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Preamble
One of the key aims of the FMTC is for South African postgraduate students in Financial and
Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant research
project, while simultaneously developing links with international students and academics in the
field. An allied objective is to bring a variety of international researchers to South Africa to give
them a glimpse of the dynamic environment that is developing at UCT in the African Institute of
Financial Markets and Risk Management. The primary goal, however, is for students to learn to
work in diverse teams and to be exposed to a healthy dose of fair competition.

The Ninth Financial Mathematics Team Challenge was held from the 24th of June to the 4th of
July 2024. The challenge brought together four teams of Masters and PhD students from Mex-
ico, China and South Africa to pursue intensive research in Financial Mathematics. Each team
worked on a distinct research problem over the twelve days. Professional and academic experts
from the USA, South Africa, and the UK mentored the teams; fostering teamwork and providing
guidance. As they have in the past, the students applied themselves with remarkable commit-
ment and energy.

This year’s research included topical projects on (a) Pricing Index Based Insurance for Maize
Crops in South Africa, (b) Generative Modelling of Arbitrage-Free Markets via Neural SDEs, (c)
Monte Carlo Arithmetic Asian Options Pricing with Variance Reduction Techniques, and (d) Cli-
mate Risk Analysis of the South African Interest Rate Swap Market. These were either proposed
directly by our academic/industry partners or chosen from areas of current relevance to the fi-
nance and insurance industry. In order to prepare the teams, guidance and preliminary reading
was given to them a month before the meeting in Cape Town. During the final two days of the
challenge, the teams presented their conclusions and solutions in extended seminar talks. The
team whose research findings were adjudged to be the best was awarded a floating trophy. Each
team wrote a report containing a critical analysis of their research problem and the results that
they obtained. This volume contains these four reports and will be available to future FMTC
participants. It may also be of use and inspiration to Masters and PhD students in Financial and
Insurance Mathematics.

FMTC X will take place in June/July 2025, and is already being organised!

David Taylor, University of Cape Town
Andrea Macrina, University College London & University of Cape Town
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1 Introduction

In many developing countries, especially those in Africa and some parts of Asia,
agriculture is a critical sector, contributing significantly to GDP, employment, and
exports (Prokopchuk et al., 2020). However, the sector faces numerous challenges,
such as low-income levels, low capital-labour ratios, and high susceptibility to nat-
ural risks (Jain, 2004). Consequently, agricultural production in these developing
countries is largely characterized by low productivity, poor infrastructure, and high
risk due to the heavy dependency on nature. Farmers face risks such as extreme
weather events, uncertain crop yields, pests, and diseases (Mookerjee et al., 2014).
These risks are further exacerbated by limited financial resources and the lack of
modern agricultural practices.

A large number of farmers in these developing countries are often not insured due
to scepticism surrounding insurance. This scepticism arises from the long payout
periods and high premiums associated with insurance (Barnett et al., 2008). As
a result, farmers usually engage in informal risk management strategies instead
of taking on insurance. To lower their exposure, farmers are unlikely to invest in
technology that could increase yields and profits for fear of the technology being
damaged in the event of a catastrophe (Barnett et al., 2008). Some farmers might
choose a more drought-resistant cultivar with lower profits to reduce the effects
of drought on income. This is because these cultivars are often significantly more
expensive than the more weather-prone cultivars (Govindaraj et al., 2018). In the
event of a disaster, farmers are often forced to sell assets at massive discounts to
cope with the loss of income due to the catastrophe.

Most of the risks that these farmers face can be mitigated using agricultural insur-
ance, thus providing financial security to the farmers and encouraging the adop-
tion of improved agricultural technologies. Moreover, agricultural insurance can
help reduce the financial burden on the government by streamlining relief efforts
during times of natural disasters. However, there are some issues that arise when
implementing agricultural insurance in developing countries. These issues in-
clude the lack of reliable data on crop yields and losses, diverse agricultural prac-
tices, and poverty among farmers (Jain, 2004). Additionally, the high administra-
tion costs and lack of reinsurance support further complicate the implementation
(Mookerjee et al., 2014).

The most common type of agricultural insurance is crop insurance. When de-
signing a crop insurance product, one needs to carefully consider a few elements.
These elements include deciding on the types of risk that the insurance product
will cover; the product could cover all risks, in which case it would be known as
yield insurance, or cover specific risks (Jain, 2004). Farmers would prefer yield
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insurance, but it is often more costly and can be difficult due to challenges in iden-
tifying losses from uninsured events. The insurance product can also be operated
by the public sector, private sector, or through a combination. Moreover, one also
needs to decide on the approach to assessing losses; there are two approaches: the
Individual or Area approach (Jain, 2004). In the case of the individual approach,
the loss assessment is made separately for each farmer, while in the case of the
area approach, indemnity is determined for a group of farmers on the basis of the
average loss experienced by a specified homogeneous area. Additionally, the in-
surance product can be voluntary or compulsory. Compulsory schemes have the
advantage of reducing adverse selection and administration costs but may cause
dissatisfaction among low-risk farmers (Jain, 2004).

Crop insurance can be indemnified in the traditional way or using an index, in
which case it would be known as crop index insurance. Traditional indemnity-
based insurance in agriculture is usually very difficult to implement due to the
aforementioned reasons and also due to the risk of adverse selection and moral
hazard (Mookerjee et al., 2014). There are two categories of index insurance: Weather
Index Insurance and Area-Yield Index Insurance. Under Weather Index Insurance,
the insurance pays out based on specific weather events, such as rainfall deficits,
which are measured using objective indices. The main advantage is the ease of
measurement, but it may not always correlate perfectly with actual crop losses. On
the other hand, under Area-Yield Index Insurance, the insurance estimates crop
loss by measuring the actual crop output on a sample of farms within an area.
Although more closely related to actual losses, it is costlier to implement and ad-
minister.

The main benefits of index insurance relative to traditional insurance are that un-
der index insurance, moral hazard is reduced since the payouts are based on a
predetermined index that is not influenced by the insured. Additionally, there is
transparency in claim handling and payouts, and administrative costs are reduced,
which in turn lowers the premium (Prokopchuk et al., 2020). The main drawback
of index insurance is basis risk. Basis risk arises when the index measurements
do not match an individual’s actual losses (Hess and Syroka, 2005). The two main
sources of basis risk in index insurance are product design basis risk and geograph-
ical basis risk (Mookerjee et al., 2014). Product design basis risk stems from poorly
designed products, and geographical basis risk stems from geographical elements.
The main goal of index insurance is to minimize basis risk. Minimizing basis risk is
essential to attract more customers. According to Mookerjee et al. (2014), basis risk
can be minimized by using accurate weather data collection, selecting appropriate
indices, and ensuring the insurance coverage closely matches the actual risks faced
by farmers. There is, however, often a trade-off between ensuring that the target
audience can easily understand how the index insurance product works and en-
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suring that the correlation between the index and actual losses is high enough.

The primary objective of this paper is to design a weather index insurance product
that is both affordable and has a low level of basis risk. Rainfall and temperature
are used as indices since maize is mainly affected by these two factors. The paper
carefully constructs products based on each of these indices and, thereafter, a prod-
uct based on both indices. Furthermore, the paper will employ different methods
of pricing the products, i.e., calculating the premium and comparing the prices of
the product based solely on the rainfall index, the product based solely on the tem-
perature index, and the product based on both indices. This will help determine
which product is more appropriate. To the best of our knowledge, this is the first
paper that designs and prices multi-index-based insurance.
It is worth noting that most index insurance products are based on a single index.
Although prior literature has priced using Black Scholes, it has not compared its
prices with the actuarial approach, and the accuracy and appropriateness of using
Black Scholes have not been verified. We will thus compare our actuarial approach
to the Black Scholes approach.
Additionally, instead of making use of one threshold, the paper will also explore a
product that has multiple thresholds.
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2 Literature Review

Traditional insurance has low participation amongst Ghanaian farmers due to four
primary factors. First, the majority of farmers in low-income regions work small
lots, which only have the capacity for small profit margins and, due to their small
size, can only induce low liability limits. Traditional insurance is thus economi-
cally unfeasible (Barnett et al., 2008). Second, farming regions in low-income areas
comprise many smaller, individually owned farm-lots. This increases the volume
of unique damage assessments that need to be carried out, driving up the cost of
insurance. Particularly so in an underdeveloped insurance market that would not
have the infrastructure necessary to ease the damage assessment process. Third,
objective damage assessment can be costly, in terms of the administrative process
and the hiring of personnel to carry out the assessment itself. Lastly, traditional
insurance rarely, if ever, covers correlated risks (Okine, 2014).

Index-based insurance addresses these factors as it has an automatic and objective
payout structure that avoids assessment and administrative fees, potentially low-
ering costs to economic feasibility. Furthermore, indices are chosen based on high
correlation with what has been insured so that the farmer may choose to use the
insurance payout to address correlated weather damages if they are so inclined.
Examples of successful implementations of index-based insurance include the case
of Malawi, where the weather reports of local meteorological stations are used to
determine the occurrence of severe drought in an area, and the case of Northern
Kenya, where independent satellites are used to measure the amount of vegetation
that is available for livestock to consume (Okine, 2014).

2.1 The Case of Ghana

Okine (2014) prices index-based insurance for maize crops. The growth of maize
depends on rainfall, thus, Okine (2014) first established the relationship between
rainfall and annual maize production in Ghana. Having found the highest corre-
lation with maize yields to be in March, they used the cumulative rainfall over the
month of March. That is, if meteorological stations report that the insured region
experienced cumulative rainfall in March that fell below an amount specified in
the insurance contract, the farmer would receive a lump sum amount. Due to the
lump sum payout being based on whether or not some numerical value falls below
a certain value at a specified date, they interpreted the index-based insurance as a
cash-or-nothing put option. Okine (2014) applied standard Black-Scholes-Merton
theory to simplify pricing, citing the reason as the rainfall data following a log-
normal distribution.
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2.2 The Case of India

One developing country that has a somewhat rich history of parametric crop insur-
ance is India. India’s experience with crop insurance spans several decades, evolv-
ing from experimental schemes to comprehensive national programs. From 1972
to 1979, India went through an experimental phase; during this phase, schemes
focused on specific crops in certain districts but were found to be economically
unviable (Jain, 2004). In 1979, the Pilot Crop Insurance Scheme (PCIS) was imple-
mented in 13 states and covered 600,000 farmers. It used the area approach and
covered various crops for loanee farmers. Thereafter, in 1985, the Comprehensive
Crop Insurance Scheme (CCIS) was launched. This scheme was linked to short-
term crop credit and used a homogenous area approach. It was optional for state
governments and was criticized for financial non-viability, limited crop coverage,
and deficiencies in yield assessment (Jain (2004)).

As a result, the National Agricultural Insurance Scheme (NAIS) was introduced
between 1999 and 2000 to address these criticisms. The NAIS expanded coverage
to include non-loanee farmers and additional crops. It provided for greater risk
coverage and aimed for financial viability through a rationalised premium struc-
ture. Despite the improvements, the NAIS faced issues such as high claims ratios
and the need for better yield assessment methods (Jain, 2004). Another scheme that
was implemented is the Farm Income Insurance Scheme (FIIS). This scheme aimed
to protect farmers’ incomes by integrating production and market risks, provid-
ing income protection through a guaranteed minimum income based on yield and
price movements.

2.3 The Case of Malawi

In Malawi, the World Bank and MicroEnsure launched a weather index insurance
product to protect farmers against rainfall deficits. The farmers were encouraged
to take bank loans to access funding for high-quality seeds and fertilizer. For each
farmer, the insurance was then linked to the bank loan. Initially, the product de-
sign divided the crop growing season into three periods. If the rainfall was below
a certain trigger level in any of these periods, a payout would be made depending
on the rainfall level.

