate standard call prices is implemented for a fixed maturity of 12
months and 10 different strikes between 0.6 and 1.5.

Figure 7: Comparison of BMA call prices vs Actual call prices
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Figure 8: Comparison of BMA call prices vs actual call prices

In Figure 8, the errors for out-of-the-money options are close to zero, indicating
accurate predictions. This demonstrates that the BMA call prices align closely with
the actual call prices, as shown in Figure 8. We can see that the error observed for
out-of-the-money options is very close to zero. The price of an out-of-the-money
call option is very low and thus the absolute error between estimated and actual
prices may be low even though the relative error may still be high between the re-
spective prices. The absolute error exhibited indicate that our Bayesian Averaging
model accurately estimates call prices for simulated data. Additionally, we observe
the typical relationship between call prices and varying strikes.

6.5 Real-World Market Data Results

6.5.1 Data

The market data employed in the report is the S&P 500 implied volatility surface
of 02/06/2021. The maturities of the data correspond to 14, 44, 58, 79, 107, 135, 170,
289, 302, 316, 352, 380, 562 and 962 days. The prices of the derivatives are computed
using the Black-Scholes model (Black and Scholes, 1973), where the exact pricing
formulas can be found in Appendix 9.3.
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6.5.2 Bayesian Averaging Applied to Real-World Market Data

We once again we remind ourselves of the Bayesian averaging approach formula:

p =

∫
θ
pθ

e−
∑

I ||pθI−pI||2

λ

cλ
π(dθ)

where cλ is a normalising factor given by

cλ =

∫
θ
e−

∑
I ||pθI−pI||2

λ π(dθ).

The pI represented in the formulation above now exhibits the real-world market
data. In order to test the Bayesian averaging procedure for real-world market data
we will be pricing the payoff of a standard call option. The price of a standard
call option for a specified maturity and strike will now be represented by pθ. Once
again in the formulation pθI is our analytical expected signature for a particular θ
parameter set.

A reasonable range of parameter intervals is chosen and λ is set to 0.01. We now
apply the Bayesian averaging approach. The integral in the approach is once again
calculated by estimating the integral through Monte Carlo samples for an inter-
val of parameters. Thus, the price of our derivatives are calculated through the
Bayesian averaging approach. The Bachelier-Heston type model is utilised to sim-
ulate a stock price path, and the parameter range utilized in Bayesian averaging is
shown in the table below:

Parameters Lower End Upper End
κ 2.25 2.75
θ 0.04 0.05
α 0.175 0.225
ρ -0.5 -0.4
σ 0.02 0.03

Table 3: Interval of parameters for BMA model

Using the interval specified above for initialised parameters, the Bayesian model
averaging is implemented to price standard call options for a specific combination
of strikes and maturities. We firstly analyse for an at-the-money call option for a
maturity of length 107 days to analyse the effect of an increase in number of Monte
Carlo samples, i.e. number of parameter sets within our specified intervals cho-
sen. The figure below depicts the effect of increasing the number of Monte Carlo
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samples and we can see that as Monte Carlo samples increase the relative error de-
creases and converges closer to zero. This indicates that as sample sizes increase the
quality of prices obtained from the Bayesian Model Averaging approach improves.

Figure 9: Relative error by number of parameter samples

We can now price standard call options for different combinations of strikes and
maturities. Consequently, we implement the Bayesian averaging for a standard
call option on real-world market data. The results are depicted in the table below.
An initial stock price of 1 was utilized and thus strikes greater than 1 represent out-
the-money and less than one represent in-the-money option prices. We can see that
for in-the-money options the Bayesian Model Averaging provides accurate option
prices compared to the market for all maturities. However, for out-of-the-money
call options, it is yet to calculate the prices accurately when measured on a relative
scale.

BMA Market
T = 0.2932, K = 0.9996 0.034319 0.034275
T = 0.7918, K = 0.9730 0.075321 0.073334
T = 1.5397, K = 0.9730 0.103595 0.103595
T = 1.5397, K = 0.6376 0.366302 0.362914
T = 1.5397, K = 1.7176 0.000112 0.025472

Table 4: Call prices for combinations of strikes and maturities

We have thus shown that the Bayesian model averaging method produces accu-
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rate results for simulated data for standard call options and a variance swap. We
then proceeded to implementing the method using market data and were able to
produce accurate estimates for in-the-money call options for all maturities. For
out-the-money call options there is still space for improvement, which could be
achieved by calibrating to implied volatilities rather than prices.
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7 Recommendations and Limitations

The research and methodology we have implemented through using Bayesian model
averaging to implied expected signature models indicates that one can further im-
prove this model by a number of techniques. Firstly, the computation time can be
reduced with the implementation of neural networks, where a neural network can
be used to calculate the analytical expected signature. This will result in an almost
instantaneous calculation of the analytical expected signature which will drasti-
cally reduce computation time when implementing the Bayesian model averaging
method. Consequentially, one will be able to substantially increase the number of
Monte Carlo samples for the Bayesian averaging method for different parameter
sets from our uninformative prior distribution. This will allow for a wider interval
of initialised parameter sets to be chosen, leading to a higher accuracy of the price
for a specific payoff.

Secondly, an integral aspect of the Bayesian model averaging method is the weight-
ing parameter, λ. One would be able to tune λ in the Bayesian averaging formula
in order to produce an optimal estimate for a price of a payoff as λ weights our
loss function in the Bayesian averaging implementation. If λ is chosen to be too
large, the accuracy of Bayesian averaging will be impacted as a large weight will
be placed on prices where the difference between the analytical expected signa-
tures and market prices is large. On the other hand, a very small λ will enlarge the
exponential to infinity, resulting in an infeasible price being estimated. Therefore,
tuning λ will contribute to an increased accuracy in the estimation of the price for
a specific payoff.

Thirdly, one of the most liquid observable market expected signature is the vari-
ance swap. Using the Breeden-Litzenberger formula together with market data for
call prices, a comparison can be made between the Bayesian approach and the cal-
culated market variance swap prices (Breeden and Litzenberger, 1978). This can be
implemented for multiple maturities which will further test the robustness of the
Bayesian averaging method applied to market data, here for truly path dependent
options.

Lastly, the Bayesian averaging method requires an interval of reasonable starting
parameter values. Tuning the starting parameter intervals, which can be seen as a
hyper-parameter optimisation, will result in a higher accuracy for calculating the
prices of a specific payoff. Consequently, a high order of convergence will be ob-
tained with a lower number of Monte Carlo samples, reducing the computation
time substantially.
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8 Conclusions

Let us recap the procedures we have implemented in the report. Firstly, we derived
the market-implied expected signatures from standard derivative prices. This was
performed via linear regression. We then calculate the expected signature under
polynomial models. Using the market-implied expected signature as indicators for
the quality of the polynomial models (here we implemented the Bachelier-Heston
models), we obtain a cloud of models where we can implement an optimisation-
free calibration, using Bayesian averaging. This allows us to reproduce accurate
option prices.

In conclusion, efficient technologies for model calibration are extremely important.
Our proposed method, which has been introduced here for static calibration, also
allows for dynamic updating using incoming information of all sorts. This is thus a
unique procedure with this property. Through applying expected signatures with
Bayesian model averaging, we are able to produce accurate prices without actually
specifying any specific model. Hence, this method has the potential to price and
hedge path-dependent options in high dimensional settings with dynamic infor-
mation updating.

32



Bibliography

Amrouk, E.M., Heckelei, T., 2020. Forecasting international sugar prices: A
bayesian model average analysis. Sugar Tech 22, 552–562.

Arribas, I.P., Salvi, C., Szpruch, L., 2020. Sig-sdes model for quantitative finance,
in: Proceedings of the First ACM International Conference on AI in Finance, pp.
1–8.
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9 Appendix

9.1 Results of Expected Signatures for Uncorrelated Brownian Motion

The simple uncorrelated Brownian motion model dynamics are

dt = dt, dY i
t = dBi

t for i = 1, 2, d⟨B1
t , B

2
t ⟩ = 0.

The dynamics of the model result in the following constant, linear and quadratic
terms for b and a respectively as follows

b01 = 1, bki = 0 for i, k = 1, 2, 3,

a0ij = 0, akij = 0 and akhij = 0 for i, j, k, h = 1, 2, 3.

To assess the accuracy, the Mean Squared Error was computed, by comparing
the analytical expected signatures against expected signatures computed using
N = 100000 Monte Carlo simulations. The MSE was found to be a very small
number. Further inspection of the accuracy involved a graphic comparison of the

Table 5: Mean Squares Error for the Analytical and Monte Carlo Expected Signa-
tures

Mean Squared Error
9.8523253e-07

expected signatures for the analytical formula against the Monte Carlo simulations.
As depicted in Figure 10, one can see that the model is accurate and performs well.
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Figure 10: Sanity check for the computation of expected signatures

9.2 Bayesian Averaging in Simplified Terms

Below we shall present the use of the Bayesian averaging in simplified terms.

||f ||∞ = lim
p→∞

||f ||p

where f : Θ → R, f ≥ 0. Let f = e−L, where L represents the loss function.
Therefore, we obtain

e-supθ∈Θ e−L(θ) = e− e-inf L(θ)

= lim
p→∞

(∫
Θ
e−pL(θ)ν(θ)

) 1
p

e- inf
θ∈Θ

L(θ) = − lim
p→∞

1

p
log
(
e−pL(θ)ν(θ)

)

The following theorem is made use of:
Theorem:

e−pl(θ)ν(θ)∫
Θ e−pL(θ)ν(θ)

p→∞−−−→ δarg inf L
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9.3 Black-Scholes Formula

If the underlying follows a geometric Brownian motion, the Black-Scholes (1973)
formula implies that the price of a call option and put option (respectively) at strike
at K is given by

Ct = StΦ(d1)− e−rτKΦ(d1 − σ
√
τ)

Pt = e−rτKΦ(−d1 + σ
√
τ)− StΦ(−d1)

where, d1 =
log

St
K

+(r−q+σ2

2
)τ

σ
√
τ

9.4 Feller Condition

Taking into account the dynamics of the Bachelier-Heston type model

dSt =
√
VtdWt,

dVt = α
√
VtdBt + κ(θ − Vt)dt,

one needs to ensure that Vt ≥ 0. By considering the boundary classification criteria,
it shows that Vt can reach zero if α2 > 2κθ Cox et al. (2005). With κ, θ ≥ 0, this
type of model corresponds to a continuous time first-order autoregressive process.
Thus, to ensure inaccessibility of the origin in order to preclude negative volatilities
(Cox et al., 2005), κ, θ and α are chosen such that

2κθ ≥ α2.

This fundamental solution was derived by Feller (1951). See (Feller, 1951, Lemma
8).

9.5 Breeden-Litzenberger formula for variances swaps in Bachelier-type
models

Breeden and Litzenberger (1978) proposed a method to derive the distribution
for an underlying asset from extractable option prices. The Breeden Litzenberger
(1978) approach can also be applied to the Bachelier-Heston type model. Since

S2
T = S2

0 +

∫ T

0
2St

√
VtdWt +

∫ T

0
Vtdt,

the variance swap with maturity T, given by E[
∫ T
0 Vsds] can be replicated as

E

[∫ T

0
Vsds

]
= E

[
S2
T

]
− S2

0

=

∫
0≤K<∞

2E[(ST −K)+]dK − S2
0 .
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To obtain market prices for variance swaps, we set S0 = 1 and replace E[(ST −K)+]
with the market call prices derived using the Black-Scholes formula.
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Chapter 1

Introduction

1 Overview

The pricing and hedging of derivative securities are important and common tasks
in day-to-day finance. A derivative security is a financial instrument whose value
depends on an underlying asset or group of assets. The most common derivative
contracts are written on equities, interest rates, bonds, currencies, market indices,
and commodities. Banks, corporates, governments, and risk managers all around
the world rely on these instruments to hedge against risk as well as to take advan-
tage of potential profit opportunities.

Options are some of the most commonly traded derivative instruments. Option
pricing theory is used in the valuation of these derivatives. Option pricing theory
is a probabilistic approach to valuing derivative contracts. Under this theory, the
option’s price is the expected value of its discounted payoff under the risk-neutral
measure. In continuous time, this can be written as an integration problem where
the integrand is a product of the payoff function and the transition probability den-
sity function (TPDF) of the underlying. Depending on the model of the underlying,
the analytical expression for the TPDF may not be straightforward to obtain. There-
fore, another line of research based on data-driven models has been established in
order to efficiently price financial derivatives in a way that is both quick and accu-
rate.

Hutchinson et al. (1994) demonstrated that when it comes to approximating the op-
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tion pricing function, a neural network (NN) outperforms the Black (1973) model in
terms of both precision and computational efficiency.Yang and Lee (2011), Liu et al.
(2019) and many others agree that an artificial neural network is particularly effec-
tive at valuing options. Our report is on pricing options using physics-informed
neural networks (PINNs). PINNs are neural networks trained to approximate so-
lutions of partial differential equations (PDEs). For option pricing, PINNs can be
used in several ways. Initially, we determine an option’s value via PINNs approx-
imations of solutions to the corresponding Black-Scholes PDE. Subsequently, we
adopt the methodology proposed by Su et al. (2021) to price options. This involves
employing a PINN to approximate TPDFs and using quadrature methods for pric-
ing.

1.1 Quadrature techniques

Quadrature methods are techniques used to approximate the definite integral of
a function. These methods approximate the area under the function curve by di-
viding it into smaller regions and summing up the contributions from each section.

The idea behind quadrature methods is to replace the integrand with a simpler
function that can be easily integrated. This is typically done by approximating
the function as a polynomial or using a set of predetermined points and weights.
The Newton-Cotes formulae, see Abramowitz and Stegun (1968), and Gaussian
quadrature, see Davis and Rabinowitz (1956) are two of the many available quadra-
ture procedures. Newton-Cotes formulae offer simplicity and are generally suit-
able for smooth functions, but they may have limitations when dealing with func-
tions that exhibit rapid variations or singularities. Sermutlu (2005) found that
Gaussian quadratures provide higher accuracy than Newton-Cotes and are more
robust for various types of functions, including those with challenging characteris-
tics. However, Gaussian quadratures may involve more computational effort and
time because of specific point selection and the weighting process. The choice be-
tween the two methods depends on the desired accuracy, the characteristics of the
function being integrated, and the computational resources available.

This report uses the Gauss-Kronrod Laurie (1997) method because of the high ac-
curacy it provides and its adaptive feature for integration.
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Andricopoulos et al. (2003) proposed a flexible and robust method that can ap-
proximate this integral using quadrature (QUAD) technique to value derivatives.
QUAD techniques are methods used to evaluate definite integrals without obtain-
ing the analytical solution. The advantage of such methods is the fact that there
is no need to find the explicit analytical solution of the integral. The methods
solve the integral by approximating the integrand (transition density function in
our case) to solve the integral. When considering a single underlying asset, An-
dricopoulos et al. (2003) found this approach to be faster than traditional deriva-
tive pricing methods such as lattice methods, Monte-Carlo, and finite difference.
The method also proved to be powerful in pricing various options such as path-
dependent options where the path is monitored at discrete time points.

Andricopoulos et al. (2007) extended this QUAD method to pricing options in-
volving one or more underlying assets. These options also included complex path-
dependent and American options. This extension offered flexibility and superior
convergence and thus increased accuracy and speed: the more complex the option,
the more complicated the QUAD method. The method still proved to be more ac-
curate and faster than Monte-Carlo. Chen et al. (2014) further advanced the work
of Andricopoulos et al. (2007) to make it universal for all underlying processes.
In all these three papers, the authors did not address the curse of dimensionality
drawback. Andricopoulos et al. (2007) noted that the limitation is the accuracy of
the approximation method when the model for the underlying becomes more com-
plex (e.g., the Heston model Heston (1993)). The QUAD technique approximates
the transition probability density function with less accuracy and provides solu-
tions for a single set of parameters. This limitation can be addressed by using the
deep learning approach. The deep learning approach approximates the underlying
density using neural networks and provides solutions for a range of parameters.

1.2 Deep learning and PINNs

Deep learning is a form of machine learning that uses artificial neural networks
with multiple layers enabling computers to process and learn from massive amounts
of data and make predictions (Goodfellow et al., 2016). It involves training these
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neural networks to extract complex features from the input data and use them for
classification, regression, and pattern recognition tasks. Deep learning has been
used successively in a number of fields including computer vision, natural lan-
guage processing, and audio analysis (LeCun et al., 2015). The use of deep learn-
ing to solve ordinary differential equations (ODEs) and, more importantly, partial
differential equations (PDEs) has recently gained popularity under the name of
physics-informed deep learning. Adopting this paradigm, we can replace conven-
tional numerical methods with a neural network to approximate the solution to
the differential equation. A key step in using deep learning to approximate PDE
solutions is constraining the neural network to minimise the PDE residual. Several
methods have been suggested for achieving this.

In Lee and Kang (1990) and Dissanayake and Phan-Thien (1994) one can find early
versions of neural network algorithms that solve differential equations. van Mil-
ligen et al. (1995), Lagaris et al. (1998) and Lagaris et al. (1998) develop similar
neural network strategies. Yadav et al. (2015) and Schmidhuber (2015) define and
review a variety of neural network architectures for solving differential equations
that are found in the literature. By adopting a mesh-free approach, deep learning
overcomes the drawback of traditional numerical methods like the finite difference
method (FDM) and finite element method (FEM), which require data sampling us-
ing a mesh. The mesh-free approach is centered on taking advantage of the auto-
matic differentiation Raissi et al. (2019), which in turn breaks the curse of dimen-
sionality when approximating high dimensional problems Grohs et al. (2018).

Some of these methods are restricted to solving particular types of PDEs such as el-
liptic and parabolic PDEs (Beck et al., 2019; Khoo et al., 2021). Other researchers
minimise the corresponding energy functional by using the variational form of
PDEs (Yu et al., 2018). Galerkin-type projections have also been considered because
not all PDEs can be derived from a known functional (Meade Jr and Fernandez,
1994). In particular, Su et al. (2021) modified a deep learning algorithm developed
by Sirignano and Spiliopoulos called the Deep Galerkin ‘Method(DGM) for com-
puting solutions of Kolmogorov PDEs. We follow that same approach by employ-
ing physics-informed neural networks (PINNs) introduced in Raissi et al. (2019)
for option pricing via the transition density. To our knowledge, Su et al. (2021) are
the first to price options by approximating the transition probability density using
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deep learning. However, they potentially used an unnecessarily complex architec-
ture for their neural network compared to the one that we use in this report.

2 Motivation

The primary objective of this report is to utilize PINNs and capitalize on their well-
established capabilities as universal function approximators to determine option
prices. In this respect, we analyze the use of PINNs in two ways. First, for ap-
proximating solutions to Black-Scholes PDEs (approach 1), and second for approx-
imating solutions to Kolmogorov PDEs (approach 2). By extending these PDEs
to parametric PDEs, we can price options for various parameter ranges without
the need to retrain the neural network. This scalability is a crucial aspect of deep
learning in solving parametric problems, specifically in option pricing. Addition-
ally, it proves beneficial for risk management in the finance industry as we seek to
compute sensitivities and determine option prices and densities for the underlying
asset, considering factors like interest rates and volatility, in addition to spot price
and time.

In a core part of this work, we employ PINNs to approximate the cumulative dis-
tribution function (CDF), i.e., the solution to a Kolmogorov PDE. With automatic
differentiation embedded within PINNs, we then obtain the TPDF by taking the
derivative of the CDF. To price options on the underlying asset, we employ a nu-
merical quadrature technique called the Gauss-Kronrod method to evaluate the
integral. The integrand consists of the product of the payoff function and the tran-
sition probability density function.

The remainder of this report is structured as follows; Section 1 of Chapter 2 gives
a description of neural networks and the PINN methodology. Section 2 of Chapter
2 discusses approach 1, which is using PINNs to price options directly from the
Black-Scholes PDE. Section 3 of Chapter 2 discusses approach 2, which is using
PINNs to approximate the TPDF and using it along with a numerical quadrature
method to find the arbitrage-free price of the option. Section 1 of Chapter 3 then
follows with the specifications of our neural network. Sections 2 and 3 of Chap-
ter 3 show the results of approaches 1 and 2 respectively. Section 4 of Chapter 3
compares the experimental results and in Chapter 4, we conclude.
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Chapter 2

Methodology

1 Usings PINNs to approximate PDE solutions

In this section, we introduce PINNs. We start by giving a description of neural
networks which form the basis of PINNs.

1.1 Neural networks

Following the derivation of Mishra and Molinaro (2022), we give an overview of
neural networks. Consider a domain D = {(s, x)|s ∈ [0, T ], x ∈ Rd1} for some
T > 0, d1 ∈ N. Let X ∈ D be an input, then X is transformed into an output
through a feed-forward neural network fθ using a layer of units called neurons.
These layers are composed successively by affine-linear maps A between neurons
and scalar activation functions σ within the neurons resulting in the output:

fθ(X) = AK ◦ σk−1 ◦AK−1... ◦ σ2 ◦A2 ◦ σ1 ◦A1(X), (2.1)

where ◦ represents the composition of functions and σ is a univariate activation
function which is nonlinear. There are multiple different choices for the activation
function σ in Eqn. 2.1 (Han et al., 2017). The sigmoid activation function has been
historically favoured and is expressed as

σ(z) =
1

1 + e−z
, z ∈ R. (2.2)
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However, in modern neural networks, the rectified linear unit (ReLU) is quite com-
mon

σ(z) =

0, if z < 0

z, otherwise
. (2.3)

Let 1 < K ∈ N and define

AKyk = Wkyk + ck for Wk ∈ Rdk+1×dk , yk ∈ Rdk , ck ∈ Rdk+1, (2.4)

for any 1 ≤ k ≤ K. Then our neural network consists of K − 1 hidden layers, an
input layer, and an output layer. An input vector yk is provided to the kth hidden
layer consisting of dk neurons transforming it using an affine linear map Ak and
then by an activation function σ. Our network contains d1+dK+

∑K−1
k=1 dk neurons.

The tunable weights for our network that are to be concatenated are represented
by

θ = {Wk, ck}, ∀1 ≤ k ≤ K. (2.5)

1.2 Physics-informed neural networks

In the following, we give a formal description of PINNs and how they are used
to solve PDE problems. Raissi et al. (2019) defines PINNs as neural networks that
have been trained to tackle supervised learning tasks while adhering to physics
principles specified by general nonlinear partial differential equations. They can
be used to address two types of problems of partial differential equations: data-
driven solutions and data-driven discoveries. A formulation for both problems is
given in (Raissi et al., 2019).

The problems that we are solving fall into the category of data-driven PDE so-
lutions. What we mean by data-driven solutions is that we use input-output data
pairs from the physical system to train the neural network. That is, we compute
the hidden state of a system given boundary data. Let Ω ⊂ Rd be the domain with
the boundary ∂Ω and consider a a general nonlinear PDE :

∂

∂s
u(s, x) +N [u(s, x)] = 0, x ∈ Ω, s ∈ [0, T ], (2.6)
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with a terminal condition

u(T, x) = h(x), x ∈ Ω, (2.7)

and a boundary condition

u(s, x) = g(s, x), x ∈ ∂Ω, s ∈ [0, T ], (2.8)

where u(s, x) is the hidden solution of the PDE and N [u(s, x)] denotes a nonlinear
operator. Following the work of Raissi et al. (2019), we proceed to approximate the
solution to the PDE problem using deep learning. That is, we train the physics-
informed neural network fθ(s, x) to approximate the solution u(s, x). By defining
the residual as

rθ(s, x) :=
∂

∂s
fθ(s, x) +N [fθ(s, x)], (2.9)

the network fθ(s, x) can be derived by using automatic differentiation and the
chain rule for differentiating function compositions Baydin et al. (2018). The pa-
rameters of u(s, x) and rθ(s, x) can then be learned by minimising the loss function

L(θ) := λ1Lr(θ) + λ2LuT (θ) + λ3Lub
(θ), (2.10)

where Lr is the loss term which penalizes the residual, LuT is the loss term which
enforces the terminal condition and Lub

is the loss term which enforces the bound-
ary condition. The λ1, λ2 and λ3 are tuning parameters which control the weight-
ings of Lr, LuT and Lub

respectively. These loss terms are the mean squared errors
that take the form

Lr =
1

Nr

Nr∑
i=1

[
r(sir, x

i
r)
]2
,

LuT =
1

NT

NT∑
i=1

[
u(T, xiT )− hiT

]2
,

Lub
=

1

Nb

Nb∑
i=1

[
u(sib, x

i
b)− gib

]2
,

(2.11)

where {(T, xiT ), hiT }
NT
i=1 denotes the terminal data, {(sib, xib), gib}

Nb
i=1 denotes the bound-

ary data and {(sir, xir), 0}Nr
i=1 denotes collocation points for the residual that are
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placed inside the domain Ω at random.
Constructing a neural network fθ(s, x) for which L(θ) is as close to zero is the
ultimate goal. That is,

find θ∗ : θ∗ = argmin
θ

L(θ).

So that,

∇θL(θ∗) = λ1∇θLr(θ
∗) + λ2∇θLuT (θ

∗) + λ3∇θLub
(θ∗) < ϵ, (2.12)

for a small threshold ϵ. Typically, L(θ) is minimized using a stochastic gradient
descent algorithm.

2 Option pricing via the Black-Scholes PDE

Under the Black and Scholes (1973) model, the price evolution of a European call
option is governed by the Black-Scholes PDE

∂

∂t
V (t, S) +

1

2
σ2S2 ∂2

∂S2
V (t, S) + rS

∂

∂S
V (t, S)− rV (t, S) = 0, t ∈ [0, T ], (2.13)

subject to the terminal condition

V (T, S) = Φ(S), (2.14)

where V is the price of the option, S is the stock price of the underlying, r is the
risk-free interest rate, and σ is a constant volatility of the stock. Eqn. 2.14 is the
payoff of the option at expiry time T determined by the payoff function Φ.

We note that Eqs. 2.13-2.14 are of the form Eqs. 2.6-2.7 and hence we approximate
the price of the option V (t, S) using PINNs. This solution just requires the param-
eters t and S, but it can also be parametrically encoded as a function of σ and/or r
for a given range, allowing us to obtain the price V (t, S, σ, r) after the neural net-
work has been trained for any values of the parameter without having to retrain
the network. Since traditional numerical techniques like FDM and FEM are made
to solve PDEs with fixed parameters, this method is superior to them.
This method only calculates the value of the option for a single payoff described
by the terminal condition.
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3 Option pricing via the transition probability density

Consider an asset with the following stochastic differential equation (SDE)

dS = µ(t, S)dt+ σ(t, S)dWt, S(0) = S0, (2.15)

where (W )t≥0 is a standard Brownian motion. The drift and diffusion coefficients
µ(t, S) and σ(t, S) can be constant, deterministic or stochastic functions. In this re-
port we apply the Black and Scholes (1973) framework in which the evolution of
the underlying under the risk-neutral measure is

dS = rSdt+ σSdWt, S(0) = S0. (2.16)

By option pricing theory, the fair price of the option at time t = 0 on this underlying
asset with the spot price S0 and maturity time T can be expressed as

V (0, S0) = E0,S0 [f(T, ST )], (2.17)

(2.18)

where the discounted payoff is

f(T, ST ) = e−rTΦ(ST ), (2.19)

under the risk-neutral measure for a constant risk-free rate r and a payoff function
Φ. This expectation is conditional on information at time 0 and the asset price S0 at
that time. Eqn. 2.17 can be written as

V (0, S0) =

∫ ∞

0
f(ST ) p(0, S0;T, ST ) dST , (2.20)

with the corresponding transition probability density function (TPDF)p.The inte-
gral starts from zero, because the distribution of the underlying is log-normal in
the Black and Scholes (1973) framework and the log-normal distribution is only
defined for positive values. When approximating TPDFs with neural networks, it
is preferable to work in the log-asset price space rather than the asset price space
since this change in variables enables us to shift the input domain to regions around
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the origin. Generally, this improves the training of neural networks.
Let X(t) = lnS(t), then we use Ito’s lemma to get the log-space transformed SDE
version of Eqn. 2.16 as follows:

dX = e−X(t)

(
r − 1

2
σ2

)
dt+ e−X(t)σdWt, (2.21)

with initial condition
X(0) = lnS0 = x0, (2.22)

and the log-asset price space version of Eqn. 2.20 is

V (0, x0) =

∫ ∞

−∞
f(ey) p(0, x0;T, y) dy, (2.23)

where X0 = lnS0 and p(t, x;T, y) is the TPDF of the solution to Eqn. 2.21. This
is the probability of transitioning from state x at time t to state y at time T . For
any integration bounds, we use a quadrature approach to estimate integral in Eqn.
2.23. We discuss this in more detail in Section 3.2.

3.1 Estimating transition densities

The Fokker-Plank equation, also known as the Kolmogorov forward equation is a
PDE that describes the evolution of the probability density function for a stochastic
process. The solution to this equation is the TPDF. Its initial condition is a Dirac
delta distribution, which is infinite at one point and has zero value everywhere
else. Neural networks typically struggle to approximate and learn to handle such
singularities (Lv et al., 2023).

The appearance of a singularity in the delta distribution makes it impractical to use
PINNs for the Fokker-Plank equation. In order to remove the singularity, Huang
et al. (2021) used a Gaussian distribution with a small kernel to approximate the
delta distribution with a continuous probability density function. To get around
this problem, we solve the backward Kolmogorov equation using the CDF and a
step function as the terminal condition. Thereafter, to obtain the TPDF we differ-
entiate the CDF utilizing automatic differentiation of PINNs.
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3.1.1 The forward Kolmogorov equation for the transition density

Let X be the solution to the Eqn. 2.21 and assume that it has the transition density
p(s, x; t, y). Björk (2009) provides a derivation for the Kolmogorov forward equa-
tion for p(s, x; t, y), it takes the form

∂

∂s
p(s, x; t, y) = − ∂

∂x

[
(r − σ2

2
)p(s, x; t, y)

]
+

1

2

∂2

∂x2

[
σ2p(s, x; t, y)

]
,

t ∈ [0, T ] and x ∈ R,
(2.24)

with the initial condition for a fixed y

p(0, x; 0, y) = δ(x− y), x ∈ R, (2.25)

where δ(x− y) is the Dirac delta distribution. The PDE problem (2.24-2.25) is with
respect to the independent variables (s, x) and parameters (T, y). The Dirac delta
distribution is given as, we recall:

δ(x− y) =

+∞, x = y

0, x ̸= y
, x ∈ R, (2.26)

and
∫ +∞
−∞ δ(x− y) dx = 1. The singularity at the point x = y makes it a challenge to

approximate the TPDF of the problem (2.24-2.25) via the deep learning approach.
Thus, instead of directly solving for the TPDF we solve for the CDF first and then
calculate the partial derivative of CDF with respect to the state parameter to obtain
the TPDF. This method requires the backward Kolmogorov equation for the CDF.

3.1.2 The backward Kolmogorov equation for the cumulative distribution func-
tion

Let X(T ) = XT be the solution of Eqn. 2.21 at the terminal time T. Then the CDF
of the process XT starting at the point (s, x) is defined as

C(s, x;T, y) = P(XT ≤ y|Xs = x)

=

∫ y

−∞
p(s, x;T, z) dz,

(2.27)
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where P(XT ≤ y|Xs = x) is the probability of the random variable XT to not be
greater than y given, that at time s, Xs = x. Björk (2009) provides the derivation
for the Kolmogorov backward equation for C(s, x;T, y), it takes the form

∂

∂s
C(s, x;T, y) +

∂

∂x

[
(r − σ2

2
)C(s, x; t, y)

]
+

1

2

∂2

∂x2

[
σ2C(s, x; t, y)

]
= 0,

s ∈ [0, T ] and x ∈ R.
(2.28)

with the terminal condition for a fixed y

C(T, x;T, y) = P(XT ≤ y|XT = x)

=

1, x ≤ y

0, x > y
, x ∈ R.

(2.29)

With respect to the negative direction of time, the PDE problem (2.29-2.29) has inde-
pendent variables (s, x) and parameters (T, y). Unlike the Fokker Planck equation
2.24, which is with respect to the positive direction of time. Since the terminal con-
dition 2.29 is a step function that is bounded, numerically solving problem 2.28-2.29
is substantially more effective than solving problem 2.24-2.25.
Using deep learning neural networks, PINNs in our case, we can approximate the
CDF and then using automatic differentiation built-in function from a deep learn-
ing library in Julia called Forward Diff, we evaluate the transition probability den-
sity by differentiating the CDF with respect to the space parameter. That is,

p(s, x;T, y) =
∂

∂y
C(s, x;T, y). (2.30)

Numerical differentiation can be done accurately since the differentiation in Eqn.
2.30 is well defined because the CDF C(s, x;T, y) is a smooth function for t ≤ T .
The solution C(s, x;T, y) in problem 2.28-2.29 depends on the parameters T and y,
however, we are able to add more parameters such as σ and r resulting in a CDF
C(s, x;T, y, σ, r). The advantage of this is that we can produce a universal TPDF
for a range of parameters (T, y, σ, r) so that we do not need to solve the PDE again.
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3.2 Estimating integrals using quadrature methods

The n-point Gaussian quadrature Davis and Rabinowitz (1956) is a method of ex-
actly approximating definite integrals of polynomials of order 2n − 1 or less. The
method carefully selects a set of n quadrature points/nodes and corresponding
weights and evaluates the integral as a weighted sum of function evaluations at
these points. Formally,

∫ b

a
f(x) dx =

n∑
i=1

wif(xi).

The accuracy of the method depends on the number of points chosen. There are
a number of different Gaussian quadrature methods but our method of choice for
this paper is the Gauss-Kronrod Laurie (1997) method because of the high accuracy
it provides and its adaptive feature for integration.

3.2.1 The Gauss-Kronrod method

This is an adaptive integration method that combines the Gaussian quadrature
Davis and Rabinowitz (1956) rule with Kronrod extension to achieve higher ac-
curacy. The method adds n + 1 Kronrod points to 2n − 1 points of an n-point
Gaussian quadrature Davis and Rabinowitz (1956) rule such that the resulting rule
has 2n + 1 points. It has two sets of nodes xi and weights wi, the Gaussian nodes
and the Kronrod nodes. The Gaussian nodes and weights approximate the inte-
gral with higher accuracy and the Kronrod nodes and weights estimate the error
of this approximation. If the error is larger than the tolerance, the intervals are fur-
ther subdivided and the error is computed again. This process is repeated until the
desired error tolerance is reached.
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Chapter 3

Experimental analysis

This chapter begins by explaining the experimental setup used and then proceeds
to present the results obtained for experiments run using two approaches to op-
tion pricing via PINNs. The first approach (Section 2) involves directly solving the
Black-Scholes PDE for a call option while the second approach (Section 3) rather
finds the TPDF for the model, and then computes the option price via a quadrature
method using the payoff function and density.

1 Experimental setup

In order to obtain comparable results for the two pricing approaches, the same
PINN specifications (shown in table 3.1) were used for each approach.

Table 3.1: PINN specifications

Network specification Value
number of layers 3
number of hidden layers 2
hidden layer #1 activation function ELU
number of nodes in hidden layer #1 16
hidden layer #2 activation function ELU
number of nodes in hidden layer #2 16
output layer activation function sigmoid
number of nodes in output layer 1
training algorithm quasi random sampling
number of quasi-random points in a sample 105

optimisation algorithm BFGS
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The weightings of the loss function components (PDE loss and boundary condi-
tion loss) were determined using a gradient scale adaptive loss function (Neu-
ralPDE.GradientScaleAdaptiveLoss). The loss function was minimised using the
BFGS optimisation algorithm (OptimizationOptimJL.BFGS).

The domains for the training data were set as t ∈ [0, 1], x ∈ [−0.5, 0.5] (with x =

ln(S) → S ∈ [0.6065, 1.6487]), σ ∈ [0.01, 0.2] and r ∈ [0, 0.1] for both approaches and
a quasi-random sampling technique was used.

2 Option pricing via the Black-Scholes PDE

The Black-Scholes PDE for a call option with the boundary conditions described in
Section 2 of the methodology chapter and a fixed strike of K = 1.1 was solved using
the defined PINN to obtain a parametric function V (t, S, σ, r) of time, asset value,
volatility, and interest rate. Using this function, predictions for option prices and
sensitivities were calculated for various asset values and times to maturity τ . Two
error metrics were computed, namely the absolute and relative errors. The absolute
error was found by taking the absolute difference between the prediction value and
the analytical value and the relative error was found by dividing the absolute error
by the absolute value of the analytical solution, with the modification that a term
of 0.5 was added to the denominator in the fraction to resolve undefined values
when xanalytical is zero or very small. Formally,

absolute error = |xanalytical − xpredict|,

relative error (%) =
|xanalytical − xpredict|
0.5 + |xanalytical|

.

2.1 Pricing

Figure 3.1 shows a surface plot of the price predictions as a function of asset price
divided by the strike S

K and time to maturity τ with a fixed σ of 10% and rate r of
5%. Generally, the pricing function behaves as expected, however, relatively large
errors are observed for large times to maturity τ and asset values deeper in-the-
money. Errors in this region are evident in the second plot of figure 3.2 where the
prediction line deviates from the analytical solution. These errors may be attributed
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to the neural network not fitting the function well at the edge of the training grid,
in both the asset value and time domains.

Additionally, it can be seen that for low τ values there are relatively high errors
at-the-money, where S

K is equal to 1. This is evident in 3.2 for τ = 0.1. Considering
the payoff function for a call option (which is specified as the boundary condi-
tion), it appears that the PINN solution is not able to capture the sharpness of the
function at-the-money, where the payoff changes from a constant zero to a linearly
increasing function.