To improve the product design, the insurer held discussions with the farmers to
better understand their practices (Mookerjee et al., 2014). It was found that divid-
ing the crop growing season into three phases resulted in some issues of basis risk
(Mookerjee et al., 2014). The solution was to divide the crop growing season into
nine phases of 10 days each, which was found to reduce the basis risk (Mookerjee
et al., 2014). Overall, the project highlighted the importance of linking insurance to
agricultural loans and refining products based on local experiences.
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2.4 The Case of the Philippines

In 2009, MicroEnsure launched a weather index insurance product that covered 446
smallholder rice farmers in the Philippines against high wind speeds. The project
involved partnering with rural banks and MFIs that acted as delivery channels for
the insurance product. Just as in the case of Malawi, the insurance product was
linked to a loan from either the rural bank or MFI in order to obtain funding for
the farm inputs. To assess the basis risk of the product, the product design was
tested against crop loss data across the whole country and it was found that the
payouts were well correlated with the crop losses (Mookerjee et al., 2014). How-
ever, before the product was launched, the level of basis risk was not known, so
it was combined with a government multi-peril product that was subsidised by
the insurance broker. It was later found that typhoons with low wind speed and
high rainfall were not picked up well by the product, and it was suggested that
the insurer should use some form of satellite rainfall estimation technique. How-
ever, satellite rainfall estimators are known to not be particularly accurate for high
rainfall events (Mookerjee et al., 2014).
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3 Problems with Traditional insurance

In traditional crop insurance, the indemnities are tied to the actual yield losses.
This structure gives rise to two main problems: adverse selection and moral haz-
ard (Horton (2021)). First, adverse selection refers to a situation in which there is
asymmetrical information between the buyer and the seller of the insurance, lead-
ing to the insurer potentially facing higher-than-expected claims. It occurs when
parties who are at a higher risk are more likely to buy the insurance, while those at
lower risk are less likely to do so. This can result in the insurer’s pool of policies
being skewed towards higher risk, which in turn leads to higher expected payouts
(Horton (2021)). Second, moral hazard occurs when the existence of insurance cov-
erage encourages the insured party to increase their risk exposure based on the
expectation that the insurer will pay for any resulting losses. To mitigate these is-
sues, insurers often incur higher administrative costs (Hess and Syroka (2005)).

Additionally, several challenges make traditional crop insurance problematic, es-
pecially for microinsurance customers such as farmers in developing countries.
These challenges include a relative lack of data on loss or damage, the expenses
involved in underwriting individual risks, and the time taken to verify and pay
claims. Consequently, finding a reinsurer for such products becomes difficult (Mook-
erjee et al. (2014)). Traditional multiple-peril crop insurance also faces large corre-
lated risks, necessitating the additional cost of reinsurance Hess and Syroka (2005)).
For farmers in developing countries where crop insurance is not well established,
particularly in most African countries, these additional costs can be significant.
Thus, traditional multiple-peril crop insurance is not a viable solution for manag-
ing agricultural risk (Hess and Syroka (2005)).

4 Parametric Insurance

4.1 How Parametric Insurance Works

Parametric insurance, also known as index-based insurance, provides coverage
where payouts to the insured party are triggered and calculated by a predeter-
mined index. This index is used as a threshold, and the payout amount corre-
sponds to the value of the index Mookerjee et al. (2014). Therefore, under paramet-
ric insurance, there is no need for individual loss assessments. The key components
of parametric insurance are:

4.1.1 Index Definition:

The first step is to define an index that will be used to decide whether a payout is
made and, if so, what the payout amount should be. The index needs to be reliable
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and objective and must be closely correlated with the risk being insured. Common
indices include weather data, such as rainfall, temperature, or other measurable
factors.

4.1.2 Trigger Events:

Specific thresholds need to be established for the index. When the index reaches or
exceeds these thresholds, it triggers a payout. For the trigger to be viable, it needs
to be fortuitous, independently and reliably monitored, and capable of being mod-
elled (Tadesse et al. (2015)). Common triggers in crop insurance within agricultural
insurance include deficit or excess rainfall, temperature, etc.

4.1.3 Payout Mechanism:

The payout structure is predefined based on the index level, i.e., if the parameter
or index threshold is reached or exceeded, the insured party will receive the pre-
agreed payout regardless of the actual losses sustained.

4.2 Advantages of Parametric Insurance

Using parametric insurance instead of traditional indemnity insurance has many
benefits. One of these benefits is that in parametric insurance, adverse selection
and moral hazard are significantly reduced altogether (Mookerjee et al. (2014)).
This is mainly because the payout is based on a predetermined index which is not
influenced by the insured party, so it should not matter to the insurer who buys
the insurance or what actions they take on their farm after buying the insurance.
Additionally, since the payouts are based on an index whose value can be easily
determined, it implies that the payouts are easily calculated as well, which means
the administrative costs are significantly reduced (Mookerjee et al. (2014)). This, in
turn, leads to the insurer charging lower premiums. Furthermore, since the claims
are connected to an objective and independent source of information, the chances
of fraudulent claims are significantly reduced. Altogether, these benefits signifi-
cantly increase the chances of obtaining reinsurance (Tadesse et al. (2015)).

4.3 Disadvantages of Parametric Insurance

One of the main drawbacks of parametric insurance is basis risk. Basis risk arises
when the index measurements do not match the insured party’s actual losses due
to an imperfect correlation between the index and the insured party’s output (Hess
and Syroka (2005)). Depending on the correlation between the actual losses in-
curred and the index, basis risk may be significant, which may then result in a
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large disparity between losses and payouts (Mookerjee et al. (2014)). For para-
metric insurance products that are based on a weather index, which is often the
case, setting up and maintaining weather stations and the required infrastructure
for measuring the indices may be challenging and not financially viable (Mooker-
jee et al. (2014)). Additionally, it is often difficult to construct a suitable index and
product design that will have low levels of basis risk (Tadesse et al. (2015)). More-
over, it is often the case that parametric insurance products with low levels of basis
risk will be expensive and more complex and, hence, not easily understood by the
target market.

5 Catastrophe Cover

5.1 Catastrophe Insurance

Catastrophe insurance is insurance taken by businesses and the general public to
protect against low-probability natural disasters. In the event of a catastrophe, the
insurer would have to pay its clients for the losses they have suffered because of the
disaster. The size of the payout would be determined by the actual losses suffered
and the payout is meant to indemnify the client. This means that the insurer would
have to assess the individual losses of each client and make the payment based on
the realised losses. In addition to the costs of making the payouts, the process of
assessing losses is usually costly for the insurer (Barnett et al., 2008). Moreover,
the process is lengthy and clients often have to wait long periods to receive their
payout. To transfer some of this risk, insurers may take on reinsurance, which may
also take long to indemnify the insurer.

5.2 Catastrophe Bonds

As an alternative to reinsurance, insurance companies can issue catastrophe bonds.
Catastrophe bonds (CAT) bonds are instruments generally issued by insurers as a
form of reinsurance for the insurer. When a predefined catastrophe occurs, such as
an earthquake, tsunami, hurricane, etc, the bond pays the issuer to help with deal-
ing with losses arising from catastrophe insurance claims. When these bonds are
issued, investors buy them as a bet against natural disasters until the bond matures.
In return, the investor receives coupon payments typically higher than corporate
bonds. If the specified trigger catastrophe does not happen until the bond matures,
then the investors receive the principal amount plus the final coupon. However,
if the specified catastrophe occurs, the insurer receives a payment to indemnify it
from the losses arising from the disaster. This means that the investors get only
a fraction or none of their principal payments back. In the case of CAT bonds as
opposed to reinsurance, the insurer receives the payment quicker.
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6 Maize Production in South Africa

Maize is the most extensively grown field crop in South Africa and is considered
one of the main staples in the country. Both white (about 60%) and yellow (about
40%) maize are produced in South Africa, with white maize primarily for human
consumption and yellow maize used for animal feed. The maize industry is an
important part of the country’s economy as an employer as well as an earner of
foreign currency due to its multiplier effect. This is because maize can also be used
as a raw material for a range of manufactured products such as textiles, medicine
and paper. Of all the maize produced in South Africa, more than two thirds is con-
sumed by the local market, this consumption is split between humans (37.2%) and
the animal feed industry (39.2%), with the rest being used for seed and industrial
uses (23.6%)(Department of Agriculture and Fisheries, 2021).

Maize production is widely spread across South Africa and is mostly produced un-
der dryland conditions, with only 10% being produced under irrigated conditions,
indicating that weather conditions play a vital role in production. The Free State is
the province with the largest share of maize production with approximately 45% of
total production taking place in the province. The main districts where maize pro-
duction takes place in the Free State are Lejweleputswa, Motheo and Thabo Mofut-
sanyana. We selected eight weather stations in different regions across these dis-
tricts to ensure that we captured the average weather conditions for the entire area.
These were Bloemfontein, Bothaville, Bultfontein, Ficksburg, Harrismith, Heilbron,
Senekal and Viljoenskroon (Department of Agriculture and Fisheries, 2021).

6.1 Climate Requirements

6.1.1 Temperature

The ideal temperature for maize cultivation is between 19◦C and 25◦C. Extreme
heat, temperatures exceeding 32◦C are detrimental to crop yield. Lower tempera-
tures are not as critical to the yield, but it will slow the growth of the crop(Department
of Agriculture, Land Reform and Rural Development, 2022).

6.1.2 Rainfall

Maize needs between 450 and 600 mm of water per season to reach its full potential.
Since the majority of production occurs under dry land conditions, this water must
come mainly from rainfall. (du Plessis, 2003)

6.2 Growth Cycle

The optimal planting time for maize depends on the area in which it will be grown.
Broadly this can be divided into three different regions. For the eastern region with
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cooler climates, planting takes place from the start of October to the first week of
November. For the central region, planting should start from the last two weeks
in October to mid-November. Finally, for the western region with a drier climate,
planting should take place from the last two weeks in November to mid-December.
After planting maize needs around 5 months to grow, dependent on external fac-
tors, before it is ready to harvest. For the purposes of this paper, we will assume
that planting takes place at the end of November(Department of Agriculture, Land
Reform and Rural Development, 2022).

7 Product Structuring

We consider five different product types: single-index rainfall insurance, single-
index temperature insurance, single-index rainfall insurance with multiple thresh-
olds, single-index rainfall insurance with multiple thresholds, and a double-index
temperature-rain insurance product. For the single-index temperature insurance
and double-index product, we make the assumption that the insurance is issued
on the first day of November and extends to the last day of February (time TH ), ig-
noring the existence of leap years. For the single-index rainfall insurance product
we assume that the insurance is issued on the first day of December and extends to
the last day of December (time TR).
The temperature index we use in our pricing is the daily maximum temperature,
averaged over the time period from the first of November to the last day of Febru-
ary of the following year. The rainfall index we use in our pricing is the cumulative
rainfall over the month of December. These indices were chosen because, as dis-
cussed in Section 6, maize is sensitive to abnormally high temperatures over its en-
tire growth period, and requires rainfall shortly after planting, and so we consider
these indices to be a reasonable predictor for whether or not maize grew within suf-
ficient climate conditions. Further, we average the indices over the eight regions
discussed in Section 6.

The insurance products follow a cash-or-nothing payoff structure. Suppose R(t)
represents the observed accumulated rainfall over the December period, then for
our single-index rainfall insurance product, we offer at the end of the insurance
period, TR, a payoff

V (R(TR), TR) =

{
P if R(TR) < KR

0 otherwise,
(1)

That is, if the total rainfall received over December, R(TR), is insufficient relative
to some level, KR, agreed to beforehand, the client receives a lump-sum amount P.
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The single-index temperature insurance product follows a similar structure. Sup-
pose H(t) represents the observed average temperature over the November to
February period, then here we offer at the end of the insurance period, TH , a payoff

V (H(TH), TH) =

{
P if H(TH) > KH

0 otherwise,
(2)

That is, if the maximum daily observed temperature over the November-February
period has an average value, H(TH), that is excessive relative to some level, KH ,
agreed to beforehand, the client receives a lump-sum amount P.

For single-index rainfall insurance with multiple thresholds, suppose we have a
descending sequence of rainfall thresholds KR,1 > ... > KR,n and an increasing
sequence of payouts P1 < ... < Pn, we offer a payout at the end of the December
period of

V (R(TR), TR) =

{
Pi if KR,i > R(TR) > KR,i+1

0 otherwise,
(3)

That is, if the cumulative rainfall over December, R(TR), is realised between (and
only between) the threshold levels i and i+ 1, the client receives payout Pi.

For single-index temperature insurance with multiple thresholds, suppose we have
an increasing sequence of temperature thresholds KH,1 < ... <KH,n and an increas-
ing sequence of payouts P1 < ... < Pn, we offer a payout at the end of the December
period of

V (H(TH), TH) =

{
Pi if KH,i < H(TH) < KH,i+1

0 otherwise,
(4)

That is, if the maximum daily observed temperature over the November-February
period has an average value, H(TH), that is realised between (and only between)
the threshold levels i and i+ 1, the client receives payout Pi.

The double-index follows a multivariate cash-or-nothing payoff structure, where
we offer at the end of the insurance period, TH , a payoff

V (R(TH), H(TH), TH) =

{
P if R(TH) < KR and H(TH) > KH

0 otherwise,
(5)

That is, if the rainfall received over December, R(TR) = R(TH), and the maximum
daily observed temperature over the November-February period has an average
value, H(TH), that has crossed their predefined trigger levels, the client receives a
lump-sum amount P.

15



7.1 On the risk-free rate

Due to the binary payoff structure one may be attempt to model the insurance pre-
mium using the language of financial derivatives, however this may have a critical
consequence. As the fair price of any instrument is the discounted expectation of
the future payoff (Baškot and Stanić, 2020), one would require a risk-free interest
rate to base their pricing on. However, the underlying ”asset”, the weather, is not
tradeable. One would require additional assumptions. One may attempt to take
the approach used by Jewson and Zervos (Jewson and Zervos, 2003) and assume
the existence of a highly liquid, standardly traded, linear weather forward deriva-
tive. In such a market, one may proceed with risk-neutral valuation and, if the
risk-free rate is say r, use a discount factor of e−rT , and offer the insurance at a
price at the present time of

Price = e−rTE[V (T )] (6)

However, such a market does not exist. Furthermore, (Cao and Wei, 2004) pro-
pose a utility-based valuation approach that allows the study of the market price
of risk of weather derivatives, and they show that risk-neutral valuation provides
a severe misestimation of weather option prices. However, the assumption that
discounting by the risk-free rate is acceptable remains common in literature, such
as in (Rui Zhou and Pai, 2019) where they priced temperature derivatives. So, here
forth, we assume that e−rT as our discount factor is a sufficient approximation.

8 Pricing Parametric Insurance

As shown in Section 7, the payout of index insurance is triggered when the thresh-
old KT is exceeded; otherwise the insurer pays nothing. The price of the insurance
can be calculated as the discounted expectation of the payoff. In the case of insur-
ance indexed by rainfall, the premium can be calculated as

Premium = E[Pe−rTRIRT<KR
] (7)

and would be given by

Premium = E[Pe−rTH IHT>KH
] (8)

for insurance indexed by temperature.
Thus the premium is

Premium = Pe−rTHP[Index > K] (9)
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8.1 Comparison to Black Scholes

This payoff is similar to that of a cash-or-nothing option, where, in the case of a put
option the payoff is given by

Payoff =

{
P if ST ≤ K

0 otherwise,

where P is the payoff at maturity, ST is the stock price at maturity, and K is the
strike price. As seen in equations 10 and 8, for the insurance indexed by rain, the
insurance pays out once the rain is below the trigger level, making it analogous to
a put option. However, in the case of temperature, the insurance pays out when
the temperature in the region exceeds the threshold, making it analogous to a call
option. Since Black Scholes assumes that the stock price is lognormally distributed,
various studies (see Okine (2014); ) have used Black Scholes to price index-based
insurance when the index follows a lognormal distribution.
The option price is given by

Premium = Pe−rTRN(−d2) (10)

where N(−d2) is the cumulative normal distribution, r is the risk-free interest rate
with d2 given by

ln( H0
KH

) + µt

σ
√
t

.

with µ = 1
n−1 ln(

Hn
H1

) , σ =
√

1
n

∑n
j=1(uj − ū)2, with uj = ln

(
Hj

Hj−1

)
. We will thus

compare our actuarial approach to the Black Scholes approach by pricing using
both approaches.
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9 Pricing

9.1 Data

Daily maximum temperature (in ◦C) and daily rainfall (in mm) data was obtained
from the Open-Meteo Weather API (Zippenfenig (2023)) for the period from 1940
to 2024. Since we considered eight different regions in the Free State the data was
averaged across these regions to obtain the average daily maximum temperature
and the average daily rainfall. For the temperature index, this data was augmented
into an index that contains the average maximum temperatures of each year from
November to February the following year, and for the rainfall index, the data was
augmented to obtain the total rainfall over the month of December for each year.

9.1.1 Temperature

Figure 1 shows the histogram for the values of the temperature index. Different
distributions were fit to this data, and it was found that the log-normal distribution
provided the best fit.

Figure 1: Histogram of Temperature Index Values.

Table 1: Goodness of Fit Test Results
Test Statistic P-value

Kolmogorov-Smirnov 0.0408 0.998
Anderson-Darling 0.1553 0.998

Table 1 displays the test statistics and p-values that where obtained for the Kolomogorov-
Smirnov and Anderson-Darling tests, since the p-values for both are much larger
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than 0.05 it indicates that the log-normal distribution is a good fit for the tempera-
ture index data.

The estimated parameters of the fitted log-normal distribution are given in table 2.

Table 2: Estimated Parameters for Log-Normal

Parameters Estimate Std. Error

Mean 3.2914 0.0065
Std. Dev. 0.0597 0.0046

9.1.2 Rainfall

Figure 1 shows the histogram for the values of the rainfall index. Different distribu-
tions were fit to this data, and it was found that the gamma distribution provided
the best fit.

Figure 2: Histogram of Rainfall Index Values.

Table 3: Goodness of Fit Test Results
Test Statistic P-value

Kolmogorov-Smirnov 0.0655 0.841
Anderson-Darling 0.2893 0.946

Table 3 displays the test statistics and p-values that where obtained for the Kolomogorov-
Smirnov and Anderson-Darling tests, once again the p-values for both are much
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larger than 0.05 which indicates that the gamma distribution is a good fit for the
rainfall index data.

The estimated parameters of the fitted gamma distribution are given in table 4.

Table 4: Estimated Parameters for Gamma
Parameters Estimate Std. Error

Shape 4.8633 0.7236
Rate 0.0412 0.0065

9.2 Pricing single-index insurance

Using the parameters of the distribution of the historical index data, we simulate
n = 1000000 samples of index values from the respective distributions. Based
on the simulated index, we calculate the probability that the index exceeds the
threshold.

9.3 Pricing Multi-Index Insurance

The multi-index insurance product considers both the temperature and rainfall in-
dices to determine when a payout is triggered. Three different approaches were
followed for pricing this product: the copula and multivariate approaches, which
take the dependence between the two indices into account, and pricing on the as-
sumption that the indices are not dependent.

9.3.1 Copula Approach

Copulas can be used to model the dependence between random variables. The
joint probability returned by a copula is a function of the marginal probabilities.
The fact that the marginal behaviour of random variables are modelled separately
from their dependence is what makes the copula approach so attractive. Kole et al.
(2007)

Let X1, · · · , Xn be random variables with marginal continuous distribution func-
tions F1, · · · , Fn, respectively, and joint distribution function H . Then (X1, · · · , Xn)

T

has a unique copula, denoted by C(·). The standard copula representation for the
distribution of (X1, · · · , Xn)

T then becomes:

H(x1, · · · , xn) = P{X1 ≤ x1, · · · , Xn ≤ xn} = C (F1(x1), · · · , Fn(xn)) (11)

The transformations used in the above representation, Xi 7→ Fi(Xi), are the probability-
integral transformations (to uniformity) and form a standard tool in simulation
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methodology.Embrechts et al. (2001)

The selection of an appropriate bivariate copula family to use for the temperature
and rainfall index was done by fitting all possible bivariate copula families and
selecting the best one based on the AIC and BIC selection criteria. Under both
the AIC and BIC the rotated Gumbel copula 270 degrees was selected as the most
appropriate. The rotated Gumbel copula 270 degrees is defined as:

C(u, v) = exp

(
−
[
(− lnu)θ + (− ln v)θ

] 1
θ

)
, (12)

where θ is the Gumbel parameter given by θ̂ = 1
1−τ with τ the correlation between

the variables (Rajini and Jayalakshmi, 2021).

Figure 3 shows the dependence structure between the simulated values for tem-
perature and rainfall using the rotated Gumbel copula 270 degrees. This indicates
that the fitted copula appropriately models the non-linear dependence between the
two indices.

Figure 3: Dependence structure between simulated Temperature and Rainfall

9.3.2 Multivariate Normal Approach

As a point of comparison, we also model the joint index as a multivariate normal
distribution using a method described by Li and Hammond (Li and Hammond,
1975). This modelling method is less than desirable than the copula approach as it
does not capture the dependence between variables as well as the copula approach
does, however it is perhaps more intuitive as it only involves straightforward trans-
formations of probability distributions.
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Suppose we wish to generate two random variables, X and Y , where X follows
distribution F and Y follows distribution G, and further suppose that we wish for
X and Y to have (Pearson) correlation ρ. Then, we may proceed by generating a
multivariate normal variable (ZX , ZY )

t (here the superscript t denotes transposi-
tion) with mean (0, 0)t and correlation matrix

( 1 ρ
ρ 1

)
. We then make use of the in-

verse transform method by generating the correlated uniform variates N(ZX) and
N(ZY ), where N is the normal cumulative distribution function, and then generat-
ing the correlated target variates F−1(N(ZX)) and G−1(N(ZY )).

9.3.3 Assumed Independence Approach

If X1, · · · , Xn are independent random variables with marginal continuous distri-
bution functions F1, · · · , Fn, respectively. Then the joint distribution function H of
(X1, · · · , Xn)

T is given by:

H(x1, · · · , xn) = P{X1 ≤ x1, · · · , Xn ≤ xn} = F1(x1) · F2(x2) · · ·Fn(xn). (13)

Thus, we can simply multiply the marginal probabilities to obtain the joint proba-
bilities.
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10 Single-Index Insurance

10.1 Rain-based Insurance

Table 5 shows the premiums based on different trigger levels for rain insurance.
Since maize requires high levels of rainfall, the insurance pays out when rainfall is
below the trigger level.

Table 5: Premiums for Rain-Based Insurance
q0.3 q0.2 q0.1 q0.05 q0.025 q0.01

Rainfall (mm) 80.01 70.43 54.20 39.94 28.47 17.49
Premium 29.87 19.91 9.96 4.98 2.49 0.98

As the threshold increases, the premium increases as well. This is because a higher
rainfall threshold triggers a payout more frequently than a lower one, making in-
surance more expensive.

10.2 Temperature-based Insurance

Table 6 shows the premiums based on different trigger levels for rain insurance.
Since maize is sensitive to extremely high temperatures, the insurance pays out
when the temperature is above the threshold.