Figure 3.1: Surfaces plots of the price predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

18



Figure 3.2: Price predictions for a call option as a function of asset price divided
by strike S

K at τ = 0.1 and τ = 1

2.2 Greeks

Since the call option price was found in the form of a parametric function, the
Greeks were computed by simply finding the partial derivatives using an auto-
differentiation method. Figures 3.3 to 3.8 show the predictions for delta (∆ = ∂V

∂S ),
vega (ν = ∂V

∂σ ) and rho (ρ = ∂V
∂r ) with the fixed values again of σ at 10% and rate r

at 5%.

Figures 3.3 and 3.4 for the delta values show significant errors for values deep in-
the-money, which emphasises the neural network’s poor fit to the upper boundary
of the asset value domain. Furthermore, large relative errors are observed at lower
τ values when the value is near the at-the-money point, indicating that there is a
poor fit at the lower bound of the time domain and there are limitations in meeting
the boundary condition specified by the call payoff.
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Figure 3.3: Surfaces plots of the delta predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

Figure 3.4: Delta predictions for a call option as a function of asset price divided
by strike S

K at τ = 0.1 and τ = 1

In figures 3.5 and 3.6 for the vega and figures 3.7 and 3.8 for rho, the same trends
as observed for the fit of the delta are evident for both vega and rho. Most notably
in figure 3.8, at τ = 0.1 the prediction for rho displays unusual behaviour.
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Figure 3.5: Surfaces plots of the vega predictions of a call option as a function of
time to maturity (τ ) and asset price divided by strike ( S

K ) alongside the absolute
and relative errors

Figure 3.6: Vega predictions for a call option as a function of asset price divided by
strike ( S

K ) at τ = 0.1 and τ = 1
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Figure 3.7: Surfaces plots of the rho predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

Figure 3.8: Rho predictions for a call option as a function of asset price divided by
strike ( S

K ) at τ = 0.1 and τ = 1

3 Option pricing via the TPDF

Using the PINN to solve for the model density (as described in Section 3 and Equa-
tion 2.28 of the method) broadens the scope of possible applications as compared
to the previous approach of option pricing. This section begins by showing the
pricing and sensitivity results for a call option and comparing them to the previous
method, then extends the results by pricing an additional option at almost no extra
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cost.

The Greeks are computed by finding the option value as a parametric function,
then using auto-differentiation to find the partial derivatives. As with the results
in the previous section, σ was fixed at 10% and the rate r at 5%

Figures 3.9 to 3.12 below show the CDFs and PDFs found for the terminal asset val-
ues, which will be used to price the options specified in the following subsections.
In the surface plots for the CDF, it can be seen that the largest errors arise due to
the poor fit of the slopes of the predictions. The plots in figure 3.10 highlight this
by showing that at both τ = 0.1 and τ = 1 the neural network struggles to learn
the sharp steepness of the actual CDF. Although the relative error plot in figure 3.9
shows the highest error at τ = 0.1, it should be noted that overall there was a better
fit at τ = 0.1 as evidenced by a root-mean-square error (RMSE) of about 0.08696
for this time compared to the RMSE value of about 0.1352 at τ = 1. This may be
owing to the boundary condition component of the loss function having a greater
weighting.

Figure 3.9: Surfaces plots of the CDF predictions as a function of time to maturity
(τ ) and terminal asset value alongside the absolute and relative errors
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Figure 3.10: CDF predictions as a function of terminal asset value at τ = 0.1 and
τ = 1

The PDFs (figure 3.11) were obtained from the CDF predictions using an auto-
differentiation method. It is clear from the error surface plots as well as the plots in
figure 3.12 that the PDF predictions have a severely poor fit to the actual solutions,
which follows from the CDF predictions not capturing the steepness of the func-
tion. However, in the pricing results that follow, it will be shown that this poor fit
to the density does not make this pricing approach invalid.

Figure 3.11: Surfaces plots of the PDF predictions as a function of time to maturity
τ and terminal asset value alongside the absolute and relative errors

24



Figure 3.12: PDF predictions as a function of terminal asset value at τ = 0.1 and
τ = 1

3.1 Call option

The value of a call option V (t, S, σ, r) as a function of time, asset value, volatil-
ity, and interest rate was obtained using the payoff function of the option and the
obtained density described above.

3.1.1 Pricing

From the absolute error surface plot for the call option price predictions in figure
3.13 it is evident that the magnitude of the errors are significantly lower than those
observed for approach one. This is supported by the fact that the overall RMSE
for the price predictions of the previous approach was about 0.004177, while the
RMSE for the current approach is about 0.0003501 – more than ten times smaller.
Although this approach boasts an improvement, the challenges of fitting the values
at higher asset values and lower values of τ are still apparent. Additionally, there
are also errors around the at-the-money point, as observed for approach one.
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Figure 3.13: Surfaces plots of the price predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

Figure 3.14: Price predictions for a call option as a function of asset price divided
by strike S

K at τ = 0.1 and τ = 1

3.1.2 Greeks

In addition to the improvements shown in the pricing predictions using the second
approach, the computations of the Greeks delta, vega and rho also show a reduc-
tion in the overall errors as evidenced in table 3.2.
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Table 3.2: Comparison of RMSEs for the delta, vega, and rho predictions of two
option pricing approaches

Delta ∆ Vega ν Rho ρ

Approach 1 RMSE 0.04061 0.04128 0.03049
Approach 2 RMSE 0.003092 0.01873 0.01302

In the case of the delta predictions, the error plots in figure 3.15 show that the
highest errors occurred at low τ values and high asset values – in line with the
preceding trends observed. These errors are visible in the plots shown in figure
3.16 which demonstrates that at τ = 0.1 the prediction for delta deviates from the
analytical solution at both high asset values and values going out-the-money.

Figure 3.15: Surfaces plots of the delta predictions of a call option as a function of
time to maturity (τ ) and asset price divided by strike ( S

K ) alongside the absolute
and relative errors
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Figure 3.16: Delta predictions for a call option as a function of asset price divided
by strike ( S

K ) at τ = 0.1 and τ = 1

The plots of the vega predictions in figure 3.17 show that there are relatively high
errors for asset values in the money. Although the mismatch of the prediction to the
analytical solution is prominent in the plots for τ = 0.1 and τ = 1 (figure 3.18), these
results still present a significant improvement to those shown for approach one –
in which case the vega predictions were negative for values deep in the money.

Figure 3.17: Surfaces plots of the vega predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors
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Figure 3.18: Vega predictions for a call option as a function of asset price divided
by strike ( S

K ) at τ = 0.1 and τ = 1

The results for the predictions of rho (shown in figures 3.19 and 3.20) display the
largest errors at the low τ value and high asset value boundaries, again indicating
the difficulties for the neural network to adequately fit the edge of the training grid.

Figure 3.19: Surfaces plots of the rho predictions of a call option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

29



Figure 3.20: Rho predictions for a call option as a function of asset price divided
by strike S

K at τ = 0.1 and τ = 1

3.2 Put option

Other options that only depend on the terminal asset value can be priced using
the model density in the same way as a call option by simply replacing the payoff
function in the calculation. This requires significantly less computation time as
compared to the first approach, which would require the PINN to be re-trained
using the new boundary condition for the option payoff. The pricing results for a
put option are shown in this subsection (figures 3.21 and 3.22) for demonstration.
The Greeks could easily be computed following the same method as for the call
option.
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Figure 3.21: Surfaces plots of the price predictions of a put option as a function of
time to maturity τ and asset price divided by strike S

K alongside the absolute and
relative errors

Figure 3.22: Price predictions for a put option as a function of asset price divided
by strike S

K at τ = 0.1 and τ = 1

4 Summary

The implementation and results of two approaches to option pricing using PINNs
were investigated in this chapter to assess their feasibility and accuracy. Moreover,
the experiments for each approach were run using equivalent models so that fair
comparisons could be drawn between the two approaches and the advantages of
each identified.
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Overall, it was observed that for a call option, the second approach of using TPDFs
for option pricing produced more accurate results. This was supported by lower
RMSE values across all quantities computed (prices and Greeks) and lower abso-
lute errors. It appears that even though the CDF and PDF predictions were not able
to accurately capture the shape of the actual distributions, the pricing and sensitiv-
ity predictions were more accurate due to the averaging nature of the calculations
involved.

In addition to the improved accuracy, the second approach also holds the advan-
tage that other options can easily be priced using the TPDFs obtained with little
extra computational cost. This is significant as the second approach offers more
flexibility with a greater range of applications and this flexibility does not come at
the cost of accuracy.

For both pricing approaches, the largest errors were observed at the boundaries
of the training grid – particularly at low τ values and high asset values. In or-
der to address this, a few adjustments could be made to the PINN design such as
applying larger parameter domains for training then using subsets of these for cal-
culations or using different sampling techniques to better obtain training data near
the boundaries. Another factor that may affect the fit of the solution at the bound-
aries is the weighting of the boundary condition component of the loss function.
This weighting should be carefully chosen and adjusted according to the needs of
the application – for example, in the case of options whose payoffs only depend on
the terminal values, it might be advantageous to apply a higher weighting to the
boundary condition.
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Chapter 4

Conclusions

This investigation aimed to provide a realistic view on the application of PINNs
for option pricing. The relevant theory for this application was detailed and the
methodology to price options using two approaches was developed. The first ap-
proach involved using PINNs to approximate option pricing PDE solutions di-
rectly while the second approach entailed approximating transition probability
densities which could then be used to price a variety of options via quadrature
methods. Following the development of the method, an experimental analysis was
carried out to analyse the effectiveness of each approach. It was found that for a call
option, under equivalent experiment conditions, the second approach performed
significantly better. This was evidenced by the lower error metric scores across the
quantities computed (prices and sensitivities). Although this approach produced
superior results, several issues with the model were apparent – particularly limi-
tations in fitting the boundary values of the training grid. This leads to the need
to investigate more suitable design specifications for PINNs for the application of
option pricing.

Indeed, general PINN training faces a number of challenges. Most prominently,
differing magnitudes of the gradients of the two main loss components promoting
zero PDE residuals and fitting boundary conditions, respectively, can be observed
(Wang et al., 2020). Consequently, during training, it might happen that a PINN
is pushed towards satisfying one loss term in expense of the other. Fortunately,
the PINN framework allows for a number of design choices to improve the imbal-
ance of loss gradients. In this investigation, we tested both manual and adaptive
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weighting of the loss terms for PDE residuals and boundary conditions. In partic-
ular, we found the adaptive scheme proposed by Wang et al. (2020) to be effective
in reducing overall loss.
For option pricing in particular, it might be of interest to prioritize PINN fits at
certain points in the time domain. Fine-tuning the fit at these points by an increased
weighting of certain loss components, therefore, is of importance. Going forward,
this fine-tuning could be further addressed by targeted sampling of training data
in critical regions.
Moreover, our experimental analysis showed better fits of PINNs in central regions
of the domain they were trained on. Consequently, we advocate to select wider
ranges for PINN training than will be used for PINN evaluation.

The main advantages of PINNs for solving PDEs are three-fold. In the course of
the investigation, we tested how these advantages translate to the estimation of
transition probabilities. First, the PINN framework is specifically flexible to in-
corporate high-dimensional input. Thus, transition probability densities for high-
dimensional markets can be readily learned. Second, via parametrized PINNs, it is
possible to jointly solve a range of parametric PDEs. For solving Kolmogorov PDEs
with PINNs, this means that a single training procedure leads to estimated transi-
tion probability densities for a continuous range of asset dynamics. Third, PINNs
are gridless. Once estimated, the transition probability densities can be readily eval-
uated at any space, time and parameter value of the domain.
Consequently, we found that option prices can be computed in split seconds by
numeric integration. However, typical Monte Carlo simulations might be compa-
rably quick. It is up to future research to contrast these approaches on a range of
underlying dynamics.
Concluding our analysis, we believe that the true stronghold of PINNs for TPDFs
lies in risk management. With the PINN technology, it is possible to pre-compute
option derivatives as functions on the domain. These functions can then be readily
evaluated at any time, space, or parameter input without the need of computing
finite differences. In particular, we see great potential for the use of PINNs in dy-
namic risk management. Since derivatives can be computed continuously in time
and space, the PINN technology allows to quickly adapt to changes in the under-
lying or the portfolio setup.
In this work, we presented a proof of concept of PINNs in pricing and risk manage-
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ment in a Black Scholes framework. Going forward, it will be particularly exciting
to investigate the full potential of the PINN technology for estimating transition
probability densities under more general asset dynamics.
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1 Introduction

Index tracking, also known as index replication, is a passive investment strategy
that has gained popularity due to the higher costs associated with active investing
and skepticism regarding the ability of active funds to outperform the market (see
Rompotis (2013),Barber and Odean (2000)). Financial indices track the performance
of a collection of financial assets or an overall market. Indices are not tradable in-
struments themselves, however replication can be achieved by creating a portfo-
lio of assets that closely match the performance of an index. To perfectly repli-
cate the performance of an index, one would need to invest in all its constituents
stocks in the appropriate proportions. This may require continuously trading in
hundreds of assets, which is both costly and often infeasible. More specifically,
index replication’s effectiveness can be influenced by the constituent assets’ liquid-
ity. Furthermore, continuous trading can lead to high transaction costs due to the
costs incurred with each trade and the adjustments made during rebalancing of
the portfolio’s composition. The goal of sparse index tracking is create a portfolio
that closely replicates the performance of a benchmark index while avoiding the
need to invest in all its constituent assets. The desired solution is a portfolio of a
relatively small subset of assets that replicates an index at a lower cost.
Satpathy and Shah (2022) proposed a Sequential Monte Carlo (SMC) algorithm to
address the sparse index tracking problem. The key idea is to interpret the index-
tracking problem as a maximization problem over the set of all possible (fixed-size)
permutations of stocks composing some index and then using SMC as a global op-
timization technique. Despite the novelty and the success of this approach when
compared to other methods, Tibshirani (1996), Xu et al. (2015),Benidis et al. (2018),
it is not clear whether this technique is an optimal index-tracking strategy as it
falls short in addressing the equally significant objective of reducing transaction
costs. Indeed, when rebalancing the tracking portfolio, the algorithm does not ex-
plicitly minimize transaction costs. It focuses solely on minimising the tracking
error between the portfolio and index returns. This approach may lead to marginal
improvements in the tracking error, but the cost associated with the portfolio re-
balancing could outweigh any benefit gained.
The purpose of this work is to improve the Sequential Monte Carlo algorithm pro-
posed by Satpathy and Shah (2022) by accounting for transaction costs in portfolio
rebalancing. To this end, we redefine the dynamics of the index-tracking portfolio
in such a way as to account for (proportional) transaction costs. Relying on this,
we first reformulate the problem by adding a penalization term to the objective
function of the index-tracking problem and then study this modified problem by
adopting similar techniques.
The remainder of the report is structured as follows. The general formulation of
the index tracking problem, as proposed by Satpathy and Shah (2022), is presented
in Section 2. In Section 3, a description of how to adjust the index tracking prob-
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lem for transaction costs is given. Section 5 details the methods used for model
implementation and testing, followed by the results in Section 6. Finally, the report
concludes in Section 7 with a brief summary of the outcomes as well as a short
description of possible further studies.
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2 Preliminaries

2.1 The Index Tracking Problem

In this section, we recall the general formulation of the index-tracking problem.
Let us consider an index I comprised of N stocks. Denote by rI ∈ RT the column
vector of daily return of the index over a period of T days. For each constituent
stock i, let ri ∈ RT be the corresponding returns and set R := [r1, . . . , rN ] ∈ RT×N .
The index tracking problem at time t consists in finding β∗

t ∈ RN such that *

β∗
t := argmin

β∈RN

||rI −Rβ||22 (1)

s.t. 0 ≤ β ≤ 1 (2)

βT1 = 1 (3)
||β||0 = p. (4)

Constraint (3) represents a full budget constraint, while (2) imposes a constraint on
β that limits investors to taking only long positions. The cardinality constraint (4)
restricts the number of stocks used to track the index to a fixed number p ∈ N. An
increase in p might lead to a reduction in tracking errors, possibly incurring how-
ever in larger transaction costs. Thus, p allows us to control the trade-off between
tracking error and trading costs.
The cardinality constraint for β is non-convex and gives rise to an NP-hard prob-
lem. A wealth of methods exist in literature to solve this. Popular methods include
applying L1/2 regularization, using a Lagrangian version with an approximated
L0-norm, replacing the L0-norm with an L1-norm (the LASSO technique), employ-
ing Mixed Integer Quadratic optimisation and various genetic algorithm methods.
We refer to Satpathy and Shah (2022) and references therein for a more general
discussion on this problem as well as an overview of these methods.

2.1.1 Optimization problem as sampling problem

In Satpathy and Shah (2022), Sequential Monte Carlo Methods (SMC) are used to
solve the optimization problem 1. There, the key idea is to interpret the L0 opti-
mization problem as a maximization problem over the set of all possible (fixed-size)
permutations of stocks composing some index and then using SMC as a global op-
timization technique.
Hereafter, we briefly recall the main idea in Satpathy and Shah (2022), see also
Duan (2019).
The index tracking problem with a L0-norm penalty is a regression problem where
the objective function in equation 1 is minimized. Similarly, one can consider the
following maximization problem:
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β∗
t = argmax

β∈RN

exp(−||rI −Rβ||22)

s.t. 0 ≤ β ≤ 1

βT1 = 1

||β||0 = p.

(5)

Introducing the L0-norm penalty translates to finding the optimal permutation P∗

of p stocks (a fixed number of regressors) that solves:

P∗ := argmax
P

exp(−||rI −RPβ̂p||22), (6)

where RP is the submatrix of R corresponding to columns in R for p regressors
and β̂p is given via 1

β̂p := argmin
βp∈Rp

||rI −RPβp||22

s.t. 0 ≤ βp ≤ 1

βT
p1 = 1.

(7)

Moreover, since for every fixed permutation P, exp(−||rI − RPβ̂p||22) > 0 and
bounded above by 1, if a normalization constant C > 0 is introduced, we can
interpret this as a discrete probability distribution function over the permutation
space. The target distribution to be maximised is then expressed as

T (P) :=
exp(−||rI −RPβ̂p||22)

C
. (8)

The optimal composition of p stocks is then the permutation that maximizes this
target distribution.

2.2 Sequential Monte Carlo Methods

A naive approach to solve problem (6) would comprise of drawing samples from
T (P ) and choosing the optimal P that maximises it. However, T (P ) is not easily
sampled from. For such a case, T (P ) can be empirically approximated via SMC
methods. SMC methods sample particles 2 from an initial proposal distribution

1In Satpathy and Shah (2022) the sparse index problem is solved without considering any con-
straints on the β̂p. In such a case the optimal solution admits an explicit form.