Table 6: Premiums for Temperature-Based Insurance

q0.7 q0.8 q0.9 q0.95 q0.975 q0.99

Temperature (◦C) 27.75 28.29 29.05 29.69 30.25 30.93
Premium 29.51 19.67 9.83 4.91 2.46 0.98

As the threshold decreases, the premium increases. This is because a lower tem-
perature threshold triggers a payout more frequently than a higher one, making
insurance more expensive.

10.3 A comparison with Black Scholes Prices

Since the temperature is lognormally distributed, we compute the price using the
Black-Scholes approach as implemented in existing literature. Table 7 shows the
prices from both approaches.
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Table 7: Premiums for Temperature-Based Insurance

q0.7 q0.8 q0.9 q0.95 q0.975 q0.99

Temperature (◦C) 27.75 28.29 29.05 29.69 30.25 30.93
Black-Scholes 70.11 60.18 45.24 33.23 23.99 15.27

Actuarial 29.51 19.67 9.83 4.91 2.46 0.98

The Black-Scholes prices are more than double the actuarial approach prices, going
as high as almost 16 times. This indicates that the Black-Scholes formula cannot be
used directly to price index-based insurance.

10.4 Rain-based Insurance with multiple thresholds

As an alternative, farmers could opt for rain-based index insurance with multi-
ple thresholds. The payoff for such a product is shown in Table 8. For every one
percent increase in the strike quantile, the payoff is assumed to increase by an ad-
ditional one percent from the original 100 payoff. Such a product will have a lower
level of basis risk due to its payoff structure. In other words, if the farmer suffers a
higher loss, they will receive a higher payout, as opposed to the case where there is
only one threshold with one fixed payment. So, this is one attempt at minimising
basis risk.

Table 8: Payoff structure for Rainfall-Index Insurance with multiple thresholds

Rainfall (mm) Payoff

x > 80.1 0
70.43 < x ≤ 80.1 100
54.20 < x ≤ 70.43 110
39.94 < x ≤ 54.20 120
28.47 < x ≤ 39.94 125
17.49 < x ≤ 28.47 127.5
x ≤ 17.49 130

The price of such a product is then calculated as a combination of the prices of
single rain-index insurance products, i.e. a combination of cash-or-nothing puts.
The price for this product is calculated to be 33.19. As can be seen, the premium
of the product with multiple thresholds is higher than all of the premiums for the
products with one threshold in 5. This result demonstrates the trade-off between
basis risk and the premium charged for the insurance, i.e., an insurer cannot reduce
basis risk without having to charge more for the insurance.
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10.5 Temperature-based Insurance with multiple thresholds

Table 9: Payoff structure for Temperature-Index Insurance with multiple thresholds

Temperature (°C) Payoff

x < 27.75 0
27.75 ≤ x < 28.29 100
28.29 ≤ x < 29.05 110
29.05 ≤ x < 29.69 120
29.69 ≤ x < 30.25 125
30.25 ≤ x < 30.93 127.5
x ≥ 30.93 130

The price for this type of insurance is calculated as a combination of cash-or-nothing
calls and is found to be 32.77. As can be seen, the premium of the product with
multiple thresholds is higher than all of the premiums for the products with one
threshold in 7.

11 Multi-Index Insurance

11.1 Copula Approach

Table 10: Premiums from Copula Approach

Rain (mm)

q0.3 q0.2 q0.1 q0.05 q0.025 q0.01

Temperature (◦C)

q0.7 16.17 12.25 7.24 4.05 2.16 0.87
q0.8 12.34 9.82 6.27 3.67 2.02 0.84
q0.9 7.24 6.22 4.48 2.93 1.74 0.77
q0.95 4.04 3.64 2.91 2.16 1.41 0.69
q0.975 2.17 2.03 1.74 1.42 1.02 0.57
q0.99 0.92 0.88 0.80 0.69 0.56 0.38

Table 10 contains the insurance premiums obtained when using the copula ap-
proach to calculate the joint probabilities of exceeding the thresholds. These prices
are deemed to be the most accurate since using copulas to model the joint proba-
bility distribution does a better job at capturing the dependency between the two
indices. As expected the premium decreases as the threshold is moved further into
the tails of the distributions of the respective indices since these thresholds are less
likely to be breached.
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11.2 Multivariate Approach

Table 11: Premiums from Multivariate Approach

Rain (mm)

q0.3 q0.2 q0.1 q0.05 q0.025 q0.01

Temperature (◦C)

q0.7 15.11 11.08 6.26 3.43 1.85 0.80
q0.8 11.07 8.34 4.90 2.78 1.54 0.68
q0.9 6.26 4.90 3.05 1.81 1.04 0.48
q0.95 3.43 2.77 1.82 1.13 0.67 0.33
q0.975 1.84 1.53 1.05 0.68 0.42 0.21
q0.99 0.79 0.68 0.48 0.33 0.21 0.11

Table 11 presents the insurance premiums when modelling the joint probability
distribution as a correlated multivariate distribution, and estimating the joint prob-
ability that the observed rainfall and average temperatures have crossed their pay-
out threshold levels. As above, respective thresholds are set at the upper and lower
30%, 20%, 10%, 5%, 2.5%, and 1% quantiles of the marginal distributions. Imme-
diately, we notice that the multivariate approach universally prices lower than the
copula approach in table 10, perhaps due to the multivariate approach not being
able to capture the dependence between rainfall and temperature as well as the
copula approach does. This would lead to a misestimation of the probability that
low rainfall and high temperature are observed simultaneously.

11.3 Assumed Independence Approach

Table 12: Premiums from Assumed Independence Approach

Rain (mm)

q0.3 q0.2 q0.1 q0.05 q0.025 q0.01

Temperature (◦C)

q0.7 8.88 5.93 2.99 1.49 0.75 0.30
q0.8 5.90 3.95 1.99 0.99 0.50 0.20
q0.9 2.92 1.95 0.98 0.49 0.25 0.10
q0.95 1.47 0.98 0.49 0.25 0.12 0.05
q0.975 0.74 0.49 0.25 0.12 0.06 0.02
q0.99 0.29 0.20 0.10 0.05 0.02 0.01

Table 12 shows the premiums as calculated using the approach where we assume
that the two indices are independent. It is observed that this approach is underpric-
ing the insurance product across all combinations of the indices. This underpricing

26



is due to the fact that not taking the dependence into account underestimates the
probability of high temperatures coinciding with low rainfall.
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12 Government Relief vs Paying Premiums

In the event of a natural disaster, national governments, especially in developing
countries, provide relief by allocating funds from their budgets that were, in some
cases, meant for development. The International Monetary Fund (IMF, 2016) found
that these costs can average around 1.8% of the GDP of the country.
In South Africa, in 2022, R1 Billion was allocated for emergency relief for the floods
experienced in April in KwaZulu-Natal. From a GDP of R4.60 trillion, this was
0.1% of the GDP in the year Treasury (2016). By taking on index-based insurance,
the government knows beforehand how much it needs to pay for the insurance and
the premium is paid at predetermined intervals. Moreover, since the government
only provides relief when the losses are severe, the government would only take
the insurance for the more extreme weather conditions as this would be signifi-
cantly cheaper.
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13 Conclusion and Recommendations for Future Work

In this paper, we calculated prices for single-index-based insurance, double-index-
based insurance, and single-index multiple-threshold index-based insurance. Single-
index rainfall insurance is priced by fitting historical cumulative rainfall data to a
gamma distribution and estimating the probability that rain falls below specified
quantiles of its distribution. Single-index temperature insurance is priced by fit-
ting historical average maximum temperature data to a log-normal distribution
and estimating the probability that temperature exceeds specified quantiles of its
distribution. Single-index multiple-threshold products are also considered, as the
higher payoff for more extreme weather conditions may allow for minimization of
basis risk in terms of the client being better compensated for more extreme losses.
Double-index-based insurance is priced by modelling the distribution of the joint-
index with a 270◦ rotated Gumbel copula and, as a point of comparison, we also
model the joint distribution under the assumption that the dependence between
the indices is linear, and the assumption that the indices are independent.

We found that allowing multiple thresholds produces a universally more expen-
sive insurance product, and the combination of indices to create a double-index
product produces a product universally cheaper than the single-index products.
Modelling the joint distributions by assuming linear or no independence results in
lower pricing than the prices generated from the copula approach, due to inade-
quate modelling of the dependence between rainfall resulting in misestimations of
the probability that low rainfall coincides with high temperatures.

We find that since the premiums are very low for severe loss events, it might be
cheaper for the government to buy the insurance than pay for relief when extreme
conditions strike.

As the temperature data was found to be log-normally distributed, we attempted
pricing the single-index temperature insurance under the assumptions of standard
Black-Scholes-Merton and risk-neutral valuation theory and found that this as-
sumption leads to significant over-pricing relative to the actuarial approach. This
suggests that risk-neutral pricing is inappropriate for the pricing of weather-index
insurance, in line with previously published literature (Cao and Wei, 2004). As po-
tential future work, one might model the weather-index processes via the financial
approach as appropriate stochastic differential equations and transform those to a
risk-neutral measure to create a new risk-neutral valuation framework.

Although having a long history of data is desirable, because of climate change his-
torical data might not be a good reflection of current and future climatic conditions
and potential hazards. Thus future work should account for the effects of climate
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change.
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Chapter 1

Introduction

1 Background

The modelling of financial markets is a crucial yet challenging task faced by finan-
cial engineers, because, unlike scientific fields where most models are governed
by physical laws, financial market dynamics are shaped by abstract forces (such as
supply and demand), which are influenced by a host of unquantifiable factors like
investor sentiment and global economic policies (Gierjatowicz et al., 2020).

Traditionally, the approach to market modelling has been to handcraft assumption-
based models that were as parsimonious and computational undemanding as pos-
sible (Cuchiero et al., 2020). Such models, however, while valuable for their tractabil-
ity, are limited in their ability to capture complex market dynamics and the param-
eters of such models tend to be highly sensitive to training data.

Fortunately, the adoption of neural networks allows for a more robust and data-
driven approach to financial market modelling (Gierjatowicz et al., 2020). In some
sense, the dynamics of a financial market are much like that of a neural network: a
black-box system with a multitude of parameters all interlinked to form a complex
structure that is governed by an unclear and non-intuitive pattern.

2 Problem Statement

The crux of financial market modelling is model calibration, which involves the
fine-tuning of model parameters to fit to observed market prices. In times past, the
calibration speed of a model has been a critical factor influencing its adoption in
practice; however, this perspective was shifted by the pioneering work of Hernan-
dez (2016) called Model Calibration with Neural Networks.

In their seminal paper, Hernandez (2016) describes the expedition of the model cal-
ibration process using feed-forward neural networks, and has prompted scholars
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to rethink the notion of model calibration time as a limitation. Essentially, the bulk
of neural network training can be performed offline while online calibration (which
just involves simple matrix multiplication) proceeds swiftly.

Of all the papers published on the subject, Cuchiero et al. (2020) have identified
three main ways that neural networks can be applied to the calibration of financial
market models, namely:

1. Calibrating model parameters to market prices

2. Calibrating model parameters to model prices

3. Generative adversarial modelling using neural SDEs

The first two approaches involve the traditional approach of specifying a paramet-
ric model and using neural networks to fit the model parameters. The third ap-
proach, however, models the stochastic diffusion dynamics using neural networks,
and is model-free as it allows the data to dictate the model (hence the term gener-
ative modelling).

Our work in this report investigates the use of generative modelling using neural
SDEs, building upon the work published by Gierjatowicz et al. (2020). Our main
objective is to use conditional expectation in the pricing of different options using
a local volatility neural stochastic differential equation with the following form:

dXθ
t = b(t,Xθ

t , θ) dt+ σ(t,Xθ
t , θ) dWt (1.1)

where Xθ
t is a stochastic process, θ is a set of parameters and b and σ are neural

networks.