2Going forward particles, samples and permutations will be used interchangeably.
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after which a sequence of (sequencial) importance sampling, resampling and sup-
port boosting steps are employed. A collection of weighted particles is then ob-
tained which then represents the approximation of the target distribution. In what
follows we describe in more detail the steps within SMC algorithm as employed
in Satpathy and Shah (2022). See also Del Moral et al. (2006) for a more general
discussion.

2.2.1 Sequential Importance Sampling

The first step in a SMC algorithm is importance sampling. It can be described
as follows: N particles, denoted by (Pi)

N
i=1, are sampled from an easy-to-sample

distribution I(P ), also called proposal distribution. Then, for each i = 1, . . . , N ,
normalized importance weights wi are computed:

wi :=
T (Pi)

I(Pi)

 N∑
j=1

T (Pj)

I(Pj)

−1

.

The pair (Pi, wi)
N
i=1 completely characterizes the target distribution approximation

and all quantities of interest from the distribution can be computed.
The quality of the sample drawn depends on the choice of I(P ), in particular on its
closeness to the target distribution. Moreover, a necessary condition for I(P ) to be
a good initial choice is that its support includes the support of T (P ).
A tool to gauge the quality of the sample (and thus of the proposal distribution) is
given by the computation of its Effective Sample Size defined by:

ESS :=
1∑
wi

2
.

Since the weights wi are normalized, the ESS value will range from 1 to N , where
we remember that N is the number of samples drawn from the proposal distribu-
tion. An ESS value of 1 indicates a poor choice for I(P ), contrary to a value equal
to N which stands for a good choice of I(P ). Indeed, this happens if for instance
each importance weight is equal to 1

N .
However, when approximating a target distribution that is high-dimensional and
complex, the simple importance sampling method tends to yield poor approxi-
mations (Satpathy and Shah (2022)). To account for this, Sequential Importance
Sampling (SIS) methods are used. They aim to gradually approximate the target
distribution with a sequence of approximating distributions.
SIS methods are commonly employed in filtering problems, where a sequence of
new information arrives sequentially. However, in the context of this report, a
sequence of new information used to approximate T (P ) does not occur in the same
manner. To account for this, density tempering is introduced.
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Density tempering is a process proposed by Del Moral et al. (2006) which allows
for sampling from target distributions with higher dimensions.
Its main ideas can be summarized as follows: a collection of synthetic, intermediate
target distributions (Tγi(P ))Mi=0 are introduced, where for all i = 1, . . . ,M , γi ∈ [0, 1]
with 0 = γ0 < γ1 < γ2 < . . . γM = 1.The sequence of γ-modulated distribution is
computed as follows:

∀γi, Tγi(P ) = I(P ) ∗
[
T (P )

I(P )

]γi
.

Notice that Tγ0 = I(P ) and Tγ1 = T (P ), corresponding to the proposal and (true)
target distribution. Similarly, the importance weights between each intermediate
step are calculated according to the following formula:

wγj (P ) := wγi(P ) ∗
[
T (P )

I(P )

]γj−γi

, γi < γj .

The choice of the initial proposal distribution

The initial proposal distribution I(P ) suggested by Satpathy and Shah (2022) is
described as follows. Consider the regression coefficient of determination R2

j for
the jth stock returns. A high R2

j would imply that stock j is more likely to appear
in the final P that maximises T (P ). A sampling strategy without replacement is
considered and the probability of the first jth stock to be chosen is described as:

qj =
R2

j∑N
j=1R

2
j

Similarly, the probability for choosing the next nth stock in a set of N − 1 stocks is
qn

1−qk
. Following this logic, I(P ) for a given permutation P of p stocks is computed

as follows:

I(P ) =
q1 ∗ q2 ∗ . . . ∗ qp

(1− q1) ∗ (1− (q1 + q2)) ∗ . . . ∗ (1−
∑p−1

i=1 qi)
(9)

Notice that I(P ) described above is sequence dependent. The order in which stocks
are chosen to compute I(P ) matters. However, this is not the case for the regression
solution that we consider. Indeed, the value of T (P ) is the same for each combi-
nation of p stocks despite the order in which they appear within the permutation.
We are only concerned with the choice of stocks used to track the index and their
proportion of the current portfolio wealth (their respective weights).
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2.2.2 Resampling

As Tγ(P ) evolves and with each re-weighting process more variability is intro-
duced and fewer samples retain significant weights. This causes weight degener-
acy and consequently a low ESS value. To overcome this phenomenon, one gets
rid of samples with low-importance weights and repeatedly samples those with
high-importance weights. This is in practice done by applying some resampling
methods (see e.g. Chen (2003), Speekenbrink (2016)) whenever the ESS value falls
below a certain threshold (commonly set to N/2). In Satpathy and Shah (2022)
a multinomial resampling technique is implemented. Here, we instead consider
the systematic resampling technique, which can be described as follows. Fix the
number of particles to be resampled to n ≤ N . For k ∈ {1, . . . , n}, let

uk :=
(k − 1) + ũ

N
with ũ ∼ U [0, 1).

Replace particle k with particle i according to the following condition:

P k
t = P i

t , with i s.t. uk ∈

 i−1∑
j=1

wj
t ,

i∑
j=1

wj
t

 ,

where wj denotes the weight corresponding to the particle j.

2.2.3 Support Boosting and Metropolis Hastings Algorithm

Since in the resampling step samples with high weights are repeatedly resampled,
this method causes a loss in particle diversity, leading therefore to a shrink in the
empirical support of the sequence of distributions represented by the particles and
their weights. To account for this problem, an additional step is added with the
intention of boosting the support. To this end, several moves of the Metropolis-
Hastings (MH) algorithm are performed in Satpathy and Shah (2022). Here, we
consider the same method which can be briefly described as follows: after each
resampling step, MH algorithm is used for sampling from the current intermediate
target distribution Tγ(P ), by using a new distribution for proposing a new sample
P ′ and then accepting or rejecting the new sample with some probability.
The MH probability of acceptance, that is the probability of replacing the current
particle P r with the new sample P ′, is computed as follows:

αγ(P
r → P ′) = min

(
1,

Tγ(P
′)

Tγ(P r)
∗ h(P r|P ′)

h(P ′|P r)

)
,

where h(P r|P ′) denotes the proposal density.
Notice that if the ratio Tγi (P

′)
Tγi (P

r) is high there is a greater chance of moving from P r

to P ′.
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The acceptance or rejection step in the MH algorithm is applied until the accu-
mulative acceptance rate reaches 500% to ensure the support of the distribution is
sufficiently boosted.

The choice of the proposal distribution3 in the MH algorithm

The choice of the proposal distribution h is done as follows. Initially, a count-
based probability Qγi(P ) is considered, meaning that the probability of choosing
a stock to be sampled in a permutation is proportional to the number of times
the stock appears in the current sample of permutations. Notice that this choice
reflects the relative importance of particles after the SMC algorithm has reached
the stage indicated by the current γ. Then, the proposal distribution h is defined as
a weighted sum of I(P ), the initial proposal distribution described in Section 2.2.1,
and Qγi(P ):

hω(P r|P ′) = ω ∗ hQ(P r|P ′) + (1− ω) ∗ hI(P r|P ′),

where ω ∈ [0, 1]. Moreover, the distribution employed in Satpathy and Shah (2022)
h is defined in such a way that only a given subset A of the permutation is replaced.
More precisely, to describe the computation of hQ(P

r|P ′) and hI(P
r|P ′) as it is

done in Satpathy and Shah (2022), consider a subset A of the permutation P r that
we wish to replace in order to transform P r to P ′. Since only a subset of P r is
replaced, for every P ′ it holds that P ′

−A = P r
−A. Thus, we sample A from the set

of stocks that exclude stocks in P r
−A. In particular, if the set of all stocks is S, we

sample A from S \P r
−A. We then define hQ(P

r|P ′) as the probability of sampling A
from S \ P r

−A given the count-based probability Qγi(P ) described above. Similarly
hI(P

′|P r) can be computed based on I(P ) applied to the set of S \ P r
−A stocks.

.

Summary of SMC Algorithm

Finally, we give a summary of the SMC algorithm implemented and proposed by
Satpathy and Shah (2022).

1. Fix the number of stocks used to replicate the index to p.

2. Draw n permutations of size p from Tγ=0(P ) = I(P ), for I(P ) computed as
in Equation 9. Set the importance weights for each permutation to 1

n .

3. Choose δ and increment γ such that γ = γ + δ.

4. At γ + δ, compute the importance weights for each permutation using recur-
sive formulas in 2.2.1.

3the proposal in MH algorithm has no relation to the proposal in the Importance Sampling step.
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5. Compute ESS

6. While γ ≤ 1

(a) if ESS ≥ n
2 proceed to Step 3.

(b) if ESS < n
2 . Resmaple and initialise MH with an accumulative accep-

tance rate of 500%.

(c) Set the weights of new samples computed in MH to 1
n and proceed to

Step 3.

7. At γ = 1, samples from T(P) are obtained, represented as pairs of permuta-
tions and their respective weights.

8. Resample once more to obtain new permutations with equal weights.

9. Compute T (P ) for the new sample of permutations to obtain the optimal P ∗

that maximises T (P ) given by equation (8).

3 Transaction Costs

As briefly mentioned in the Introduction 1, in Satpathy and Shah (2022) transaction
costs have not been accounted for when rebalancing the index tracking portfolio.
This can potentially cause stocks to enter and exit the tracking portfolio with mini-
mal benefit but at an increased cost. In order to consider this aspect, in this section
we reformulate the index-tracking problem by adding an additional term to the ob-
jective function which results in a more gradual rebalancing of the index-tracking
portfolio.

3.0.1 Dynamics of the wealth process given proportional transaction costs

We start by describing the evolution of the value of the index-tracking portfolio
over rebalancing times. Consider the ith rebalancing time point ti. If transaction
costs are not considered, the value of the index tracking (self-financing) portfolio
X , for an index comprised of N stocks, is given by:

Xti = Xti−1

N∑
j=1

βj
ti−1

Sj
ti

Sj
ti−1

,

with βj
ti−1

representing the proportion of the wealth invested in the stock j at the
previous rebalancing time ti−1 and only p of these weights are non-zero.
If instead transaction costs are allowed, we model the evolution of X as follows:
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Xti =
N∑
j=1

βj
ti−1

X̃ti−1

Sj
ti−1

Sj
ti

(10)

Here, X̃ti−1 represents the value of the portfolio after the rebalancing time point

ti−1,
βj
ti−1

X̃i−1

Sj
i−1

represents the number of shares held in stock j at time ti−1. At

the next rebalancing time ti, new proportions βti = (β1
ti , . . . , β

N
ti ) of each stock

comprising the current portfolio wealth is computed and the value of the portfolio
needs to be rebalanced to account for this. Thus, the value of our portfolio after
rebalancing is given by

X̃ti = Xti − Cti , (11)

where Cti > 0 is the transaction cost paid for rebalancing at time ti. Since the
portfolio wealth is less due to transaction costs, we take into account that there is
now less money to invest in each stock. Thus, the following equation represents
the value of the portfolio after rebalancing:

X̃ti =
N∑
j=1

βj
ti
(Xti − Cti).

Here, βj
ti
(Xti − Cti) is the amount of money invested in the jth stock at time ti.

Recall we pay a transaction cost for each unit of money we sell or buy. Let ε be
the percentage we pay per unit of money we sell or buy i.e. the rate of transaction
costs. We will incur a transaction cost of ε enforced on the difference in the amount
of money invested in each stock before and after the rebalancing. Following this
logic the overall transaction cost should satisfy the following equation:

Cti =

N∑
j=1

ε

∣∣∣∣∣βj
ti
(Xti − Cti)−

βj
i−1X̃ti−1

Sj
ti−1

Sj
ti

∣∣∣∣∣ (12)

3.0.2 Index tracking problem with proportional transaction costs

Our goal is to minimize the transaction costs incurred at each rebalancing step, i.e.
to minimize the money lost due to transaction costs, C. In order to implement a
constraint on C we can reformulate the regression problem proposed by Satpathy
and Shah (2022) to a regression problem with the following objective function:

βt = argmin
β

||rI −Rβ||22 + λ||C(β)||22, (13)
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where C(β) denotes the solution of equation (12) and λ > 0 is a flexible parameter
needed to model the sensitivity of the algorithm to transaction costs.
Solving the modified problem (13) would require the explicit computation of the
function C(β).
Next, observe that given equation (10), (11) and (12), the evolution of X can be
rewritten as

Xti =
N∑
j=1

βj
ti−1

Xti−1

Sj
ti−1

Sj
ti
− f(Sti−1 , Sti ,βti−1

,βti , X̃ti−2),

for a positive function f which represents the difference of the value of the portfo-
lio X builds accounting for transaction costs, and the one in equation (10), where
transaction costs were not considered.
Finally, for computational convenience, we assume that

f(Sti−1 , Sti ,βti−1
,βti , X̃ti−2) ≈ ϵ

N∑
j=1

∣∣∣∣∣βj
ti−1

Xti−1 − βj
ti−2

Xti−2

Sj
ti−1

Sj
ti−2

∣∣∣∣∣ ,
for some 0 < ϵ ≤ 1. We then consider the following (approximated) equation
describing the evolution of X :

Xti ≈ Xti−1

N∑
j=1

βj
ti−1

Sj
ti

Sj
ti−1

− ϵ
N∑
j=1

∣∣∣∣∣βj
ti−1

Xti−1 − βj
ti−2

Xti−2

Sj
ti−1

Sj
ti−2

∣∣∣∣∣ .
Given all these considerations, we introduce the (simplified) index tracking prob-
lem (allowing for transaction costs) as follows:

β∗
ti := argmin

βti

||rI −Rβti ||
2
2 + λ

N∑
j=1

∣∣∣∣∣βj
ti−1

Xti−1 − βj
ti−2

Xti−2

Sj
ti−1

Sj
ti−2

∣∣∣∣∣
2

s.t. βT
ti1 = 1

||βti ||0 = p,

(14)

where β∗
ti−1

denotes the vector of optimal weights at the previous rebalancing time.
Similarly to the approach in Satpathy and Shah (2022), we introduce distribution
on the space of permutations as a means to solve this problem

T (Pt1) = exp

(
−||rI −RPti

βPti
||22 − λ||βPti

Xti − β∗
Pti−1

Xti−1

Sti

Sti−1

||22
)
/C,

where, for all j = 1, . . . , N (β∗
Pti−1

Xti−1

Sti
Sti−1

)j := β∗,j
Pti−1

Xti−1

Sj
ti

Sj
ti−1

.

Then, applying a similar reasoning as in the case of the optimization problem with-
out transaction costs, in order to find the optimal permutation at time ti, T (Pti) is
approximated via SMC methods using density tempering.
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4 The SMC Algorithm with Principal Component Analysis

This report expands upon the work presented in a paper by Satpathy and Shah
(2022). Satpathy et al. set the number of stocks for constructing an index tracking
portfolio as a constant, p representing 20% of the total number of stocks in the
index. This report chooses to use Principal Component Analysis (PCA) to set the
number of stocks chosen for an index tracking portfolio.
PCA is a statistical method of dimension reduction. PCA decomposes a complex
data set of interrelated variables into a set of uncorrelated principal components. It
achieves this by capturing the variation of the data set, while minimising the loss of
information. Each principal component is derived through a linear combination of
the original variables, where the relative importance of each variable is described
by the coefficient terms. Principal components are ordered such that the first few
components account for the most variation in the original data set. For a detailed
derivation of PCA refer to Jolliffe (2002) and Yang (2015). In the context of this re-
port, an overview of the PCA algorithm can be described as follows.

First, consider the matrix of returns over a time period for all stocks comprising
an index. The return data is centered and the covariance matrix is then calculated.
Next, PCA computes the corresponding eigenvalues and eigenvectors of the co-
variance matrix. The reduced dimension matrix of principal components, Z is then
computed using the following equation:

Z = ATR

Matrix A is defined as orthogonal, and its kth column corresponds to the kth eigen-
vector of the covariance matrix. The eigenvectors are sorted in descending order,
with the first eigenvector representing the one associated with the highest eigen-
value. The number of eigenvectors used to construct A is determined by the de-
sired level of variance explained by the principal components, effectively acting as
a constraint on the dimension of the reduced matrix.
PCA is implemented using the Python package scikit-learn and the variance
explained by the principal components is set to 90%. The variable p is then as-
signed a value equal to the number of principal components computed under this
constraint.
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5 Methodology and Data

This section contains the details of the numerical experiments performed in this
study.

5.1 Models

In this study, the index-tracking algorithm utilized builds upon the algorithm out-
lined in Section 2.2.3, incorporating an extension that involves employing Principal
Component Analysis (PCA) to determine the number of stocks in the tracking port-
folio. The models examined in this analysis primarily vary in their hyperparameter
settings.

To provide a concise overview of the diverse models formulated, the table pre-
sented below summarizes the hyperparameters employed for each model.

Hyper-parameters Values
Step Size (δ) 0.5
Lookback Window Size (T ) 30
ESS Threshold N

2

Number of Particles (n) 100
Transition Kernel Weight (ω) ω ∼ U(0.2, 0.8)

Cumulative Acceptance Rate 500%
Variance Explained 95%
Rebalance Frequency (Observations) 60
Transaction Cost per Unit Nominal (ϵ) 0.05
Transaction Cost Penalty (λ) {0, 1, 10}

Table 1: Table of Hyper-parameters Chosen for Implementation and Comparison
of Models on Real World Data.

In order to assess the performance of the updated model that incorporates trans-
action costs compared to the initial model, we maintain the hyperparameters of
both models at the values specified in Table 1. When λ = 0, this corresponds to the
initial model, without accounting for transaction costs.
It is important to note that we randomly select weights (ω) within the range of 0.2
to 0.8 for the transition kernel. The introduction of random weights (ω) within the
range of 0.2 to 0.8 in the transition kernel serves a specific purpose in the algorithm.
This deliberate choice aims to inject a certain level of noise into the Metropolis-
Hastings framework, with the intention of enhancing the support boosting step of
the algorithm. By incorporating this randomization, we aim to explore a wider
range of potential solutions, potentially uncovering more favorable outcomes and
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improving the overall performance of the tracking model. This approach acknowl-
edges the potential benefits of introducing variability and perturbation into the al-
gorithm, providing an opportunity for further optimization and robustness in the
pursuit of accurate index tracking.

5.2 Constraints and Optimisation

In our numerical experiments, we implemented the index-tracking algorithm with
the inclusion of no-short selling constraints and full-budget constraints. It is worth
noting the implications of introducing these constraints. When incorporating short-
selling and full-budget constraints, the explicit solution of the β parameters be-
comes infeasible, necessitating the use of numerical optimization techniques to
address this challenge. This introduces a critical consideration, as the numerical
optimization algorithm needs to be executed multiple times during the execution
of the index-tracking algorithm, particularly when the Effective Sample Size (ESS)
falls below the threshold, requiring Metropolis-Hastings steps. Consequently, this
can significantly increase the overall runtime and potentially limit the algorithm’s
performance and efficiency.