The remainder of our report is structured as follows: Chapter 2 briefly reviews lit-
erature on neural networks and conditional expectation techniques. Chapter 3 dis-
cusses the mathematical framework underpinning model calibration using neural
SDEs as well as the variance reduction (conditional expectation and hedging port-
folio) strategies. Chapter 4 provides a breakdown of the methodology used for in-
vestigation. Chapter 5 reports on the results and key insights of our investigation
and, finally, in Chapter 6 conclusions and further recommendations are presented.
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Chapter 2

Literature Review

1 Neural Networks

(Artificial) neural networks are mathematical machine learning models, inspired
by the neural structure of the brain, that enable computers to learn from vast
datasets and perform human-like tasks like pattern recognition, decision-making
and time series prediction (Da Silva et al., 2017). At their core, neural networks
comprise a system of interconnected artificial neurons, whose structure is depicted
in Figure 2.1.

Figure 2.1: The basic structure of an artificial neuron (Abraham, 2005)

In reference to Figure 2.1, each artificial neuron is a mathematical model that takes
a weighted (w1, w2, w3, w4) combination of its inputs (x1, x2, x3, x4), adds a bias
term (b) and then transforms the combined result using a transfer function, f, to
obtain an output (o) (Abraham, 2005).

A number of transfer functions, f, have been developed for artificial neuron mod-
elling, for example, the sigmoid function, given by f(λ) = (1 + e−λ)−1, transforms
input values into a range between 0 and 1, and is particularly useful or applications
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where outputs need to represent probabilities (Amiri and Derakhshandeh, 2011).

Finally, in consolidation of all the artificial neuron components described above, a
generalised equation relating the inputs of a neuron to its output(s) is given by the
equation below Krenker et al. (2011):

o = f

[
n∑

i=1

(wi · xi + b)

]
(2.1)

1.1 Neural Network Architecture

The combination of neurons into a neural network can either be done such that in-
formation flows only in one direction from inputs to outputs, or it can be done such
that the network utilises both forward connections and feedback loops between its
neurons (Basheer and Hajmeer, 2000). These two neural network architecture types
— the former being a feed-forward neural network (FNN) and the latter being a re-
current neural network (RNN) — are contrasted in Figure 2.2.

It is worth mentioning that the feed-forward architecture of a neural network should
not be mistaken for forward propagation. The latter forms part of the training
process of artificial networks, as will be outlined in Section 1.2, which has been
informed by Artifical Neural Networks, a book published by Da Silva et al. (2017).

Figure 2.2: A comparison between the two main neural network architecture types

For the purposes of financial market modelling, the feed-forward artificial network
architecture is preferred for two main reasons (1) it is a simple architecture which
would make computation more stable and (2) given that one wants stock price
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process to be adapted for option pricing, using a recurrent neural network would
conflict with this major assumption, which underpins the model.

1.2 Neural Network Training Process

The training of a neural network is a recursive process that mirrors a feedback-loop.
In the same way that one accumulates knowledge and refines their understanding
over time, a neural network processes large volumes of data and adjusts model
weights and biases to improve future predictions.

Initially, the neural network is initialized with a random set of weights and biases,
akin to an uninformed mind. Through a process called forward propagation, it
computes predictions based on input data. These predictions are then compared to
the actual outcomes using a defined loss function, providing feedback on its per-
formance. Backpropagation adjusts the network’s weights and biases in response
to this feedback, akin to learning from mistakes.

This iterative cycle of prediction, evaluation, and adjustment continues for multiple
epochs until the network’s performance converges to an optimal state. Ultimately,
the neural network learns to generalize from the training data, enabling it to make
accurate predictions on unseen data. Thus, a crucial activity in the training of a
neural network is to create a substantial training set, enabling the neural network
to generalize effectively from it Hernandez (2016).

2 Conditional Expectation Estimation

A well studied approach to conditional expectation estimation is Kernel smooth-
ing. Kernel smoothing is a non-parametric technique that assign weights to neigh-
boring data points based on a chosen kernel function, typically a symmetric and
non-negative function such as the Gaussian or Epanechnikov kernel Tibshirani and
Wasserman (2013). A review of this method will be discussed further in Section 3
of the Methodology.

Longstaff and Schwartz (2001) introduced a method for approximating American
options prices using least squares to estimate the conditional expected payoff for
continuation. Their approach, otherwise known as the Least Squares Monte Carlo
(LSM) method, is simple to implement and applicable for conditional expectation
estimation in this report.

Ólafsson (2023) reviews the LSM method for approximating conditional expecta-
tions and compares it to the Gaussian mixture model (GMM) which promises more
efficient and accurate calculations for option pricing and hedging strategies.
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Chapter 3

Mathematical Framework

1 Generative Market Modelling

The majority of the discussion in this section is derived from the study conducted
by Gierjatowicz et al. (2020).

1.1 Neural Stochastic Differential Equations

Assuming constant interest rate r ∈ R and considering parameter space Θ = Θb ×
Θσ ⊆ Rp and parametric functions b : Rd ×Θb → Rd and σ : Rd ×Θσ → Rd×n. Let
(Wt)t∈[0,T ] be an n-dimensional Brownian motion supported on (Ω,F , (Ft)t∈[0,T ],Q)
so that Q is the Wiener measure and Ω = C([0, T ];Rn). We consider the following
parametric SDE:

dXθ
t = b(t,Xθ

t , θ) dt+ σ(t,Xθ
t , θ) dWt (3.1)

We split Xθ
t into traded and non-traded assets and focus only on the first ones

(traded) defined as S, then the SDE for these assets can be defined as:

dSθ
t = rSθ

t dt+ σS(t, Sθ
t , θ) dWt (3.2)

This process defined in a discounted value (((e−rtSt)t∈[0,T ])) has the property of
local martingale and thus the model is free of arbitrage (Shreve et al., 2004). If (b, σ)
are defined to be neural networks, the SDE defined above is called neural SDE and
we denote by Mnsde(θ) the class of solutions. For simplicity, (Gierjatowicz et al.,
2020) both b and σ have been modelled as feed-forward neural networks.

We denote the law Xθ on C([0, T ];Rd) by Q(θ) := L((Xt)t∈[0,T ]). Given a loss
function l : R× R → R+, the search for a calibrated model can be written as

θ∗ ∈ argmin
θ∈Θ

M∑
i=1

l
(
EQ(θ)[Φi], p(Φi)

)
, (3.3)

9



where

EQ(θ)[Φ] =

∫
C([0,T ],Rd)

Φ(ω)L(Xθ)(dω). (3.4)

1.2 Model Calibration Optimization Problem

Let ℓ : R × R → [0,∞] be a convex loss function such that minx∈R,y∈R l(x, y) = 0.
The aim is to solve the following optimisation problems:

• Find model parameters θ∗ such that model prices match market prices:

θ∗ ∈ argmin
θ∈Θ

ℓ
(
EQ(θ)[Φi], p(Φi)

)
. (3.5)

• Find model parameters θl,∗ and θu,∗ which provide robust arbitrage-free price
bounds for an illiquid derivative, subject to available market data:

θl,∗ ∈ argmin
θ∈Θ

EQ(θ)[Ψ], subject to
M∑
i=1

ℓ
(
EQ(θ)[Φi], p(Φi)

)
= 0. (3.6)

θu,∗ ∈ argmax
θ∈Θ

EQ(θ)[Ψ], subject to
M∑
i=1

ℓ
(
EQ(θ)[Φi], p(Φi)

)
= 0. (3.7)

The no-arbitrage price of Ψ over the class of neural SDEs used is then in the range
[EQ(θl,∗),EQ(θu,∗)]

1.3 Learning hedging strategy as a control variable

A practical algorithm is to estimate EQ(θ)[Φ] using a Monte Carlo estimator based
on the idea that due the Law of Large Numbers and Central Limit Theorem EQN (θ)[Φ]
converges to EQ(θ)[Φ] and increasing N, there is a reduction in a confidence inter-
val, respectively. This increase of N, increases the overall computational cost, so a
better strategy is to find a control variate Φcv such that:

EQN (θ)[Φcv] = E[Φ] and Var[Φcv] < Var[Φ]. (3.8)

According to the Martingale Representation Theorem, there is a methodology for
finding Monte Carlo estimators with the above stated properties (Cohen and El-
liott, 2015).

If Φ is such that EQ[|Φ|2] < ∞, then there exists a unique process Z = (Zt)t adapted
to the filtration (Ft)t∈[0,T ] with EQ[

∫ T
t |Zs|2ds] < ∞ such that
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E[Φ|F0] = Φ−
∫ T

0
ZsdWs. (3.9)

Define

Φcv := Φ−
∫ T

0
ZsdWs (3.10)

and note that

EQ(θ)[Φcv|F0] = EQ(θ)[Φ|F0] and VarQ(θ)[Φcv|F0] = 0 (3.11)

The process defined above (Z) requires an approximation, which in this case will
be a neural network: ℏ : [O, T ] × C([0, T ],Rd) × Rp → Rd with parameters ξ ∈ Rp′

with p′ ∈ N and define the following learning task, in which θ is fixed:

ξ∗ ∈ argmin
ξ

Var
[
Φ((Xθ

t )t∈[0,T ])−
∫ T

0
ℏ(s, (Xθ

s∧t)t∈[0,T ], ξ)dWs|F0

]
. (3.12)

Following the same way, we can obtain new equations from (3.6) and (3.7) by
changing (Ψ,Φ) to (Ψcv,Φcv) which have lower Monte Carlo variance. These new
equations provide us a hedging strategy for trading in the underlying asset (S) to
replicate the derivative payoff.

Recall that we focus only on traded assets for simplicity, so the control variate is
adapted for the tradeable asset.
The idea of a hedging strategy is as follows: let S̄θ

t := e−rtSθ
t and following (3.2)

d(S̄θ
t ) = e−rtσS(t,Xθ

t , θ) dWt (3.13)

Therefore, a hedging strategy will be defined as:

hS = e−rth̄St σ
S(t,Xθ

t , θ) dWt (3.14)

then it would be generating the same path (fluctuations) as the tradable asset (S).
Later, a hedging strategy for an option is estimated.

Linking everything together, we have that, by the martingale representation theo-
rem, we know that

E[Φ|F0] = Φ−
∫ T

0
ZsdWs.

The integral term can be replaced by the stochastic integral of the hedging strategy
with respect to the discounted stock price. In the case of Gierjatowicz et al. (2020),
this hedging strategy is computed via a second neural network.
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1.4 Time Discretisation

Throughout the implementation of the model ((3.6) and (3.7)), the stochastic inte-
gral (3.12) is approximated using a sum of increments over a partition π of [0, T ]
with N steps. The approximation of the parameters of the neural SDE plays an
important role as there is a possibility that the moments of the simulated paths via
the classical Euler scheme could blow up. In order to avoid this issue, the Tamed
Euler scheme is used:

Xπ,θ
tk+1 = Xπ,θ

tk
+

b(tk, X
π,θ
tk

, θ)

1 +
∣∣b(tk, Xπ,θ

tk
, θ)
∣∣√∆tk

∆tk +
σ(tk, X

π,θ
tk

, θ)

1 +
∣∣σ(tk, Xπ,θ

tk
, θ)
∣∣√∆tk

∆Wtk

(3.15)
where ∆tk = tk+1 − tk and ∆Wtk = Wtk+1 −Wtk .

1.5 Stochastic Gradient Descent

Define the following classical optimisation problem

min
θ∈Θ

h(θ), h(θ) := E[H(θ)]. (3.16)

Under suitable conditions on H and the learning rates (ηk)
∞
k=1 with ηk > 0 for

all k, the classical gradient descent algorithm can be applied to this optimization
problem. Since E[H(θk)] cannot be computed explicitly, we use stochastic gradient
descent. This results in the following update rule:

θk+1 = θk − ηk
1

N

N∑
i=1

∂θH
i(θk), (3.17)

where (H i(θ))Nbatch
i=1 are independent samples from the distribution of H(θ) and N

is the size of the mini-batch. The choice of a good estimator (unbiased) for E[H(θ)],
the stochastic gradient descent converges to a minimum of h.

The main objective of this project is to minimize the loss

M∑
i=1

ℓ
(
EQ(θ)[Φcv

i ], p(Φi)
)
. (3.18)

To compute (3.18), we use stochastic gradient descent described above, where dif-
ferentiation is justified under the conditions in (Glasserman, 2004) and we have
∂θEQ[G(Xθ)] = EQ[∂θG(Xθ)]. In conclusion
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∂θ =

M∑
i=1

(∂xℓ)(EQ(θ)[Φcv
i ], p(Φi))∂θEQ(θ)[Φcv

i ]

=
M∑
i=1

(∂xℓ)(E[Φcv
i (Xθ)], p(Φi))E[∂θΦi(X

θ)].

(3.19)

Eminently, a key result underpinning the use of feed-forward neural networks in
stochastic modelling was developed by Hornik (1991). This theorem, which is
stated below, postulates that any given continuous function can be approximated
by one-layer neural networks.

Theorem 1.1. Universal Approximation Theorem

Let N ϕ
NI ,NO

denote the set of all feed-forward neural networks with input layer dimension
NI , output layer dimension NO and activation function ϕ. Given that ϕ is bounded and
non-constant then the following statements hold

1. For any finite measure, µ on (RN0 ,B(RN0)) and 1 ≤ p < ∞, the set N ϕ
NI ,NO

is
dense in Lp(RN0 ,B(RN0), µ)

2. If in addition ϕ ∈ C(R,R) then N ϕ
NI ,NO

is dense in C(RN0 ,R) for the topology of
uniform convergence on compact sets.

2 Conditional Expectation and pricing of derivatives

There are two main methods for pricing derivatives:

1. Black-Scholes-Merton Partial Differential Equation (PDE)

2. Discounted expected payoff under Risk-Neutral measure via Stochastic Dif-
ferential Equation (SDE)

By no-arbitrage, these two methods should provide the same result. Feynman-Kac
theorem provides a link between the two methods.

2.1 Feynman-Kac

We assume that the process St is defined by:

dSθ
t = rSθ

t dt+ σS(t, Sθ
t , θ)dWt (3.20)
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and that (S, t) 7→ G(S, t) is a function that satisfies the following PDE:

∂G(St, t)

∂t
+ rSθ

t

∂G(St, t)

∂St
+

1

2
(σS(t, Sθ

t , θ))
2∂

2G(St, t)

∂S2
t

− rG(St, t) = 0 (3.21)

with the boundary condition G(s, T ) = Φ(s, T ). Then, the solution of this PDE is
given by

G(s, t) = E[e−r(T−t) Φ(ST , T ) | St = s] (3.22)

2.2 Hedging Strategy

We assume that G(St, t) is a function of an option value and satisfies the Feynman-
Kac theorem, where St follows the process (3.20). Therefore, by Itô’s Lemma, the
dynamics of the process G(St, t) are given by

dG(St, t) =

[
∂G(St, t)

∂t
+

∂G(St, t)

∂S
rSt +

1

2

∂2G(St, t)

∂S2
σS(t, St, θ)

2

]
dt

+
∂G(St, t)

∂S
σS(t, St, θ) dWt.

(3.23)

The idea is to find a strategy (h) which hedges the uncertainty of the option.

ht = γtSt + ϕtBt

dht = γtdSt + ϕtrBtdt

= (γtSt + ϕtBt)rdt+ γtσ
S(t, St, θ) dWt

(3.24)

The fluctuations of both portfolios must be equal:

∂G(St, t)

∂S
σS(t, St, θ) dWt = γt σ

S(t, St, θ) dWt

∂G(St, t)

∂S
= γt

(3.25)

This result shows that the number of shares of the stock St must be equal to the
delta of the option.

2.3 Conditional Expectation and Conditional Variance

As we have stated, Φ is a random variable which is associated with a Control Vari-
ate Φcv defined as

Φcv := Φ−
∫ T

t
ZsdWs. (3.26)
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By the properties defined in (3.11), this implies that Φcv is an unbiased estimator of
Φ but with a reduced variance.

Var(Φcv) = Var
(
Φ−

∫ T

t
ZsdWs

)
. (3.27)

Variance reduction is achieved through the orthogonal decomposition of Φ into a
predictable part and a martingale

Φ = E(Φ|Ft) +

∫ T

t
ZsdWs. (3.28)

Therefore,

Var(Φcv) = Var
(
Φ−

∫ T

t
ZsdWs

)
= Var

(
E(Φ|Ft) +

∫ T

t
ZsdWs −

∫ T

t
ZsdWs

)
= Var (E(Φ|Ft)) .

(3.29)

By (3.28) and because Var(
∫ T
t ZsdWs) > 0, it is clear that Var(Φcv) ⩽ Var(Φ).

This result provides an insight into how the Monte Carlo variance is decreased
through learning of conditional expectations, or equivalently Z. The orthogonal
decomposition stated above allows us to understand how Φ can be split into a
predictable part and a martingale part. By using a control variate (Φcv), we achieve
a reduction in the variance of the estimator, thereby improving the efficiency of the
Monte Carlo method. This variance reduction is based on the lower conditional
variance of the predictable part compared to the total variance of Φ.
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Chapter 4

Methodology

1 Crude Monte Carlo

The crude Monte Carlo method is a very popular numerical method of estimating
variables. It is often used in financial scenarios to calculate expected gains and
losses, as well as pricing various options. The method involves running various
scenarios and using the average of the outcomes to provide an estimated sample.
Since it is a simple method, with most methods built around it, it is used as a
benchmark for all the different methods we discuss on the following pages.

Algorithm 1: Generative model calibration to European call option prices for
one maturity
Input: π = {t0, t1, · · · tNsteps} time grid for numerical simulations

Input: (Φi)
Nprices
i=1 option payoffs

Input: p(Φj), j = 1, · · · , Nprices market option prices
Initialisation: θ for neural SDE parameters Ntrn ∈ N
for = 1 : Nepochs do

1) Generate Nrn paths: (xπ,θ,itn )
Nsteps
n=0 for i = 1, · · · , Nrn using the Tamed Euler

scheme in Equation 3.15
2) Create copies of the generated paths, which no longer depend on θ.(
i.e., create (x̃π,itn )

Nsteps
n=0 ) such that ∂x̃π,itn = 0

)
3) During every epoch: Use Adam (developed by [Kingma and Ba (2014)])

to update θ where:

θ = ˆargmin
θ

Nprices∑
j=1

(
ENtrn [Φj

(
Xπ,θ

)
]− p(Φj)

)2

end
return θ
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2 Hedging strategy using a neural network

The model by Gierjatowicz et al. (2020) (which is refered to as Algorithm 1 in their
paper) for calibration to market European option prices for one maturity as ex-
plained in Chapter 1 Section 1, is utilised in a two-step process. The model works
in an iterative manner. As the first matter of business, stocks paths and payoffs
must be simulated. This paper uses the tamed Euler method for this, as it avoids
blow ups by the moments of the stipulated paths (equation 3.15). It controls the
step size in a way that prevents the numerical solution from becoming unstable,
especially in the presence of coefficients that grow super-linearly.

These paths are realised for all maturities and all relevant strikes, leading to the
payoffs being calculated and the options priced. The algorithm works by alternat-
ing between optimising for the single factor NSDE and then focusing on optimising
for the control variate. The Algorithm is then extended to a two-factor NSDE with
both the diffusion process and the drift process having a stochastic nature.

For the optimising of the NSDE step, the algorithm computes estimated realisations
of stock paths based off of the parameters discovered from the previous iteration.
These realisations are then used to calculate conditional expectations passed into
the neural network training. The predicted expectations are then compared to the
true prices from the heston model.

The comparison of the prices is done through the use of Mean Squared Error (MSE).
The MSE is therefore the loss function used in the model calibration and is then
used to calculate new parameters for the NSDE. The updated parameters are then
passed forward for the next iteration. This process repeats itself for 20 iterations
and then the best loss value (i.e. the lowest RMSE value) is recorded and docu-
mented. The epoch is then ended.

The next step in the algorithm focuses on minimizing the variance of the control
variate. Control variates are used in order to decrease variance and, therefore, ob-
tain more accurate results. The neural networks loss function for this step is there-
fore to minimise the variance of the vanilla call option. This is done by developing
new parameters for the control variate neural network. This process occurs in each
iteration with the sum of the variance from the expected vanilla option price being
stored as the loss function and, therefore, minimised. It is then documented for
further analysis.

The program is able to switch between these two neural networks by freezing the
step that is not being minimised.This results in the other neural network parame-
ters (e.g., the NSDE when the diffusion neural network is being optimised) being
fixed for each alternating epoch and, therefore, for the corresponding 20 iterations
in that epoch.
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The loop continues until there are realisations for every strike and maturity pair.
The crude monte carlo estimates are then calculated and stored. The variance of
the control variates calculated using the neural network control variate step is then
added to the crude Monte Carlo simulations. This, then, due to it being approx-
imated as a perfect hedge, reduces the variance and allows the NSDE to be min-
imised effectively.

The parameters are then inputted again and this recurs until a suitable error has
been reached. Overall, the model is well-optimised and runs efficiently. The algo-
rithm used can be seen below in Algorithm 2

Algorithm 2: Generative model calibration to European call option prices for
one maturity
Input: π = {t0, t1, · · · tNsteps} time grid for numerical simulations

Input: (Φi)
Nprices
i=1 option payoffs

Input: p(Φj), j = 1, · · · , Nprices market option prices
Initialisation: θ for neural SDE parameters Ntrn ∈ N
for = 1 : Nepochs do

1) Generate Nrn paths: (xπ,θ,itn )
Nsteps
n=0 for i = 1, · · · , Nrn using the Tamed Euler

scheme in Equation 3.15

2) Create copies of the generated paths, which no longer depend on θ.(
i.e., create (x̃π,itn )

Nsteps
n=0 ) such that ∂x̃π,itn = 0

)
3) During every odd epoch: Freeze ξ, Use Adam (developed by [Kingma

and Ba (2014)]) to update θ where:

θ = ˆargmin
θ

Nprices∑
j=1

(
ENtrn

[
Φj

(
Xπ,θ

)
−

Nsteps−1∑
k=0

h̄(tk, X
π,θ
tk

, ξj)∆
˜̄Sπ,θ
tk

]
−p(Φj)

)2

4) During every even epoch: Freeze θ, Use Adam to update ξ which is the
vanilla call option sample variance given by:

ξ = ˆargmin
ξ

Nprices∑
j=1

VarNtrn

[
Φj

(
Xπ,θ

)
−

Nsteps−1∑
k=0

h̄(tk, X
π,θ
tk

, ξj)∆
˜̄Sπ,θ
tk

]

end
return θ, ξj for all prices(ϕi)

Nprices

i=1
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3 Kernel Regression

Given a set of paired data (X,Y ) = ([X1, X2, · · · , Xn]
T , [Y1, Y2, · · · , Yn]T ), it is

often of interest to want to predict Y from X . In particular, this report is concerned
with the optimal and unbiased prediction of payoff functions Y = Φ(ST ) from
underlying asset price realisations X = St, which can be performed by finding an
estimate for the regression function, m(x).

m(x) = E(Y |X = x). (4.1)

One of the main classes of approaches towards the non-parametric estimation of
m(x) is Kernel regression, chief of these being Nadaraya-Watson kernel regression,
where the regression function estimate, m̂(x) is defined as follows:

m̂(x) =

∑n
i=1 Yi K

(
||x−Xi||

h

)
∑n

i=1K
(
||x−Xi||

h

) . (4.2)

Here h (the bandwidth) is a non-negative parameter and K(x) is a symmetric and
non-negative (smoothing kernel) function, with the following properties:∫

K(x) dx = 1,

∫
xK(x) dx = 0 and σ2

K ≡
∫

x2K(x) dx > 0 (4.3)

Although several different smoothing kernel functions exist (e.g, the rectangular,
triangular, Gaussian, and Epanechnikov kernels), it has been asserted by Tibshi-
rani and Wasserman (2013) that the choice of K(x) is of far less importance than,
the choice of the bandwidth, h.