Fortunately, the problem at hand benefits from the presence of a closed-form ex-
pression for the Jacobian, which provides valuable gradient information. The closed-
form expression for the Jacobian, obtained by simply differentiating equation (14),
is given by

(RTR)β −RT rI + 2λ(Xti − β∗
ti−1

Xti−1

Sti

Sti−1

).

Numerical optimizers that utilize this gradient information can leverage it to en-
hance the convergence speed and improve overall efficiency. In our study, we em-
ployed the Sequential Least Squares Quadratic Programming (SLSQP) algorithm
while incorporating the provided Jacobian. This strategic approach allowed us to
reduce the computation time by a substantial factor of approximately 7.

The utilization of the SLSQP algorithm in conjunction with the available Jacobian
information proved to be a valuable optimization strategy for our algorithm. By
leveraging the closed-form expression of the Jacobian, the algorithm benefited from
accelerated convergence, resulting in a significant reduction in computation time.
This optimization enhancement is particularly advantageous given the necessity
of executing the numerical optimization algorithm multiple times throughout the
index-tracking process, thereby enabling more efficient and timely execution.

The successful reduction in computation time achieved through the incorporation
of the SLSQP algorithm and the utilization of the Jacobian underscores the impor-
tance of employing suitable optimization techniques in addressing the computa-
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tional challenges associated with complex constraints. This optimization strategy
contributes to enhancing the algorithm’s performance, enabling it to handle larger-
scale index-tracking problems efficiently and effectively.

5.3 Data

Simulated Data

In the process of algorithm development, we employed simulated index and stock
data where the true β parameters were known. To generate the stock price paths
for N stocks up to some future time T > 0, we employed the Standard Geometric
Brownian Motion (GBM) model. Each stock price path follows the process

dS
(i)
t = µiS

(i)
t dt+ σiS

(i)
t dW

(i)
t

where µi and σi denotes the drift and volatility of the i-th stock, respectively, and
{W (i)

t : t ≥ 0} denotes a standard Brownian Motion process. The Brownian Motion
processes are correlated such that E(dW (i)

t dW
(j)
t ) = ρi,jdt and ρi,i = 1 . This leads

to an explicit form to determine the stock price paths for each stock i = 1, ..., N
using

S
(i)
tk

= S
(i)
0 exp

 k∑
j=1

(µi −
1

2
σ2
i )∆tj +

√
∆tjσiXi


with time points 0 = t0, t1, ..., tn = T and time increments ∆tj = tj − tj−1. Xi

corresponds to the i-th element in a multivariate normal vector X ∼ NN (0,ρ)
where ρ = Corr(X,X′) denotes the correlation matrix. The multivariate normal
random vectors can be calculated as X = LZ where Z ∼ NN (0, I) and L denotes
the Cholesky decomposition of the correlation matrix ρ.
To account for the dynamic nature of index constituents, we established a fixed
maximum number of stocks (N ) in the asset universe and a maximum number
of stocks that could compose the index (NI ≤ N ). From the asset universe Ω =
{1, ..., N}, a random selection of stocks was made to form the index, along with
random time points indicating when these stocks entered or exited the index. This
gives the set of stocks that the index comprises of at each time point as It ⊆ Ω. This
simulation setup mirrors the dynamic nature of real-world indices, where stocks
are added or removed based on specific criteria and timing.
In order to construct the simulated index time series, we take the weighted average
of stock returns in the index at each time point, i.e.,

rI t =
∑
i∈It

β
(i)
t R

(i)
t
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where at each time point we have that∑
i∈It

β
(i)
t = 1

The simulated data spanned a predetermined temporal window, with a daily fre-
quency. The parameters for drift, volatility, and initial stock prices for the con-
stituent stocks in the index were uniformly sampled within appropriate ranges.
The rationale behind uniformly sampling GBM parameters was primarily to intro-
duce random variation among the simulated stocks. By incorporating this vari-
ation, we aimed to capture the inherent diversity and unpredictability observed
in real-world stock markets. This approach ensured that the simulated data re-
flected a realistic scenario, allowing us to evaluate the algorithm’s performance
under more representative conditions.

To evaluate the accuracy and effectiveness of the index-tracking algorithm, we cal-
culated index returns as the average of the individual stock returns that constituted
it (i.e. β(i)

t = 1
|It| ). By aggregating these returns, we obtained the index value, which

served as a benchmark for evaluating the algorithm’s ability to accurately select the
constituent stocks and estimate the β parameters.

Throughout the simulation experiments, the index-tracking algorithm consistently
demonstrated the capability to effectively identify the stocks forming the index and
accurately estimate the associated β parameters. This successful performance sug-
gests that the algorithm holds promise in real-world scenarios, where the selection
of appropriate stocks and the estimation of β parameters are crucial for achieving
accurate index tracking.

The primary objective of the simulation study was twofold: first, to verify the ef-
ficacy of the index-tracking algorithm and second, to refine and build upon the
algorithm itself. As such, the focus of this study was primarily on algorithm devel-
opment and validation rather than presenting and analyzing specific simulation
results. By prioritizing the algorithm’s performance under controlled simulated
conditions, we aimed to establish its robustness and reliability.

Therefore, in order to emphasize the algorithm’s performance in real-world sce-
narios and its applicability to actual data, the decision was made to not present de-
tailed simulation results in this context. Instead, the focus shifts to the application
of the algorithm to real-world data, where its effectiveness can be better evaluated
and its potential impact on practical index tracking can be assessed. The transition
from simulated data to real-world data allows for a more meaningful and relevant
analysis, providing valuable insights into the algorithm’s practical performance
and potential benefits.
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Empirical Data

For the empirical study, we have extracted various indices from Bloomberg for
different geographical locations. This resulted in a diverse set of empirical data sets
with different observation lengths and number of constituent stocks. The results
presented in this paper is based on the following indices:

Index Number of Observations Number of Stocks
UKX 253 101
HSI 579 81
JALSH 373 131

Table 2: Table of Equity Indices used to test the Performance of the Algorithm.

We consider a combination of indices, both with a large and a small number of
constituent stocks. The daily prices for the constituent stocks, as well as the cor-
responding values of that index are collected from a Bloomberg terminal. Dates
for stock and index returns are aligned with each other. We only consider time
periods in which the data exists for both stocks and indices to ensure the data is
complete. Historically some indices were originally constituted by a smaller num-
ber of stocks. Moreover, over time certain stocks enter or exit an index. Hence, for
numerical and programming reasons, we decided to use time intervals when full
information about all the stocks included in the index is available.

5.4 Performance Metrics

Tracking error
In our study, the primary performance measure we utilize is the tracking error,
as defined in Satpathy and Shah (2022). For actual index returns rI t and tracking
portfolio returns β′

tRt at times t = 1, ..., T , the tracking error can be calculated as

TE =

√√√√ 1

T − 1

T∑
t=1

(rI t − β′
tRt)2 (15)

The tracking error quantifies the level of deviation between the returns of the index
tracking portfolio and the target index. It can be calculated as the standard devi-
ation of the return residuals, which are the differences between the returns of the
index and the returns of the index tracking portfolio.
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By examining the tracking error, we gain insights into the accuracy and effective-
ness of the index tracking strategy. A lower tracking error indicates a closer align-
ment between the portfolio’s performance and the target index, suggesting a higher
degree of replication. Conversely, a higher tracking error implies a greater level of
deviation, indicating potential inefficiencies in the tracking strategy.

Total Transaction Costs
In the context of transaction cost-conscious investing, monitoring the evolution of
the wealth process over time becomes crucial. Therefore, as a second equally im-
portant metric, we focus on the total transaction costs incurred throughout the in-
vestment time horizon. If transaction costs are defined as in section 3, then the total
transaction costs can be calculated as

TC =
n∑

i=1

Cti (16)

Tracking the total transaction costs allows us to assess the overall cost-effectiveness
of the tracking strategy. These costs are calculated at the end of each rebalancing
period, representing the expenses incurred during the adjustment of the portfolio’s
composition. By analyzing the total transaction costs at the end of the investment
period, we gain valuable insights into the performance of the tracking strategy in
terms of transaction costs.

The interpretation of the results regarding transaction costs should take into ac-
count the specific investment objectives and constraints of the investor. Lower
total transaction costs are generally desired, as they indicate a more efficient al-
location of resources. However, it is important to balance these cost considerations
with the tracking error. Intuitively, there is often a trade-off between minimizing
tracking error and minimizing transaction costs. Achieving a lower tracking er-
ror may require more frequent portfolio rebalancing, leading to higher transaction
costs. Conversely, reducing transaction costs may involve a less frequent rebalanc-
ing strategy, potentially resulting in a higher tracking error.

By evaluating both the tracking error and total transaction costs, we can compre-
hensively assess the performance of the index tracking strategy. It allows us to
understand the trade-offs between achieving accurate index replication and man-
aging transaction costs, enabling investors to make informed decisions based on
their specific investment goals and preferences.

20



6 Results

We first start with showing numerical results of our experiments and then focus on
illustrations:

Cost Penalty TC TE Stocks Observations Index
0 0.25605034 0.0111446 101 253 UKX
1 0.25456173 0.01083406 101 253 UKX
10 0.21098796 0.00973762 101 253 UKX
0 0.34191537 0.01302433 131 373 JALSH
1 0.32203768 0.0123977 131 373 JALSH
10 0.30493293 0.0116939 131 373 JALSH
0 0.47397364 0.01310602 81 579 HSI
1 0.45218308 0.01332093 81 579 HSI
10 0.416406 0.01171881 81 579 HSI

Table 3: Empirical Performance Metrics

Here the ”TC” column denotes the overall transaction costs (see equation (16)) and
”TE” denotes the tracking error which was introduced previously in equation (15).
Table 3 demonstrates the overall performance of different models across 3 market
indices. It can be seen that the higher penalty terms on transaction costs tend to
decrease overall transaction costs for the majority of indices, aligning with our ex-
pectations. This observation is noteworthy as it indicates that the imposition of
penalties on transaction costs successfully achieves the intended objective of re-
ducing overall expenses.
Surprisingly, the degree of penalty imposed on transaction costs does not signif-
icantly influence the tracking error. In all cases, the tracking strategies character-
ized by the highest cost penalties outperform other models in terms of both costs
and tracking error. This intriguing finding suggests that the relationship between
transaction costs and tracking error is more intricate and multifaceted than initially
presumed.
Overall, the results suggest that higher penalty terms on transaction costs can ef-
fectively reduce overall expenses, while their impact on tracking error remains rel-
atively independent of the imposed penalties. These insights shed light on the
complex interplay between transaction costs and tracking error, highlighting the
need for further investigation into the underlying mechanisms that drive their re-
lationship.
Now we will look at the plots demonstrating the performance of the prepared mod-
els:
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Figure 1: JALSH Tracking portfolio value versus actual index price.

By looking at 1 we can see how the learned strategy copes with tracking the real
index. This part replicates the work of Satpathy and Shah (2022). Other similar
plots can be found in the Appendix 7

22



Figure 2: UKX Tracking Portfolio Wealth Process for Different Cost Penalties

Figure 2 demonstrates how the tracking portfolio evolves under different strate-
gies. As we can see, the strategy based on the model with the highest transaction
costs penalty outperforms other strategies, that is, has the smallest cumulative ex-
penses.
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Figure 3: UKX Cumulative Transaction Costs for Different Cost Penalties

The plot above 3 illustrates the effect of varying the cost penalty. Clearly, the trans-
action costs are less for higher cost penalties, as expected.
The analysis of higher penalty terms on transaction costs yields several noteworthy
conclusions. Firstly, it is observed that implementing such penalties successfully
reduces the overall transaction costs for most indices, aligning with the expected
outcome. This indicates that the imposition of penalties effectively achieves the
objective of mitigating expenses.
Surprisingly, the degree of penalty imposed on transaction costs has minimal im-
pact on the tracking error. Regardless of the penalties imposed, the tracking strate-
gies with the highest cost penalties consistently outperform other hyperparameter-
izations in terms of both costs and tracking error. This intriguing finding suggests
that the relationship between transaction costs and tracking error is more intricate
and nuanced than initially assumed.
These conclusions emphasize the complex interplay between tracking error mini-
mization and the incorporation of transaction costs into the objective function. The
study reveals that there are additional factors at play beyond the straightforward
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trade-off between minimizing tracking error and integrating transaction costs. This
highlights the need for a deeper understanding of the underlying mechanisms that
govern the relationship between these variables.
Importantly, the findings demonstrate that it is possible to consider transaction
costs while still achieving effective tracking of an index. This challenges the no-
tion that incorporating transaction cost considerations compromises the ability to
closely track a benchmark. Instead, the results suggest that investors and portfolio
managers can integrate transaction cost considerations into their strategies without
sacrificing the goal of closely tracking an index.
Overall, these conclusions underscore the significance of further research and anal-
ysis to fully grasp the intricate dynamics between transaction costs, tracking error,
and portfolio optimization. The report provides insights that challenge initial as-
sumptions and highlight the potential for refining strategies that simultaneously
account for transaction costs and maintain effective index tracking.
An additional noteworthy observation is the utilization of the Metropolis-Hastings
algorithm in the proposed method, which introduces inherent stochasticity into
the runtime. This stochastic nature stems from the Monte Carlo method employed
within the Metropolis-Hastings algorithm.
Monte Carlo methods rely on random sampling to approximate solutions, resulting
in a certain level of variability in the runtime of the algorithm. Even when provided
with the same input data, the number of iterations necessary for convergence, the
acceptance rate of proposed moves, and other factors contribute to the stochastic
runtime.
The stochastic nature of the algorithm’s runtime implies that each execution may
yield slightly different results, despite the consistent input data. This randomness
should be considered when interpreting the outcomes of the algorithm. It em-
phasizes the importance of conducting multiple runs or employing appropriate
statistical techniques to account for the inherent variability and ensure robust con-
clusions.
By acknowledging the stochasticity introduced by the Monte Carlo method and the
Metropolis-Hastings algorithm, we can better understand the potential variability
in the runtime and results of the proposed method. This awareness prompts the
need for careful analysis and proper statistical considerations when interpreting
and drawing conclusions from the algorithm’s outcomes.
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7 Conclusions

The analysis of higher penalty terms on transaction costs yields several noteworthy
conclusions. Firstly, it is observed that implementing such penalties successfully
reduces the overall transaction costs for most indices, aligning with the expected
outcome. This indicates that the imposition of penalties effectively achieves the
objective of mitigating expenses.

Surprisingly, the degree of penalty imposed on transaction costs has minimal im-
pact on the tracking error. Regardless of the penalties imposed, the tracking strate-
gies with the highest cost penalties consistently outperform other hyperparameter-
izations in terms of both costs and tracking error. This intriguing finding suggests
that the relationship between transaction costs and tracking error is more intricate
and nuanced than initially assumed.

These conclusions emphasize the complex interplay between tracking error mini-
mization and the incorporation of transaction costs into the objective function. The
study reveals that there are additional factors at play beyond the straightforward
trade-off between minimizing tracking error and integrating transaction costs. This
highlights the need for a deeper understanding of the underlying mechanisms that
govern the relationship between these variables.

Importantly, the findings demonstrate that it is possible to consider transaction
costs while still achieving effective tracking of an index. This challenges the no-
tion that incorporating transaction cost considerations compromises the ability to
closely track a benchmark. Instead, the results suggest that investors and portfolio
managers can integrate transaction cost considerations into their strategies without
sacrificing the goal of closely tracking an index.

Opportunities for Further Study
Future research to be explored could include:

1. Consider the market impact as it can also lead to the additional losses when
working with large volumes. Hence, investor should come up with smart
order routing algorithms to optimize trade execution and reduce market im-
pact. These algorithms can help split large orders into smaller ones and exe-
cute them in a way that minimizes price impact.

2. Consider liquidity screening to avoid investing in assets that may have high
transaction costs or are illiquid, as these can significantly impact the perfor-
mance of your tracking strategy.

3. Consider short sales so one can also track ”short” indices. As well as consid-
ering short position, i.e. negative β’s which will relax the constraints in the
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proposed method.

4. Consider other types of transaction costs: Tiered Commissions, Fixed-Plus-
Percentage Commissions, Flat Fee Commissions.
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Appendix

In this part we will provide some additional plots similar to those given in 5.

Figure 4: DAX Cumulative Transaction Costs for Different Cost Penalties
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Figure 5: IPSA Tracking portfolio value versus actual index price
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Figure 6: IPSA Tracking Portfolio Wealth Process for Different Cost Penalties
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Figure 7: IPSA Tracking portfolio value versus actual index price
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Figure 8: JALSH Tracking Portfolio Wealth Process for Different Cost Penalties
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Figure 9: HSI Cumulative Transaction Costs for Different Cost Penalties
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Figure 10: HSI Tracking Portfolio Wealth Process for Different Cost Penalties
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Figure 11: HSI Tracking portfolio value versus actual index price
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Disclaimer

This report is a personal view and does not represent the views of any organisation
such as a private company or academic institution. This report is no advice or
guidance. Certain information contained in this document has been obtained or
derived from third party sources and such information is believed to be correct
and reliable but has not been independently verified. Furthermore the information
may not be current due to, among other things, changes in the financial markets or
economic environment. No obligation is accepted to update any such information
contained in this presentation. The authors and their affiliations shall not be liable
in any manner whatsoever for any consequences or loss (including but not limited
to any direct, indirect or consequential loss, loss of profits and damages) arising
from any reliance on or usage of any material contained in this report and accepts
no legal or other responsibility to any party who directly or indirectly views or
receives this material.
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1 Introduction

Climate change results from a shift in climate patterns. This shift has been ac-
celerated by human action through the release of greenhouse gases (GHGs) into
the atmosphere (Hayhoe et al., 2018). Globally, the electricity generation sector is
responsible for 43% of carbon emissions consisting of carbon dioxide (CO2) and
methane (CH4) in 2020, see Climate Watch (2020).

Many countries, financial institutions, and organisations are in support of facili-
tating the reduction of carbon emissions. Nearly 200 countries signed the Paris
Agreement Act of 2015 to slow down climate change by limiting the rise in tem-
perature to 2◦C above the pre-industrial levels, and ideally, 1.5◦C (Blaufelder et al.,
2021). It was further suggested that this requires that GHG levels are cut by 50%
in 2030 and net zero be achieved by 2050. As a result, countries and companies
have implemented various strategies to reduce emissions. These approaches en-
compass taxation, provision of subsidies, and the voluntary carbon credits market,
all of which have significant implications for financial firms and their products.