Given the specification of the kernel estimator, it suffers from the curse of dimen-
sionality as the expression needs to be computed for each x. To see this, recall that
we require the realisations of the payoff at each maturity. We then need to calculate
the conditional expectation based on earlier times. It would clearly be inefficient to
implement the conditional expectation approach element-wise for each realisation
of St. Therefore it is necessary to address this through vectorisation of program
code.

3.1 Bandwidth Selection

In essence, the selection of the bandwidth involves balancing estimator bias and
variance: a smaller bandwidth provides more detailed but potentially more noisy
estimates, while a larger bandwidth gives smoother, more stable estimates, but
may overlook important local features in the data.

Bandwidth selection is an art, rather than a science; nevertheless, Tibshirani and
Wasserman (2013) outlines a simple technique, called leave-one-out cross valida-
tion. If we define R(h) as the risk of using a particular bandwidth, h, then an
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estimate of this risk, R̂(h), can be estimated using the using leave-one-out cross-
validation score

R̂(h) =
1

n

n∑
i=1

(Yi − m̂(−i)(Xi))
2 (4.4)

where m̂(−i) is the regression function estimate obtained by omitting the ith data
pair (Xi, Yi). Under this metric, the bandwidth, h, is chosen in order to minimize
R̂(h).

3.2 Bias Corrected Estimator

There is a common issue with many kernel-based methods: boundary bias. This
issue leads to an overestimation or underestimation of the true regression function
because the kernel function has fewer neighboring points to average at the edges
of the data support. (Cheruiyot, 2020)

There are several methods to mitigate the boundary bias, such as: local linear re-
gression, variable bandwidth selection, extrapolation, etc.

For this purpose, we proceed throughout Local Polynomial Regression, which in-
stead of using a simple average, it fits a local linear model reducing the bias because
it better approximates the behavior of the regression function near the boundaries.
(Jácome et al., 2005)

m̂BC(x) = m̂(x)− m̂′′(x)h2

2
(4.5)

Overall by implementing the Kernel regression above and calculating a new loss
function for the neural network, one can implement the algorithm below.
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Algorithm 3: Using conditional expectation through Kernel Regression in order
to calibrate the model to calibrate to European call option prices for a single
maturity
Input: π = {t0, t− 1, · · · tNsteps} time grid for numerical simulations

Input: (Φi)
Nprices
i=1 option payoffs

Input: p(Φj), j = 1, · · · , Nprices market option prices
Initialisation: θ for neural SDE parameters Ntrn ∈ N
for = 1 : Nepochs do

1) Generate Nrn paths: (Sθ
i ) for i = 1, · · · , Nrn using the Tamed Euler

scheme in Equation 3.15

2) Create copies of the generated paths, which no longer depend on θ.
(i.e., create (S̃θ

i ) such that ∂S̃θ
i = 0

3) Use Adam (developed by [Kingma and Ba (2014)]) to update θ where:

θ = ˆargmin
θ

=

Nprices∑
j=1

(ENtrn [Φj(S
θ)|Fj ]− p(Φj))

2

end
return θ

4 Hedging using conditional expectation

By the derivation from Feynman-Kac, the process h can be given as the derivative
of the conditional expectation with respect to the asset price. As we have an esti-
mator for the conditional expectation, one can calculate the hedging delta directly
by applying the central difference method for the first derivative as opposed to ap-
proximating the hedge via a neural network. One would expect this method to per-
form similarly to the method of Gierjatowicz et al. (2020) as we are essentially using
the same control variate. It has the additional advantage over the standard condi-
tional expectation approach in that the bias will cancel out in the central difference
calculation, however, it suffers from the same limitation as their approach in that
the accuracy depends on the number of time steps. To implement this method, we
consider the algorithm below.
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Algorithm 4: Using conditional expectation as a hedging strategy for model
calibration to European call option prices for a single maturity
Input: π = {t0, t1, · · · tNsteps} time grid for numerical simulations

Input: (Φi)
Nprices
i=1 option payoffs

Input: p(Φj), j = 1, · · · , Nprices market option prices
Initialisation: θ for neural SDE parameters Ntrn ∈ N

for = 1 : Nepochs do
1) Generate Nrn paths: (Sθ

i ) for i = 1, · · · , Nrn using the Tamed Euler
scheme in Equation 3.15

2) Create copies of the generated paths, which no longer depend on θ.(
i.e., create create (S̃θ

i ) such that ∂S̃θ
i = 0

3) During every epoch: Use Adam (developed by [Kingma and Ba (2014)])
to update θ where:

θ = ˆargmin
θ

Nprices∑
j=1

(
ENtrn

[
Φj

(
Xπ,θ

)
−

Nsteps−1∑
k=0

∆ENtrn [Φj

(
S̃θ
i )|S̃θ

i = s]

∆S̃θ
i

]
−p(Φj)

)2

end

return θ
.
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Chapter 5

Results and Discussion

1 Comparison of Main Methods

As shown in Chapter 3, the variance of the conditional expectation approach is
equal to the approach by Gierjatowicz et al. (2020). The disadvantages of their
approach are the time discretisation and the approximation of the second neural
network. The disadvantages of the conditional expectation approach are that some
estimators are biased as well as the fact that the first and second derivatives need
to be calculated for the hedge and the bias correction respectively.

Table 5.1: Disadvantages of Main Methods
Var[Φcv] Var[E[Φ|F ]]

Time discretisation for Potentially biased estimators
hedging portfolio

Approximation of second neural network Approximation of derivatives
for hedging portfolio

2 Gaussian Kernel Estimation Bias

As mentioned in Chapter 3, the kernel estimator is a biased estimator of condi-
tional expectation. To illustrate this, we perform a simulation using the conditional
expectation method and 100 simulations.
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Table 5.2: Parameters
S0 1
K 1
T 1
r 0.025
c 10 000

Batch Size 100
Number of Epochs 100

Bump size 0.0001
h 0.3

Number of Conditional Expectations 8

Figure 5.1: Bias Correction for Conditional Expectation

Using the bias correction stated in Chapter 3, we calculate the second derivative of
the Nadaraya-Watson estimator using the central difference method with a bump
size of 0.0001. As seen in Figure 5.1, there is a clear upward bias for the Gaussian
kernel estimator. We observed this behaviour across all strikes. We observed that
the bias correction was mostly negative, as expected. However, as the number of
epochs is increased this effect becomes less pronounced. This method can therefore
be seen more as a means of increasing the convergence rate.
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3 Comparison of RMSE

Devroye and Lugosi (2001) note that one of the advantages of using a kernel esti-
mator is that it performs relatively well for a low number of simulations. There-
fore, for a fair comparison of the four methods stated in Chapter 4, we calculate the
RMSE for each method using 1000 simulations using the parameters in Table 5.3.

Table 5.3: Parameters
S0 1
K [0.8-1.2]
T 1
r 0.025
c 10 000

Batch Size 1 000
Number of Epochs 50
Tolerance for RMSE 2e-05

Bump size 0.0001
h 0.3

Number of Conditional Expectations 8

Figure 5.2: RMSE for the Four Methods
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Table 5.4: Best RMSE
Crude Monte Carlo 0.0011868

Hedge using Control Variate 0.0010264

Kernel Conditional Expectation 0.0008264

Hedge using Conditional Expectation 0.0007501

Note that the approach by Gierjatowicz et al. (2020) uses a two step approach and
hence we keep the RMSE the same for every second epoch as the second loss func-
tion of the method by Gierjatowicz et al. (2020) is not comparable.

In figure 5.2 and table 5.4, we observe that all three methods have a lower RMSE
than the crude Monte Carlo method as expected. The results suggest that a more
accurate calculation of the first and second derivatives of the conditional expecta-
tion would lead to better results for the same number of epochs. The estimate of
the conditional expectation as the weighted average of the conditional expectations
for certain time steps could also be improved by considering a finer grid.
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Chapter 6

Conclusions and
Recommendations

1 Conclusions

In this report, we have explored the application of neural stochastic differential
equations (SDEs) for generative modeling. The aim of the project was to replace the
second neural network present in the hedging strategy by Gierjatowicz et al. (2020)
with a conditional expectation. This conclusion was made through using Feynman-
Kac Theorem linking the value of an option with the expected discounted payoff,
as well as the relationship between the Conditional Expectation and the Control
Variate through the reduction variance.

The results suggest that each method has its advantages and disadvantages. Ad-
vantages of the neural network hedging strategy resulted in less computational
stress and arrived at a result faster than that of the conditional expectation coun-
terpart. This advantage however was short lived with the conditional expectation
being able to perform a lower loss function value and therefore match the target
data better, which can be seen in Figure 3.

After adjusting for the bias of the kernel estimator, the predicted price of the gener-
ative model more closely matched the target market prices. The bias was negative
as the bias correction as negative in order to cancel out the upward bias of the
kernel. Moreover, the bias of the kernel decreased as as the model became more
rigorously trained (i.e. as the number of epochs increased).

2 Recommendations

Based on the promising results, we recommend that this approach be explored
further. Specifically, one can consider a larger number of simulations for each
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method, different kernel functions, different loss function parameters, different loss
functions, different bump sizes for the derivative approximations, as well as other
methods of computing conditional expectations so as Least-Squares Monte Carlo.
Furthermore, one can apply the two conditional expectation methods to simulated
prices based on other models as well as actual market data.
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1 Introduction

Option pricing is a hot topic in Mathematical Finance due to its complexity and
the variety of options available which can be broadly categorized into vanilla and
exotic options. Vanilla options include standard European and American options
which depend on the terminal value of the underlying asset. European options
can only be exercised at maturity, whereas the long party in an American option
contract has the option to exercise at any time at or before maturity. Exotic options
are any options priced differently 1, one commonly traded example, especially in
commodity markets, being the Asian option. Introduced by Ingersoll (1987), they
were originally used in Tokyo to price average option contracts, see for instance
Zhang (2003). Asian options consider the geometric or arithmetic average of the
price of the underlying asset over the contract term. This means that the variance
of these options is lower than that of the underlying and therefore the options are
cheaper than equivalent vanilla options Mudzimbabwe et al. (2012).
A variety of established methods exist for option pricing, including closed-form
solutions, semi-analytical methods, and Monte Carlo estimation. Arithmetic Asian
options, due to it being non-Markovian and the arithmetic structure, do not have
a closed-form solution. There can be various forms of Arithmetic Asian options.
Specifically, we focus on the Arithmetic Asian option which writes calls on the
arithmetic mean of a stock with payoff at a fixed maturity T and with a fixed strike
price K:

f(A(S, T ),K) := max(0, A(S, T )−K), (1)

where

A(t) =
1

T

∫ T

0
Stdt, (2)

and the underlying stock process (St)t≥0 follows a standard geometric Brownian
motion (GBM) stochastic model.
Due to the path-dependency of such options (as seen in its payoff function 1),
Arithmetic Asian options require Monte-Carlo based technique to price them since
closed-form solutions are not available. In general, closed-form solutions are the
simplest approach, however few formulas exist with the most popular being the
Black-Scholes-Merton formula which assumes constant volatility. This however
fails to capture the stochasticity of volatility. Stochastic volatility models, such as
the Heston and stochastic alpha-beta-rho (SABR) models, solve this issue by al-
lowing instantaneous volatility process to evolve stochastically (see Fukasawa and
Gatheral (2021)). Recent empirical evidence on volatility versus time indicates that