In response to the climate change issue, nations are increasingly turning to the im-
plementation of carbon taxes. A carbon tax puts a price on carbon by stating the
taxation rate on GHG emissions above an established standard or on the amount of
carbon present in fossil fuels that exceeds the pivot point (The World Bank, 2023).
Therefore, the price of carbon is driven by a central government. The tax collected
from suppliers will lead to an increase in prices for finished goods or services,
which consumers will ultimately bear the cost of. Such incentives/penalisation
impacts both, suppliers and consumers to move towards low-carbon/renewable
sources. This point is supported by Parry (2019) who suggests that a $35 per ton
carbon tax would reduce emissions by a larger percentage than the Paris pledge in
the Group of Twenty (G20) countries, shown in Figure 1.

Figure 1: G20 GHG Emission Reduction with Introduction of Carbon Tax (Parry,
2019).
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There is a rising concern that certain companies might relocate their production to
countries where carbon taxes are not mandated, with the intention of importing the
finished goods and thereby avoiding the need to pay carbon taxes. This is known
as carbon leakage. Many countries, including the EU, are proposing a carbon bor-
der adjustment, which places charges on the carbon content of imported products
to ensure treatment equivalent to domestic carbon pricing, potentially combined
with rebates for the carbon content of exports (Keen et al., 2022). The charge can be
interpreted either as a tax or as a requirement for companies importing goods to
purchase allowance for carbon emissions during the production of the good (Eu-
ropean Commission, 2023). The benefit of this adjustment is that it mitigates the
risk of carbon leakage and increases the likelihood of implementing carbon taxes
in export countries that currently do not have them, as the cost of importing their
goods would be lower.

Other subsidies include incentives given by the government such as grants and tax
rebates (Gandhi and Cuervo, 1998) directed at companies or individuals that use
clean technologies in production or produce negative emissions (absorb CO2). This
approach ensures that the burden of GHG emissions falls on heavy polluters, as the
revenue generated from carbon taxes can be utilized to fund such subsidies.

Lastly, carbon credits, which are purchased voluntarily from the carbon market,
also work to support GHG emission reduction. Blaufelder et al. (2021) define car-
bon credits as certificates constituting the quantities of GHGs that have been kept
out or removed from the atmosphere. To meet the world’s targets, Blaufelder et al.
(2021) estimated a demand increase in carbon credits of up to 7 to 13 gigatons (Gt)
of CO2 by 2050 under the Network for Greening the Financial System (NGFS) 1.5◦C
and 2◦C scenarios. The demand and supply of the certificates influence the prices
per ton. In the certificates market, the government issues new certificates, whereas
in the carbon futures market, previously issued certificates are traded among com-
panies. A carbon credit future is an instrument that is entered into by two parties,
where the underlying is a carbon credit, allowing the buyer to offset their emis-
sions without directly investing in negative-emission projects (DGB Group, 2023).
This means that entering this contract reduces the risk of fluctuating prices of car-
bon credits as they are dependent on demand and supply. Carbon futures markets,
e.g., the EUA, are young and limited with expiry dates up to a couple of years.

The above are financial initiatives that have been undertaken to address some of the
man-made impacts driving climate change. However, the incorporation of carbon
emissions into project financing faces a major challenge due to the limited avail-
ability of information. This report attempts to address this challenge by bridging
the existing information gaps and offering valuable insights. The objective is to
facilitate the integration of carbon emissions into the pricing and risk management
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of financial instruments related to a power utility firm. By subjecting various sim-
ulations to stress testing against the scenarios defined by the NGFS, explained in
Section 2.4, we assess the probability of default and market prices of bonds suscep-
tible to emissions-related risks. It is important to note that NGFS scenarios are not
derived from historical data nor do they serve as forecasts/predictions of future
outcomes. Instead, they represent potential future outcomes, allowing us to evalu-
ate and prepare for a range of possibilities.

The report is structured as follows. Risks associated with climate change are briefly
discussed in Chapter 2, along with the measures taken to reduce these risks. The
theoretical foundation of structural models as well as the assumptions made for the
model we propose are explained in Chapter 3. In this report we consider Eskom,
South Africa’s state-owned power utility firm. In Chapter 4 we give a general
review of Eskom, a description of the data we used, and instructions on how to
test the suggested models. In Chapter 5 we present our results when applying our
proposed modelling framework to Eskom and discuss the effects of the different
NGFS scenarios on Eskom’s viability. Moreover, in Chapter 6, we discuss the value
adjustment for carbon costs of interest rate swaps linked to Eskom.

2 Background

2.1 Environmental, social and governance (ESG) framework

Commercial investment strategies usually revolve around shareholder capitalism,
prioritising the maximisation of profits and share prices. ESG investing goes be-
yond this by incorporating other factors that include environmental, social, and
governance challenges and developments in the analysis, selections and manage-
ment of investments. (Boffo and Patalano, 2020). Inderst and Stewart (2018) expand
these factors as follows:

• Environmental: climate change, carbon emissions, pollution, resource
efficiency, biodiversity;

• Social: human rights, health and safety, diversity policies, community
relations;

• Governance: corporate governance, corruption, rule of law, institutional
strength, and transparency.

Climate change is a significant factor that poses challenges to achieving sustainabil-
ity. The importance of corporate sustainability has been steadily increasing and is
now a major concern for many businesses. Oprean-Stan et al. (2020) delves into
this idea, highlighting that while the maximisation of profits and share prices re-
mains crucial, the factors associated with sustainability, such as addressing climate
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change, have an impact on long-term sustainable development. This perspective
emphasises that solely focusing on short-term factors fails to account for the future
implications and necessitates the inclusion of long-term factors through the ESG
framework.

However, the challenge associated with incorporating the ESG framework is the
lack of a universally accepted taxonomy. The distinction between what qualifies
as socially and environmentally sustainable can vary across different communities,
countries, and regions. This variability poses difficulties in establishing a defini-
tive measure of what is considered sustainable, clean, or green. To address the
challenge, this report employs the concept of emission footprint, which is mea-
sured in the carbon dioxide equivalence, CO2e. The emission footprint refers to
the amount of GHGs emitted by a company or project activities, converted to a
unifying metric, given in terms od CO2e. This approach serves the purpose of
standardising the measurement process, enabling improved accuracy and easier
comparability across different entities during analysis. In particular, this approach
follows a sequence of recent papers (Kenyon et al., 2021, 2022, 2023), where the
authors proposed the so-called carbon equivalence principle for the re-design and
analysis of all financial products so that carbon flows are treated in the same way
as cash flows in financial terms sheets.

2.2 The South African Context

South Africa is one of the countries that signed the Paris Agreement Act of 2015,
showing its support in the reduction of GHG emissions according to South Africa’s
Low Emissions Development Strategy (SA-LEDS). The updated 2030 Nationally
Determined Contribution (NDC) target for South Africa is 366–436 MtCO2e while
net zero-emissions is the 2050 NDC target (Climate Action Tracker, 2023). Fig-
ure 2 shows the current standing of South Africa is insufficient in comparison to
its commitment. South Africa’s total GHG emissions is 477 MtCO2e, and 41%
of these emissions are related to electricity production (USAID, 2015). Approxi-
mately 85.02% of the electricity in South Africa, supplied by Eskom, is obtained
from coal (ESKOM Generation Division, 2021). This heavy reliance on coal as an
energy source carries significant environmental impacts, primarily the emission of
GHGs.
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Figure 2: Summary of South Africa’s Overall Current Rating (Climate Action
Tracker, 2023).

To support the reduction in carbon emissions and promote a low-carbon economy,
there are various measures that South Africa has established including the intro-
duction of a Carbon Tax in 2019 (SA Department of Environmental Affairs, 2020).
This policy includes the incorporation of an additional carbon offset allowance as
a proactive measure to mitigate carbon emissions. Initially set at a rate of R120
per ton of CO2e, the tax rate has been subject to annual adjustments based on the
Consumer Price Index (CPI) plus 2%. In future years, it will be adjusted by CPI
only. As a result of these adjustments, the current price valid for 2023 stands at
R159/tCO2e. Carbon offset allowances entitle these taxpayers to a reduction in the
tax by a percentage of their emissions, which are obtained if they invest in projects
aimed at reducing their carbon footprint. The implementation of the carbon tax
follows a phased approach, and the initial phase is scheduled to conclude on 31
December 2025. As a result, taxpayers will continue to enjoy a tax-free allowance
of 60% during this period.

Additionally, some of the planned policies that are yet to be implemented are the
introduction of voluntary carbon credits under the carbon budget, subsidies, and
Sectoral Emissions Targets (SETs) (SA Department of Environmental Affairs, 2020).
Through this South Africa will aim to mitigate carbon emissions and promote sus-
tainable practices.
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South Africa contributes to 1% of the global emissions, which is a relatively small
percentage of the total carbon footprint compared to countries like China or the
USA (Mashishi, 2012). Hence, one may argue that mitigation policies are not rel-
evant for the country. However, the incoming carbon border tax in the EU poses
a concern. Considering that 22% of South Africa’s exports are traded with the
EU (European Commission, 2019), the carbon boarder tax would adversely affect
this amount. The EU would likely divert its market to countries where robust tax
policies are in place, in order to avoid paying the carbon border tax. Despite the
country’s relatively small contribution to global emissions, the implications of the
carbon border tax present the importance of adjusting to international standards to
mitigate the risk of export market disadvantages and maintain competitiveness.

2.3 Climate Change Risks (Transmission Channels)

The effects of climate change will necessitate significant structural changes to the
world economy and financial system. The different transmission routes through
which climate risks could affect the economy and financial system are depicted in
Figure 3. Transition risks arise from the response, which is often from governments
or policymakers to try and minimize climate change, as opposed to physical risks,
which typically emerge from climate change directly Battiston et al. (2021).

Figure 3: Climate risks transmission channels (NGFS, 2022).
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1. Physical risks include the effects of both increasing temperatures and in-
creasingly frequent extreme weather occurrences Battiston et al. (2021), NGFS
(2022). The risks that arise are divided into two categories:

a. Acute risks, which are abrupt, severe, rapid events that have a large neg-
ative effect, such as flooding from heavy rain, which can cause signifi-
cant disruption and property damage. These occurrences might increase
insurers’ underwriting risks, potentially resulting in less insurance cov-
erage in some areas, and depreciating asset values.

b. Chronic risks are a result of steadily deteriorating ecological circum-
stances, such as rising sea levels and precipitation. In some locations,
these could have an impact on labor, capital, land, and natural capital.
Companies, households, and governments will need to make a large in-
vestment to adapt to these changes.

2. Transition risks are connected to promoting the shift from our existing forms
of production to a climate-friendly economy. Risks for lenders and investors
arise as a result of the effect this will have on individual wealth and busi-
ness profitabilityNGFS (2022). Through investment, productivity, and rela-
tive pricing channels, they will also have an impact on the larger economy,
especially if the transition results in stranded assets.

Recent research has presented several results on the inclusion of climate change-
related physical and transition risks in the pricing of assets in financial markets. Ex-
treme weather events like hurricanes, as an illustration of physical risk, make bor-
rowing conditions worsen for sovereigns in the Caribbean Mallucci (2022). Bolton
and Kacperczyk (2021) discover that, in the setting of transitional risk, stocks of
firms with higher total CO2e emissions (and variations in emissions) generate higher
returns, which cannot be accounted for by differences in size, book-to-market ra-
tio, or other return predictors. This implies that investors are seeking payment for
their exposure to these carbon-intensive businesses. Generally speaking, these pre-
sented methodologies, provide information and in-depth analysis on these risks
based on historical data, but they fall short of fully capturing the possible future
effects of climate-related concerns. Therefore, the necessity to take into account
upcoming uncertainties related to climate change is what motivates the inclusion
of Network for Greening the Financial System (NGFS) scenarios in pricing both
physical and transitional risks.

2.4 Network for Greening the Financial System (NGFS)-Scenarios

The implications of climate change are difficult to predict and pose enormous fi-
nancial risks. Hence, NGFS climate scenarios are used to conduct in-depth analyses
of theses financial risks. Presently, there are six NGFS scenarios in three categories
(NGFS, 2022).
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1. Orderly: Early implementation of climate mitigation strategies is followed
by a gradual tightening of restrictions. Physical and transition risks are both
comparatively low. The related scenarios are Net zero 2050 and Below 2°C.

2. Disorderly: A greater transition risk: Policies take longer to implement or
diverge between countries and industries, leading, for example, to higher
carbon costs for a given temperature. The related scenarios are Divergent
Net zero and Delayed transition

3. Hot House world: Despite some countries enforcing climate regulations,
overall efforts to avert major global warming and its longer-term physical
repercussions, such as extreme sea level rise, are insufficient. The related sce-
narios are Nationally Determined Contributions and Current Policies.

According to a coherent and internally consistent collection of assumptions regard-
ing important driving forces (such as the rate of technological advance and carbon
costs), these scenarios provide a credible depiction of how the future may unfold.
It is vital to note that the given scenarios are used to provide a picture of the impli-
cations for future developments (neither the most probable nor desired) for finan-
cial risk assessment, rather than predictions or forecasts (NGFS, 2022). By setting
up flexible-linear programming where a carbon net-zero constraint can be added
and thereby introducing project redesigns that are financially net zero and thus
achieving mitigation of carbon obligation, Kenyon et al. (2023), focusing on project
finance, provides an example for incorporating these scenarios.

These six scenarios are employed in this paper to incorporate transition risk in
the context of risk management (bank book) and derivative pricing (trading book),
with a focus on the risk associated with the future evolution of carbon prices.

3 Model Assumptions

3.1 Assumptions of the Classical Merton

Merton’s (1974) seminal paper has provided invaluable guidance on the use of
structural models to model default risk. The Merton (1974) model offers insights
into the effects of a firm’s capital structure on its probability of default. Following
the description ofWang (2009), the model assumes a simple capital structure, where
at time t ≥ 0 the firm has assets At financed by equity Et and liabilities Lt, i.e.

At = Et + Lt.

Mapping the debt into a zero-coupon bond with face value K at maturity T , the
company may only default at maturity, which happens if AT < K. Otherwise the
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debt holders can be paid their full amount and the share holders’ equity still has a
value of AT −K. Therefore, the equity value at maturity is

ET = max(AT −K, 0),

which can be interpreted as the payoff of a call option on the firm’s assets with
strike K. Under the assumption that the value of the assets follows a Black–Scholes
model,

dAt = rAtdt + σAtdWt,

where Wt is a Wiener process, r ∈ R is the interest rate and σ > 0 is the volatility,
we can compute probabilities of default explicitly. In particular, according to the
Black–Scholes formula for European call option pricing, we have

Et = AtΦ(d1)−Ke−r(T−t)Φ(d2),

where Φ is the standard normal CDF,

d1 =
ln(At/K) + (r + σ2

2 )(T − t)

σ
√
T − t

,

and
d2 = d1 − σ

√
T − t.

Hence, under the risk-neutral measure, the probability of default is

Pr[AT < K] = Φ(−d2).

3.2 Assets and Liabilities Model

In contrast to the simplifying assumption in (Merton, 1974) that the assets follow a
Black–Scholes model, we consider the general structural equity model

Et = At − Lt,

where we model the main income and cost streams of a power utility firm by the
assets At and liabilities Lt, respectively. For simplicity, we consider a discrete time
setting, with times t ∈ {0, 1, . . . , T}. Then, the evolution of assets and liabilities
(both stated in South African Rand (ZAR)) through time are given by

At = A0 +
t∑

s=0

Cs × Es × δs (1)

and

Lt = L0 +
t∑

s=0

(es + Fs +DEPs + (Rs +Ms) +NETs) · δs, (2)

13



where we consider the processes discounted to time t0 = 0 via the discounting
factor δt. The asset value changes with time t according to the power utility firm’s
capacity Ct (in MW) and the prevailing electricity price Et (in ZAR/KWh), which
is set by NERSA National Energy Regulator of South Africa (2023). The initial as-
sets A0 and liabilities L0 are obtained from the balance sheet for the current year
at the starting point t = 0. The liabilities Lt arise from the total costs (in ZAR)
incurred from costs of carbon emissions et, depreciation costs DEPt, fuel’s cost Ft,
maintenance costs Mt and running costs Rt and the Negative emissions technol-
ogy (NET)-investments NETt, all discounted to t0. (NET)-investments are relate
to making investments in technology aimed at lowering atmospheric CO2e con-
centrations, either through deliberate enhancement of land and ocean carbon sinks
to speed up the removal of CO2e from the atmosphere or through engineering its
removal and subsequent storage.

In this study, the stochastic process for the electricity price is defined as

Et = Et−1 ×Xt = E0 ×
t∏

s=1

Xs, (3)

Where (Xs − 1) are identical and independent random variables drawn from an
exponential distribution, i.e., (Xs − 1) ∼ EXP(λ−1), where λ represents the mean
percentage price jumps (e.g., 0.2 represents a 20% average increase).

3.3 Minimum Electricity Price to Cover the Total Costs

Given that all other quantities are known, it is possible to determine at every time
step t the electricity price Emin

t such that the costs to produce the electricity are
exactly covered by the income of selling the electricity by solving

At −At−1 = Lt − Lt−1 (4)

for Et. In particular, this yields

Emin
t =

et + Ft +DEPt +Rt +Mt +NETt

Ct
(5)

Computing this minimal electricity price for different NGFS scenarios allows us to
compare the costs resulting from emissions given the fuel mix of the power utility
company.

3.4 Probability of Default and Running Probability of Default

The default probability of the power utility firm at time t ≥ s conditioned on the
information available at s, Fs, is given by

P̃ (s, t) := P(At < Lt) = E[I{At<Lt}|Fs]. (6)
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Table 1: Eskom’s balance sheet data as of March 31, 2022. NB: BZAR = Billion ZAR,
MT = million tons, TWh = terawatt hours.

Equity 235.314 BZAR
Annual Depreciation Costs 32.009 BZAR
Annual Maintenance Costs 24.113 BZAR
Annual Labour Costs 32.985 BZAR
Annual Sold Energy 192.005 TWh
Annual CO2e Emission 207.230 MT

Moreover, the running probability of default is defined as

P (s, t) := P(∃k ≤ t : Ak < Lk|Fs). (7)

Hence, the price of the corresponding defaultable bond is

B(s, t) = δt · P(∀k ≤ t : Ak ≥ Lk|Fs). (8)

We note that P̃ (s, t) is the probability that the firm defaults at time step t, while
P (s, t) is the probability that the firm defaults at any time up to time t. In the
following we mainly consider the running probabilities of default and their cor-
responding bond prices, both conditioned on the initial time t0. In particular, we
consider their term structures t 7→ P (0, t) and Bt 7→ (0, t) for 0 < t ≤ T .

4 Model Example

4.1 Eskom Overview

In this paper we considers the primary energy supplier in South Africa, which
is the state-owned company ESKOM SOC Ltd (Eskom) supplying the majority of
electricity in South Africa. It is accountable for both electricity generation and dis-
tribution, serving industries and municipalities across the country. Furthermore,
Eskom also buys electricity from Independent Power Producers (IPP) and inter-
national sources based in southern Africa (ESKOM, 2022). In Table 1 we show
Eskom’s financial data relevant to us, which was published in their latest finan-
cial statement (ESKOM, 2022). Moreover, in Table 2 we show the combination of
power plant types Eskom uses to generate electricity. Diesel and gas turbines are
used during periods of sudden demand increase or peak times, as they have high
operation costs.

The historical tariffs of Eskom have shown a gradual increase over the years. Ta-
ble 3 shows the tariff trend, spanning a 10 year time period, from 2012 to 2022.
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Table 2: Eskom mix of electricity generating plants

Source Capacity (MW) Ratio
Coal 44013 85.02%
Nuclear 1934 3.74%
Renewable 3393.4 6.56%
Gas 2426.3 4.69%
Total 51766.7 100%

Table 3: Eskom electricity sell price tariffs from 2012 - 2022

Year Tariff (ZAR/kWh) Percentage change
2012 0.5849 -
2013 0.6281 7.3859
2014 0.6763 7.6739
2015 0.7538 11.4594
2016 0.8177 8.4770
2017 0.8249 0.8805
2018 0.8512 3.1883
2019 0.9001 5.7448
2020 1.0186 13.1652
2021 1.1104 9.0124
2022 1.2732 14.6614
Total % increase 117.6782

Eskom introduced load shedding as a measure which safeguards the grid supply
from unplanned blackouts through a controlled process of shutting down the elec-
tricity supply in certain regions for several hours (Matsheta and Sefoka, 2023). This
deliberate action was taken by Eskom when there is inadequate capacity to meet
the demand. Figure 4 shows how load shedding has increased due to a decrease
in realised electricity output over time. Consequently, these shifts have resulted in
lower carbon emissions.

In terms of financing, Eskom raises funds by issuing debt in both domestic and
international debt capital markets. Eskom issues domestic bonds under the Do-
mestic Multi Term Note (DMTN) programme, enabling them to be traded under
the Johannesburg Stock Exchange (JSE). Part of the domestic bonds are guaran-
teed by the government of South Africa. On the other hand, international Eskom
bonds are US Dollar denominated registered under the Global Medium-Term Note
(GMTN) programme. This programme is registered under the Luxembourg Stock
Exchange (LSE), and the issuance of the international bonds is facilitated by the
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Figure 4: Eskom realised electricity capacity vs annual load shedding from 2014 to
2021.

banks that are authorised by Eskom. Both these bonds are available for purchase
by investors.

4.2 Data Description

The study makes use of bond price data and future fuel prices (coal, natural gas,
etc.) from Bloomberg. In particular, we use the South African Government Bonds
(SAGB) and Eskom bonds as well as US government bonds. The South African
inflation and discount factors are derived from the inflation-linked and nominal
SAGBs, respectively. The US inflation and discount factors are derived equiva-
lently.

The (market) probabilities of default of Eskom are derived from Bloomberg. More-
over, we use Bloomberg data to derive the probabilities of default corresponding to
different credit ratings, for an easier comparison. In particular, we use the 5Y, 10Y
and 20Y yield curves corresponding to S&P’s credit ratings “AAA” to “B-” to ob-
tain their credit spreads. The difference between this spread and the corresponding
US government bond is used to determine their default intensity (λT ), extrapolated
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to any maturity T via

λT =


λ5, 0 ≤ T < 10,

λ10, 10 ≤ T < 20,

λ20, 20 ≤ T.

These values were then used to compute the probability of default corresponding
to the credit ratings

PD(T ) =
1− e−λTT

(1−R)
, (9)

and R is the recovery rate assumed to be the market standard of 0.4.

We take the monthly prices for all the fuel futures (where available, otherwise the
current price kept constant afterwards), average them over a year, and then main-
tain the price from the most recently observed price until 2050. To get a reasonable
price evolution, these prices are adjusted for US inflation and converted to ZAR
by the FX-rate of 16.9891 ZAR/USD on January 1, 2023. Moreover, they are dis-
counted with the US interest rate whenever discounting is applied to fuel costs in
our model (equivalently, they are multiplied by the US discounting factor and di-
vided by South African one, which leads to the correct discounting in the model
when using the standard South African discounting factor). The reason for using
US rates instead of South African ones is that the commodity market is US dollar
based. It is important to mention that Eskom gets a special coal price from the local
South African coal mining companies National Energy Regulator of South Africa
(2023). In particular, it only pays 44.3% of the market coal price. In our model, we
adjust the coal price accordingly.

The depreciation costs (in ZAR/KWh) per year displayed in Table 4 are computed
as

DEPt =
Capital costs/life span

Capacity · 365 · 24 · capacity factor
. (10)

Table 4 shows the capital costs, lifespans, capacities, and capacity factors, as pre-
sented in Kenyon et al. (2023), which are used to compute the depreciation costs
for the different power plant types. We note that these numbers are “prototype”
power plants and therefore might need to be adjusted for the actually installed
power plants.

The South African Integrated Resource Plan (IRP) of 2019 IRP (2019), which was
passed by the South African government, describes the planned energy additions
(with a drift towards more renewable fuel types, especially wind) and the decom-
missioning of coal capacities until 2030. The changes relevant to our model are
displayed in Table 5. We infer Eskom’s capacities of the different fuel types in the
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Table 4: Technology characteristic, financial costs and life span. NB: Carbon Cap-
ture and Storage (CCS), BZAR = Billion South African Rands, MW = Mega Watts.

Technology Size
(MW)

Capital cost
(BZAR)

Life
span
(Years)

Capacity
factor

Depreciation costs
(ZAR/KWh) per year

Ultra-supercritical coal (USC) 650 43.356 40 0.85 0.223
USC with 90% CCS 650 69.299 40 0.85 0.358
Combined-cycle-single shaft 418 8.223 40 0.87 0.0645
Combined-cycle with 90% CCS 377 16.972 40 0.87 0.148
Nuclear-small modular reactor 600 67.395 40 0.9 0.356
Conventional hydropower 100 9.650 50 0.5 0.441
Wind onshore 200 4.587 25 0.38 0.276
Wind offshore 400 31.753 25 0.39 0.929
Solar photovoltaic (PV) with track-
ing

150 3.568 30 0.158 0.573

Table 5: Decommissioning of existing capacity and addition of new capacities be-
tween 2023 and 2030 IRP (2019)

Year Addition-
Coal
(MW)

Coal-
Decom-
mission
(MW)

Change
in Coal
(MW)

Addition-
Nuclear
(MW)

Addition-
Hydro
(MW)

Addition-
Solar
(MW)

Addition-
Wind
(MW)

Addition-
Gas and
Diesel
(MW)

2023 750 -555 195 0 0 1000 1600 0
2024 0 0 0 1860 0 0 1600 1000
2025 0 0 0 0 0 1000 1600 0
2026 0 -1219 -1219 0 0 0 1600 0
2027 750 -847 -97 0 0 0 1600 2000
2028 0 -475 -475 0 0 1000 1600 0
2029 0 -1694 -1694 0 0 1000 1600 0
2030 0 -1050 -1050 0 2500 1000 1600 0

years until 2030 from the IRP 2019.

The price evolution of CO2e from 2023 to 2050 (in ZAR/kg) for the six NGFS sce-
narios and the South African carbon tax (cf. Section 2.2) are shown in Figure 5. The
”No cost” path assumes that the price of CO2e remains constant at zero. The car-
bon prices data for the six NGFS scenarios are obtained from NGFS Portal. The
prices from the scenarios are already US inflation adjusted and given in 2010 USD.
Therefore, we adjust them by inflation for January 1, 2023 (which is our initial date)
and convert them to ZAR (as for the fuel prices described above). Moreover, in our
model we discount future carbon prices by the US discounting factor (used for
the same reason as for the fuel prices) to the initial date. Under the most extreme
scenario, the Divergent Net Zero path, the (non-discounted) CO2e price is already
slightly higher than 2.7 ZAR/kg in 2023 and rises significantly to more than 80
ZAR/kg until 2050. Compared to this, the emission price in the South African
carbon tax scenario, which is very similar to the current policies scenario, only in-
creases to about 1 ZAR/kg and in all other scenarios, the price lies in between these
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Figure 5: CO2e price according to South African carbon tax and NGFS Scenarios.

extremes.

We can now combine the data on fuel costs, depreciation costs and emission costs
to visualize the cost trend (excluding running costs) from 2023 to 2050, as shown
in Figure 6 and 7. It should be noted that ”clean coal” refers to USC with 90%
CCS, while ”coal” refers to USC and similarly ”clean gas” refers to Combined-cycle
with 90% CCS, while ”gas” refers to Combined-cycle-single shaft (cf. 4). The cost
of nuclear, solar, hydro, and wind energy never exceeds 1.0 ZAR/KWh in any of
the scenarios, indicating that investing in clean energy technology is a financially
sound decision. Coal appears to be fairly cost-competitive with clean technologies
under the no cost, South African Carbon Tax, current policies, and NDC’s scenarios
(also due to Eskom’s special coal price). However, in other scenarios, we notice an
increase in the cost of coal-based technologies (even exceeding 4 ZAR/KWh for Di-
vergent Net Zero path in 2050), which reflects higher expenses caused by the CO2e
emissions. Coal plants with carbon capture and storage are a financially more effec-
tive alternative. In all of the scenarios, the costs for gas and clean gas are observed
to range from 2.2 to 5 ZAR/KWh and the costs for diesel are the highest with 7.8 to
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Figure 6: Costs (depreciation, fuel and CO2e emissions) for different power plant
types for No cost, South African Carbon Tax, Delayed Transition and Divergent
Net Zero.

10 ZAR/KWh. Thus, considering generation technologies based on diesel would
not be financially viable.

5 Results and Discussion

5.1 Parameters and Considered Scenarios

In this section we discuss the different parameters and assumptions for the pro-
posed model.
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Figure 7: Costs (depreciation, fuel and CO2e emissions) for different power plant
types for Current Polices, Nationally Determined Contributions (NDCs), Net Zero
2050 and Below 2◦C.

5.1.1 Base Case: IRP 2019

The base case that we consider represents our assumption about the scenarios that
are currently assumed in and therefore priced by the market. Hence, we start by
explaining these scenario and parameter choices. The start date t0 of our model is
January 1, 2023 and we use yearly time steps until January 1, 2051 corresponding
to a maturity of 28 years.

Starting from the initial capacity of Eskom, as stated in Table 2, this base case as-
sumes that the capacities of the different plant types are changed until 2030 as
stated in the IRP 2019 of South Africa (cf. Table 5). More precisely, we make the
conservative assumption that the changes stated there are available by the begin-
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ning of the next year (e.g. changes stated for 2023 are assumed to be in place as
of 2024 but not earlier). After 2030, the capacities are assumed to be constant until
maturity.
In each year, the total maximal capacity (i.e. the capacity stated in Table 2 and
Table 5) is adjusted using the capacity factors outlined in Table 4 for the different
power plant types, in order to determine the total (theoretically) realisable capac-
ity. In reality only a fraction, denoted as the capacity production factor βcp, of the
theoretically realisable capacity is actually used (on average) to produce the sold
energy within one time step. Comparing the realisable electricity, i.e. the electricity
when running all available plants on their theoretically realizable capacity for the
entire time period, to the sold electricity (cf. Table 1), we can compute βcp = 51%.
Therefore, we adjust the total realisable capacity in every year accordingly (keeping
the capacity production factor constant over time and applying it to every power
plant type equally) to get the average production capacity Ct.

Since Eskom’s financial statement (ESKOM, 2022) does not state any NET invest-
ments (carbon absorption / negative emissions) they are set to zero in the model.
The yearly running costs, which encompass maintenance costs and labour, is de-
fined to be the respective values published on Eskom’s balance sheet in 2022 (cf.
Table 1) scaled by Ct/C1 for the following years.

We assume that the market uses the South African carbon tax scenario to price Es-
kom at the moment. Therefore, we also use this carbon price when calibrating our
model to the market data of the probabilities of default.

The electricity price is assumed to follow our stochastic price model (3), which
experiences an annual random increase. The parameter λ of the yearly mean per-
centage price jump is calibrated to the market. Additionally, we calibrate α to the
market, where α determines how much of the initial equity (stated in Table 1) is
used in the model. The reason for using a fraction of Eskom’s stated equity is that
our simplistic model does not capture more complex relationships (e.g. interest rate
payments that Eskom has to make and additional costs as for example running the
power grid). This factor allows to adjust for these simplifications. In particular, we
use the 2 degrees of freedom (λ, α) to calibrate our base-case model described in
this section to the market default probabilities. By doing this, we assume that the
described parameters (i.e., the IRP 2019 capacity changes and the South African
carbon tax) are the most plausible to be used for pricing by the market.

The calibration of the model is done by choosing the best parameter combination
(λ, α) ∈ {( i

99 ,
j
19)|0 ≤ i ≤ 99, 0 ≤ j ≤ 19}. In particular, for each parameter com-

bination we compute the running probabilities of default (7) with our model using
10, 000 i.i.d. sampled electricity paths. Then the combination (λ⋆, α⋆) that min-
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imises the 2-norm between our model implied probabilities of default and proba-
bilities of default for Eskom observed at the market is chosen. In Figure 8 we show
the model default probabilities for the optimal parameters (λ⋆, α⋆) ≈ (0.07, 0.16)
together with the market default probabilities. We observe, that the model fits the
market data relatively well, even though we only have 2 degrees of freedom for
fitting the model.
We note that all results shown in Section 5.2, use the same 10, 000 randomly sam-
pled electricity price paths to make results well comparable.
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Figure 8: Calibrated Mean Percentage Price Jump.

5.1.2 Second Case: IRP-2019 with ”Green Continuation”

In the second case, all the parameters obtained from the base case are reused, except
for the capacities. In particular, we use the mean percentage price jump (MPPJ)
and the initial equity fraction (λ, α) that we obtain in our calibration (cf. Figure 8).
The difference to the base case is that the capacities for the different power plant
types are not assumed to be constant after 2030 but are continuously changing
until maturity as follows. The coal capacity is continuously decreased after 2030
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by −1037MW per year, while the solar capacity is increased by 1000MW and the
wind onshore is increased by 1600MW per year (these changes correspond to their
respective average changes in the last 3 years of the IRP 2019). Moreover, every 10
years, the nuclear energy capacity is increased by 1860MW and the hydropower
capacity is increased by 2500MW, corresponding to the changes over the entire
period of the IRP 2019).

5.1.3 Third Case: IRP-2019 with ”Aggressive Green Continuation”

In the third case, we again use the same parameters as in the base case and only
change the capacities. In particular, the capacity changes for coal and solar energy
are doubled from the second case to −2000MW and 2000MW, respectively. An
annual increase of 1600MW is considered for the onshore wind and an additional
yearly increase of offshore wind by 1600MW is assumed. The hydropower capacity
change is not considered to be increasing once every 10 years as in the second case,
but to have a yearly increase of 1000MW. The nuclear capacity is increased every
10 years by 1860MW, identical to the second case.

5.1.4 Fourth Case: IRP-2019 with ”Green Continuation with higher Electricity
Prices”

The parameters in this case are assumed to be the same as in the second case of
green continuation. The difference between the two cases is that a MPPJ of 10%
was used instead of the 0.07% yielded by the model calibration. We can see in the
left plot of Figure 9 that when the calibrated MPPJ is used to calculate the electricity
prices until maturity, the inflation adjusted price starts to slightly decrease after
2030. Therefore, it is arguably more realistic that the actual prices grow faster. A
mean price increase by 10% is in accordance with Eskom’s plan outlined in the
Annual Financial Statements (ESKOM, 2022) and very close to the average price
increase within the last 10 years (cf. Table 3).

5.2 Discussion

5.2.1 Capacities Energy Mix

Figure 10 presents the evolution of the capacity Ct and the realisable energy mix
(i.e, the proportions of the different power plant types of the total capacity) in the
4 cases defined in Section 5.1. In the base case capacities and energy mix stay con-
stant after 2030. In the 2nd and 4th case we assume that coal capacities decline
gradually with the observed decommissioning trend from 5 while renewable and
other capacities increase with the same trend. This leads to coal capacities con-
tributing to about 30% in the overall mix by 2050, being similar to the final onshore
wind contribution. In the 3rd case, we assume that coal decreases heavily to about
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Figure 9: Mean ± standard deviation of electricity prices for different MPPJ pa-
rameters. Left: electricity prices from calibrated MPPJ parameter. Right: electricity
prices for different MPPJ parameters.

2.3% in 2050, while renewable capacity penetrations increase heavily, especially
onshore wind, to about 30% of the energy mix.

5.2.2 Running Default Probabilities for Different Cases.

Figure 11 shows the results for the running default probabilities matched with the
CO2e price for all the presented cases. Their corresponding bond prices are shown
in Figure 12. It can be seen that in all cases, under the Divergent Net zero scenario,
the running default probability already is 1 (giving it a rating B- or worse) before
2025 and the corresponding bond price is 0. This can be attributed to the huge
costs that Eskom will incur due to escalating CO2e prices. Considering the path
evolution under the South African Tax with higher electricity price jumps (which
is quite matched with the Current Policies scenario), it can be seen in Figure 11
(4th case) that the running probability of default increases slowly from 0 right after
2025 to slightly above 0.2 and hence reflecting a rating between (AA and AAA).
Besides the assumed larger electricity price jumps this is due to a smaller propor-
tion of coal in the energy mix. In the other two cases (2nd and 3rd) under the South
African Carbon Tax and Current Polices scenario, the bond rating stays between
BB and BBB with a running default probability above 0.6. However, we clearly
see an improvement of the default probabilities by several percent from the base
case to the 2nd and again from the 2nd to the 3rd case under all but the two most
extreme carbon price scenarios (Divergent Net Zero and Net Zero 2050). In those
two scenarios the initial electricity price and its growth are too small to cover the
costs in the beginning, leading to certain default. In the 4th case we see, however,
that a slightly increased mean percentage price jump of 10% for the electricity price
reduces the other default probabilities drastically.
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Figure 10: The capacities for all 4 cases. Top left: base case. Top right: second case.
Bottom left: third case. Bottom right: fourth case.

5.2.3 Minimum Electricity Prices to Cover Costs

Figure 13 shows the minimal electricity price Eskom must charge to consumers in
order to exactly cover all expenses in each time period. It is noticeable that there
is a constant increase in electricity prices over time in the 1st, 2nd and 4th case,
which is consistent with the different carbon emission price scenarios. The high
costs associated with using CO2e emission-based technologies, such as coal and
gas, explain this behaviour. Due to the aggressive introduction of more renewable
energy sources (particularly wind) in the 3rd case paired with the progressive erad-
ication of coal, we observe steady increases from little over 2 ZAR/KWh in 2023 to
around 3 ZAR/KWh between 2030 and 2035 in the Divergent Zero scenario. This
is because there is still a significantly bigger share of coal in the energy mix, and
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Figure 11: Running Default Probabilities. Top left: base case. Top right: second
case. Bottom left: third case. Bottom right: fourth case.

as we add more renewable energy sources to the mix, starting in 2035, the minimal
price of electricity to cover the costs starts to decline, reaching about 2 ZAR/KWh
in 2050. In particular, there is a tendency that is consistent with all higher emission
cost scenarios, namely that prices are increasing first, but start to fall steadily after
2045. As a result, this additionally encourages the need to invest more in renewable
technology because Eskom will be able to sell power at an affordable price while
also recovering costs because CO2e emissions are less of an expenditure.
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Figure 12: Bond prices for all cases. Top left: base case. Top right: second case.
Bottom left: third case. Bottom right: fourth case.

6 Valuation adjustment

Up until now, the primary focus has been on the banking book. That is, the bank
holds bonds of the credit-risky counterparty, Eskom. For the banking book, the
bank typically holds assets until maturity, therefore, the main focus is the risk man-
agement of the book. This means that the bank needs to fully understand the risk
of the assets in its portfolio and how this risk is changing for effective risk man-
agement. Moreover, it is crucial that the bank understands the risk dynamics so
that it makes informed decisions about the instruments it adds to its portfolio.
Equally important is the trading book which has not been broached. The bank
would have derivatives and other financial instruments that are held for trading
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Figure 13: Minimum electricity prices to recover costs for all cases. Top left: base
case. Top right: second case. Bottom left: third case. Bottom right: fourth case.

purposes. These instruments are typically liquid with active secondary markets
and are marked to market daily in the trading book. The trading book is the focus
of this section, more specifically, the pricing and hedging of the derivatives. This is
imperative because the bank needs to completely understand the risk that comes
with its positions, not only to avoid huge unexpected losses, but also to assess the
capital charge arising from the risk of the positions and adhere to Basel III capital
requirements.

6.1 Pricing interest rate swaps

This paper considers an example where the bank has a position in a vanilla inter-
est rate swap (IRS). An IRS is a derivative contract in which two parties exchange
interest rate cashflows based on a defined notional amount. Assuming that the
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bank is the payer, it pays fixed coupons to its counterparty and receives floating
payments which reference a short-term interest rate. The fixed rate is determined
at the inception of the contract and remains unchanged until maturity. The set of
times {t0, t1, ..., tn−1} are called the reset dates and {t1, t2, ..., tn} are called the pay-
ment dates because the reference rate resets at each of the former times and the
payments are made at each of the latter dates. The set of default free discount fac-
tors observed at time t is given as: {Z(t, t1), Z(t, t2), ..., Z(t, tn)} and the forward
rates are given by {f(t; t1, t2), f(t; t2, t3), ..., f(t; tn−1, tn)}. This paper assumes that
the coupon accrual periods denoted by δi where δi = ti − ti−1 for i ∈ {1, ..., n} are
the same as the terms of the reference rates.

Under the no-arbitrage assumption and no default risk, the value of the swap at
time t is given by

V (t; t0, tn) = α

n∑
i=1

(f(t; ti−1, ti)−K(t0, tn))δiZ(t, ti), (11)

where α equals 1 (-1) for a long (short) position, t0 ≥ 0 is the effective time, tn is the
maturity time and K(t0, tn) is the fair strike rate at time t0. More formally, the fair
strike rate K(t0, tn) is given by

K(t0, tn) =
1− Z(t, tn)∑n
i=1 δiZ(t, ti)

(12)

The value of the swap to the bank (long party) at time s > t will increase if the
market strike rate increases, that is, the strike rate, K(s, tn) > K(t0, tn).

6.2 Credit Valuation Adjustment

Up to this point, the risk of default has not been considered in pricing the swap. If
the bank’s counterparty is susceptible to default risk, then this risk should be re-
flected in the price of the swap. This means that the price of the derivative must be
adjusted to reflect the risk of default of the counterparty. This is formally referred
to as the credit valuation adjustment (CVA). The CVA is the difference between the
price of the derivative assuming no default risk and the price when the risk of de-
fault is considered.

If the counterparty defaults at time tj−1 ≤ τ ≤ tj , the bank would lose only if
K(τ, tn) > K(t0, tn) and the exposure would be given by

Eb
j =

n∑
i=j

max(K(τ, tn)−K(t0, tn))Z(τ, ti), (13)
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where the superscript b is shorthand for bank. Eb
j has the structure of a call option

with the strike rate as the underlying, that is, a payer swaption, giving the bank an
option to enter a swap as a fixed rate payer. Burgess (2018) shows that the price of
a swaption is given by a variation of the Black-76 formula (Black, 1976) such that

S(t) = AFixed(t)K(t, tn)N(d1)−K(t0, tn)N(d2)), (14)

where AFixed(t) is the swap fixed leg annuity with

d1 =
ln(K(t, tn)/K(t0, tn)) + (r + σ2

2 )(tn − t)

σ
√
tn − t

and d2 = d1 − σ
√
tn − t.

Altogether, the CVA becomes

CVA(t) = (1−R)S(t)PD(t), (15)

where R is the recovery rate, with R being 1 less the loss given default, R = 1 −
LGD, and PD(t) is the probability of the counterparty’s default between time t
and the maturity of the swap.
The probability of default can be estimated in various ways. One way is to use
market credit default swap (CDS) spreads. Another way would be to use inter-
nally defined models, where the bank internally models the probability that the
counterparty defaults based on its internal assessments.

Let V̂ denote the value of the swap accounting for counterparty default risk, then:

V̂ (t; t0, tn) = V (t; t0, tn)− CVA (16)

6.3 Carbon valuation adjustment

It is clear from Section 5 that carbon exposure has a material effect on the prob-
ability of default of an entity. Thus, it is crucial to incorporate the carbon price
risk into the prices of derivatives with counterparties that have carbon exposure.
Kenyon et al. (2022) refer to this adjustment as the CO2-equivalent valuation ad-
justment (CO2eVA). Through an extension of Burgard and Kjaer’s (2013) xVA ap-
proach, Kenyon et al. (2022) use replication to price in the carbon exposure. Bur-
gard and Kjaer (2013) have the following decomposition:

V̂ = V + U,

where V is the Black-Scholes funding and default-free price and U denotes the
funding and default adjustments. In the extension, Kenyon et al. (2022) further
decompose the adjustment and obtain Û = U +G where U is still the funding and
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default adjustments on the derivative before the carbon exposure consideration
and G is the carbon costs inclusive of default and funding effects. Thus, CO2eVA
encapsulates the replication cost or benefit of alleviating CO2e emissions and the
sequestration thereof.

6.3.1 Replication pricing

This paper uses the replication strategy presented in Kenyon et al. (2022). Con-
sider the probability space (Ω,F ,Q), where Ω is the set of events ω ∈ Ω, F is the
sigma-algebra, and Q is the risk-neutral probability measure that is equivalent to
the physical measure P. Due to the possibility of the market being incomplete, Q
could be non-unique. Recall the IRS in Section 6.1, we assume that the deriva-
tive references a non-defaultable discount bond P with maturity T̄ ∈ [T,∞). The
price of the derivative accounting for carbon exposure is denoted as V̂ . In order to
reprice the derivative, a replicating portfolio is constructed with instruments with
the following processes:

dPtT̄ /PtT̄ = rtdt+ σtT̄dWt Default-free bond (17)

dPB
tT̄ /PtT̄B = rBt dt+ σB

tT̄dWt − (1−RB
t )dJ

B
t Own bond (18)

dPC
tT̄ /PtT̄C = rCt dt+ σC

tT̄dWt − (1−RC
t )dJ

C
t Counterparty bond (19)

dF
/
t Ft = rtdt+ σF

t dW
F
t Carbon future contract, (20)

where Wt and WF
t are correlated standard Wiener processes under Q with corre-

lation coefficient ρt ∈ [−1, 1]. The rBt and rCt are the funding interest rate process
on the bank’s own bond and the interest rate process on the counterparty bond,
respectively. The σtT̄ , σB

tT̄
, and σC

tT̄
are the bond volatilities and disappear at bond

maturity T̄ . The jump processes JB
t and JC

t , with intensities λB
t and λC

t , respec-
tively, are independent of each other and of Wt and WF

t , where JB
0 = JC

0 = 0. The
bonds default at the first jump of their respective jump processes. In the event of
default, the bond is worth the time-dependent but deterministic recovery rate RB

t ,
respectively RC

t .

Kenyon et al. (2022), assume that the carbon future curve has one factor and that
there is zero-basis for bond-CDS and bond-repo such that

rCt − qCt = (1−RC
t )λ

C
t , (21)

rBt − rt = (1−RB
t )λ

B
t , (22)

where qCt is the repo rate on the counterparty bond. Although the price process
of the derivative only referenced the default-free bond P, the carbon-linked price
process is a function of the default-free bond, the carbon futures contract, on the
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default of both the own bond PB and the counterparty bond PC . The default of
the bonds is tracked by whether either one or both of JB

t , JC
t have jumped before

the maturity of the derivative, that is in the interval (0, T ]. Thus, the price process
of the carbon-linked derivative is denoted by V̂t(PtT̄ , Ft, J

B
t , JC

t ).
For ease of notation, the time variables the time variables are omitted, resulting in
V̂ (P, F, JB, JC) instead of V̂t(PtT̄ , Ft, J

B
t , JC

t ).

In what follows the replicating portfolio of the interest rate derivative V̂ is priced.
First, the change in the value of the derivative is decomposed into its underlying
risk factors, giving

dV̂ =
∂V̂

∂t
dt+

∂V̂

∂P
dP +

∂V̂

∂F
dF

+
1

2

∂2V̂

∂P 2
dPdP +

1

2

∂2V̂

∂F 2
dFdF +

∂2V̂

∂P∂F
dPdF

+∆V̂ dJB +∆V̂ dJC , (23)

where

∆BV̂ = gB − V̂ ,

∆C V̂ = gC − V̂ (24)

are the spreads due to the closeout costs gB and gC at default. To replicate V̂ , a
replicating portfolio Π is given by:

Π = δP + αBPB + αCPC + αFF + β + βC + βX + βF , (25)

where δ, αB , αC , and αF reflect the number of units of each of the instruments. The
betas denote the cash accounts associated with the bank bond P , the repo rate on
PB , the derivative collateral, X and the margin on the futures contract. Before the
hedge is rebalanced, the changes on the cash accounts are given as:

dβ = −δrPdt, dβC = −αCqCPCdt,

dβX = −rXXdt, dβF = −αF 0Fdt.

Since the margin on futures contracts does not earn interest, there is no differential
cashflow associated with the futures cash account, that is, dβF=0. Assuming that
the changes in the value of the replicating portfolio Π emanate from the changes in
the price processes of the instruments in the portfolio, the sum of the differentials
and of the replicating portfolio and the interest rate derivative instrument is given
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by

dV̂ + dΠ =
1

2
σ2P 2∂

2V̂

∂P 2
dt+

∂V̂

∂P
dP +

∂V̂

∂t
dt

+
1

2
σF2F 2∂

2V̂

∂F 2
dt+

∂V̂

∂F
dF + ρσF ∂2V̂

∂P∂F
dPdF

+∆V̂ dJB +∆V̂ dJC

+ δdP + αBdPB + αCdPC + αFdF

− δrPdt− αCqCPCdt− rXXdt. (26)

To find the hedge ratios for the hedge, each of the terms dW , dWF and dJC are set
to zero. However, the hedge for the dJB term is not perfect, so it is not set to zero.

1. To hedge the carbon futures price risk, (dWF -term) by setting σFF∂F V̂ +

αFσFF = 0. Thus, αF = −∂F V̂ .

2. Hedging the counterparty default risk (dJC-term), −αC(1−RC)PC+∆C V̂ =
0. It follows,

αC =
gC − V̂

(1−RC)PC
. (27)

3. To hedge against the risk arising from P , PB , and PC , the dW -term is set to
zero:

αBPBσB + αCPCσC + δσP + σP∂P V̂ = 0, (28)

substituting the value of αC from (27) we get

δ = −∂P V̂ − αBPB

σP
− σC(gC − V̂ )

σP (1−RC)
. (29)

4. For the dJC-term, a partial hedge is constructed such that there is exposure
to a cost (or benefit) of ϵ ̸= 0, −αB(1−RB)PB +∆BV̂ = ϵ and choose that

ϵ = (1−RB)(V̂ −X) + gB − V̂ , (30)

where αB is found by requiring that the net cash in the hedge position is
funded by issuing or buying back one’s own bonds PB used in the replicat-
ing portfolio Π. This requires (V̂ − X) + αBPB = 0. Following the usual
semi-replication strategy, cashflows up to, but not including the bank’s own
default are replicated. Substituting the value of αB into (29), the amount in-
vested in the default-free discount bond is given by

δ = −∂P V̂ +
1

σP

[
σB(V̂ −X)− σC∆C V̂

(1−RC)

]
. (31)
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5. For no arbitrage, dV̂ + dΠ = 0 for all t ∈ [0, T ], therefore, the overall dt term
must be equal to zero:

∂tV̂ +
1

2
σ2P 2∂PP V̂ +

1

2
σF2F 2∂FF V̂ + ρσσFPF∂PF V̂

− αCqCPC − rXX + αBPBrB + αCPCrC + rP∂P V̂ + rF∂F V̂

= ∂tV̂ − (rB + λC)V̂ + (rB − rX)X + λCgC

+
1

2
σ2P 2∂PP V̂ +

1

2
σF2F 2∂FF V̂ + ρσσFPF∂PF V̂ + rP∂P V̂ + rF∂F V̂︸ ︷︷ ︸

AtV̂

= 0 (32)

We then obtain the PDE:{
∂tV̂ +AtV̂ = (rB + λC)V̂ + (rB − rX)X + λCgC ,

V̂ (T, P, F ) = V̂ (P, F ).
(33)

Under the assumption of no defaults by time t ∈ (0, T ], V̂ solves this PDE.
The market-traded derivative, V , that does not include carbon price risk solves the
PDE: {

∂tV + βtV − rV = 0,

V (T, P ) = V (P ),
(34)

Where V (P ) is the payoff of the derivative at maturity T . The βt is a one-dimensional
version of At because it does not include the terms that depend on F .

To put everything together, the decomposition V̂ = V + Û is used, where Û is the
total value adjustment that emanates from the carbon price risk, that is, Û is added
to the market price of the derivative price V to get the carbon-risk adjusted price
V̂ .
PDE (33) can be written as{

∂tÛ +AtÛ − (rB + λC)Û = (rB − r)V − (rB − rX)X + λC(V − gC),

Û(T, P, F ) = V̂ (P, F )− V (P ).
(35)

To isolate the valuation adjustment arising from the carbon price risk, Û is decom-
posed further into Û = U +G. This decomposition allows us to obtain a PDE that
governs the dynamics of the CO2e-valuation adjustment. We can then write PDE
(35) as
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
∂tU + BtU−(rB + λC)U + ∂tG+AtG− (rB + λC)G

=(rB − r)V − (rB − rX)X + λC(V − gC),

U(T, P ) +G(T, P, F ) = G(P, F ).

(36)

The function U is chosen such that it satisfies the PDE:{
∂tU + BtU − (rB + λC)U − (rB − r)V + (rB − rX)X − λC(V − gC) = 0

U(T, P ) = 0.
(37)

The U(T, P ) is the value adjustment to the derivative V , excluding carbon price
risk, that arises from counterparty risk and funding constraints emanating from
the replicating instruments P, PB , and PC .
To get the value adjustment that coincides with the carbon price risk, we use the
decomposition stipulated in (36) and the constraint (37), and we require that G
satisfies: {

∂tG+AtG− (rB + λC)G = 0,

G(T, P, F ) = G(P, F ).
(38)

Therefore, we more formally relate the CO2e-valuation adjustment with G by

CO2eVA(t, P, F) := G(t, P, F ). (39)

The CO2e-valuation adjustment can also be expressed as

CO2eVA(t, T) =
∫ T

t
E[D(u)x(u)g(V (u), F (u))|Ft]du, (40)

where x(u) is a scaling factor to account for counterparty emissions. The factor
increases linearly and is assumed to be zero today. D(t) is the discount factor with
rate rB + λC . The g(.) represents the charge function and depends on the counter-
party net participation charge.
Collectively, to express the CO2eVA(t, T) in value adjustment format we have:

V̂ (t, P, F ) = V (t) + xVA(t) + CO2eVA(t). (41)

6.4 Eskom IRS Example

Using the setup in Kenyon et al. (2022), we consider the CO2e charge associated
with an IRS traded between a bank and a utility company Eskom. Given that Es-
kom emits 207 million tons of carbon per year, the carbon price risk that comes
with these emissions would have a material impact on the value of the IRS.

1. The participation charge function g(.) depends on the carbon price Fi(t) in
each of the NGFS scenarios.
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2. All five scenarios are given equal weights.

3. The net participation charge of the IRS is a function of the net contribution
to the loans on the balance sheet of the counterparty Eskom. This is because
of the assumption that loans are floating rate and swapped to fixed using the
IRS.

4. The time x(t) at which the charge is introduced is zero today and increases
linearly to one until 2050 and remains constant thereafter.

5. The carbon prices are given in NGFS in USD re-based to 2010. They are then
converted to 2023 using US inflation, then EU inflation thereafter to current
prices.

Data description

• 03 January 2023

• IRS at-the-money of maturity 5 years to 20 years.

• Notional of R100 million.

• Interest rates are taken as Jibar 3m single curve setup.

• Interest rates are taken as coterminal ATM swaption normal volatilities

• Eskom’s loans were R453.8 billion in 2022.

• The Eskom CDS spreads are used for default probability

Table 6: CO2eVA for IRS for Eskom.

Maturity CVA(rec) FVA CVA(payer) CO2eVA(epe)(bps) CO2eVA(epe)
CVA(rec)

CO2eVA(ev)
FVA

CO2eVA(ene)
CVA(payer)

5 18 2 24 26 1.07 5.57 -0.98
7 33 5 54 80 1.47 8.02 -1.30

10 60 9 103 202 1.97 10.86 -1.81
15 108 11 165 451 2.73 13.89 -2.73
20 147 12 206 689 3.35 14.69 -3.54

Table 6 shows that as the maturity increases, the CO2eVA becomes higher multiples
of the CVA and FVA costs. This is because as the maturity increases, the carbon
prices and the participation factor x(t) also increase.
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7 Conclusions

This research focuses on quantifying the impact produced by Eskom’s carbon foot-
print on its probability of default. The analysis relies on an asset-liability model
for Eskom’s firm valuation inspired by Merton’s credit risk pricing approach. We
produce a number of simulations for the evolution of Eskom’s running default
probability based on South Africa’s IRP 2019 and the NGFS carbon price scenarios.
Since Eskom’s asset base depends on the revenues resulting from the sale of elec-
tricity, we propose a stochastic electricity sell price process and derive the running
minimum electricity price to cover all production costs in each time period. The re-
port concludes with calculating the CO2e valuation adjustment to a swap contract
between Eskom and a bank.
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