1Exotic options are options that have a more complicated payoff structure, often dependant on
the entire evolution of the stock price process rather than just the terminal stock price.
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volatility dynamics are rougher than a Brownian semi-martingale, therefore there
have been efforts to modify the aforementioned models to form rough models.
El Euch and Rosenbaum (2019) note the that fractional Brownian motions with
small Hurst parameters model log-volatility dynamics reasonably well. Gatheral
et al. (2018) specifically show that rough models reproduce the empirical volatil-
ity correlation structure well, closely follow the entirety of the volatility surface
and generate the typically observed explosion of the at-the-money skewed term
structure for short maturities, especially in Equity markets. Analytical methods
use the solution to partial differential equations with given boundary conditions
to model prices, while probabilistic methods use numerical integration on risk-
neutral conditional expectations (Yin, 2015). Fu et al. (2001) and others show that
Monte Carlo methods are advantageous given that convergence is typically inde-
pendent of the number state variables, making it a preferred choice for higher di-
mensional problems. With regard to rough processes with dynamics following a
fractional Brownian motion, Monte Carlo analysis becomes computationally in-
tensive as the non-Markovian nature makes this analysis complex and inefficient,
therefore other methods should be developed when utilizing rough models.
Additionally, it is well known that Monte Carlo option pricing is computationally
expensive and that it requires a hundred fold increase in sample size to reduce the
standard deviation of the estimate by a factor of ten (Glasserman, 2004). Another
way to reduce the standard deviation of the estimated option price is to reduce the
standard deviation of the simulated discounted payoff. This is done through vari-
ance reduction techniques. The aim of these techniques is to make the option price
estimates more accurate and efficient. Commonly implemented techniques include
the use of antithetic variates, control variates and endpoint stratification. The goal
of this paper however is to reassess the implementation of the diffusion operator
integral (DOI) variance reduction technique proposed by Heath and Platen (2002).
This paper is organised as follows. In Section 2, the notation and terminology
used throughout the paper will be explained and standardised. In Section 3, the
price dynamics of the four models will be discussed including a derivation of the
processes under a risk neutral measure or equivalent martingale measure. This
will be followed by a critical analysis of the variance reduction techniques imple-
mented with special attention paid to the diffusion operator integral method which
requires derivation of the Greeks for each model in order to be implemented in
Section 4. Section 5 then provides an overview of the numerical methods that will
be implemented in simulation including discretisation methods and Monte Carlo
pricing algorithms. Finally, we conclude and discuss future avenues of research in
Section 6. The Appendix 7 provides additional information regarding mathemati-
cal derivations and methodology required in order to implement the four models
and relevant variance reduction techniques.
To the best of our knowledge, our work is the first to offer theoretical analysis as
well as effective implementation of the Diffusion Operator Integral (DOI) variance
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reduction techniques with an application of rough stochastic volatility models such
as the rough Heston model and the rough SABR model. It is a highly non-trivial
task to implement and successfully apply variance reduction techniques to rough
models, due to their fractional Brownian motion components, which corrupt the
nice Markovian structure in standard models. Our paper is also among the first
to give a comprehensive survey and empirical comparison of the popular variance
reduction methods to rough stochastic volatility models, especially with respect
to the path-dependent Arithmetic Asian Options, which are known to be difficult
to price due to their lack of a closed analytic form. Finally, to contribute to the
wider computational finance community, we release our codes through Github to
the general public.

2 Notation

Our theoretical analysis for the paper will be based in a continuous time frame-
work. On a given probability space (Ω,F ,P) with a right continuous filtration
F = (Ft)t≥0 satisfying F0 = {∅,Ω}, we consider a market model consisting of as-
sets, on which the price of the Arithmetic Asian options is derived. We describe the
price evolution dynamics of an asset in the market in terms of a stochastic process
(St)t≥0, which is assumed to be an Itô process adapted to the filtration F .
Throughout the paper, we assume the existence of a risk-free asset and denote its
fixed interest rate to be r. Furthermore, given a (X ,A, µ)-measurable function f :
X → R, where A is a sigma-algebra on set X and µ is the Lebesgue measure, we
use the simplified notation Lp, where 1 ≤ p < ∞, to denote Lp(X,A, µ), i.e. the
equivalent classes of measurable functions f : X → R such that∫

∥f∥pdµ <∞,

where ∥ · ∥ is the Lp−norm.

3 Price Dynamics Models

A good model for asset evolution dynamics should reproduce the stylized facts of
modern electronic markets. The vanilla geometric Brownian model characterized
by stochastic differential equation (SDE) under a physical or historical measure

dSt = µStdt+ σStdWt,

assumes constant drifts (µ) and volatility (σ) and is widely criticized for not captur-
ing the reality of market observed market phenomena, where volatility is stochas-
tic. To address this short-coming, models such as Heston models and SABR as well
as their rough variants are proposed.
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3.1 Heston Model

A very popular stochastic volatility model for an asset price is the Heston model.
This model assumes that the underlying stock price, St, follows a Black Scholes-
type stochastic process, but with a stochastic variance vt that follows Cox et al.
(1985). The Heston model with parameter θ = {µ, κ, ξ, η, ρ, s0, v0}.

dSt = µStdt+ St
√
VtdWt, S0 = s0

dVt = κ(ξ − Vt)dt+ η
√
VtdBt, V0 = v0

⟨dWt, dBt⟩ = ρdt.

(3)

Here, µ is the drift under the physical measure P, κ > 0 is the mean reversion
speed for the variance, ξ > 0 is the mean reversion level for the variance, η > 0
is the volatility of the variance, s0 > 0 is the initial asset price, v0 > 0 is the initial
level of the variance, and ρ ∈ [−1, 1] is the correlation between the two standard
Brownian motions W and B.
The Heston model described in System 3 is defined under the historical measure P
and provides a reasonable dynamics for the volatility surface. It is a celebrated
model because it reproduces several important features of low frequency price
data, including leverage effect, time-varying volatility, and fat tails.
For free-arbitrage pricing, we rewrite process defined in System 3 under the risk-
neutral measure Q. In the Heston model, this is done by modifying each SDE in
System 3 separately by an application of Girsanov’s theorem.
First, the risk-neutral process for the stock price is:

dSt = rStdt+
√
VtStdW̃t, (4)

where

W̃t =

(
Wt +

µ− r√
Vt
t

)
,

Here r is the riskless fixed interest rate. Notice that if we designate µ = r in System
3, the term µ−r√

Vt
vanishes and W̃t =Wt.

Using Itô’s formula 2, the risk-neutral process of the log price therefore is

d lnSt = (r − 1/2Vt)dt+
√
VtdW̃t. (5)

Second, we introduce the volatility risk premium λ(S, V, t) = λvt into the drift of
dvt in System 3, where λ is a constant. 3 The risk-neutral process for the variance is
then obtained as follows:

dVt = [κ(ξ − Vt)− λVt]dt+ η
√
VtdB̃t, (6)

2Derivation can be found in the Appendix 7.
3As explained in Heston (1993) and Breeden (1979), consumption model yields a premium pro-

portional to the variance, so that λ(S, V, t) = λVt for some constant λ.
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where

B̃t = (Bt +
λVt

η
√
Vt
t).

Here λ is a constant scaling parameter. Hence, we rewrite the risk-neutral Heston
model as

dSt = rStdt+
√
VtStdW̃t, S0 = s0

dVt = κ∗(ξ∗ − Vt)dt+ η
√
VtB̃t, V0 = v0

⟨dW̃t, dB̃t⟩ = ρdt,

(7)

where risk-neutral parameters κ∗ = κ + λ and ξ∗ = κξ/(κ + λ). Note that when
λ = 0, we have κ∗ = κ and ξ∗ = ξ so that the parameters under the physical and
risk-neutral measures are the same. That is:

B̃t = Bt.

3.2 Rough Heston Model

In the Heston model, volatility follows a Brownian diffusion. But Gatheral et al.
(2014) showed that in fact log-volatility time series behave essentially like a frac-
tional Brownian motion, with Hurst parameter of order approximately 0.1, espe-
cially in high frequency data. The fBM is a generalization of the classical Brownian
motion, but in the former, the increments are not independent.

Definition 3.1 (Fractional Brownian Motion (fBM)). The Fractional Brownian Mo-
tion (fBM) is a continuous-time centered self-similar Gaussian process indicated as
{BH

t ; t ∈ R} on [0,T], which starts at zero and has expectation zero for all t ∈ [0, T ].
It has stationary increments and covariance function:

E[BH
t B

H
s ] =

1

2
{|t|2H + |s|2H − |t− s|2H},

where H ∈ (0, 1) is called the Hurst parameter that describes the “roughness” of
the motion. Classical Brownian motion is retrieved with H = 1/2.

The Rough Fractional Stochastic Volatility Model (RFSV) is proposed to address the
roughness by modeling log-volatility dynamics as a fractional Brownian motion
BH

t with Hurst parameter H < 1
2 . RFSV models follow the following form:

dSt = µStdt+
√
VtStdWt

dVt = λ(Vt)dB
H
t

⟨dWt, dB
H
t ⟩ = ρdt.

(8)
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Since the increments of fBM are no longer independent, the rough models are not
Markovian and its variance process is no longer a semi-martingale. This makes it
hard for to use Monte-carlo based techniques to simulate these models. Proposed
by Euch and Rosenbaum (2017), rough Heston models aim to incorporate rough-
ness into the classical Heston Models whilst also allowing tractable simulation of
such process.
Euch and Rosenbaum (2017) modify the Heston model to its rough version with
parameter θ = {µ, κ, ξ, η, ρ, α, s0, v0}:

dSt = µStdt+ St
√
VtdWt, S0 = s0

Vt = V0 +
1

Γ(α)

∫ t

0
(t− s)α−1κ(ξ − Vs)ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
VsdBs, V0 = v0

⟨dWt, dBt⟩ = ρdt,

(9)

where α ∈ (1/2, 1). The Hurst parameter in this case is H = α − 1/2. Notice that
when α = 1, we recover the original vanilla Heston model in 3 We can rewrite
system 9 as the following:

dSt = µStdt+ St
√
VtdWt, S0 = s0

Vt = V0 +

∫ t

0
K(t− s)[κ(ξ − Vs)ds+ η

√
VsdBs],

V0 = v0

⟨dWt, dBt⟩ = ρdt,

(10)

where the kernel function is

K(s) =
1

Γ(α)
sα−1 (11)

with α ∈ (1/2, 1).
To see why system 10 incorporates similar effect of the fBM term in RFSV in 8,
recall that a fractional Brownian motion BH

t with Hurst parameter H can be built
through the general Mandelbrot-van Ness representation given below:

BH
t =

1

c1(H)

∫
R
ft(s)dWs

ft(s) = ((t− s)+)H− 1
2 − ((−s)+)H− 1

2

(12)

and c1(H) is a scaling constant that is a function of H chosen appropriately to
normalize the fractional Brownian motion. One example of Mandelbrot-van Ness
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represented fractional Brownian motion is given by the following (Euch and Rosen-
baum, 2017):

BH
t =

1

Γ(H + 1
2)

∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dWs

+
1

Γ(H + 1
2)

∫ t

0
(t− s)H− 1

2dWs,

(13)

where the scaling constant

c1(H) = Γ(H +
1

2
).

Restricting ourselves to horizon [0, t], the fractional Brownian motionBH
t simplifies

to

BH
t =

1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs

=
1

Γ(α)

∫ t

0
(t− s)α−1dWs.

(14)

Note that the dependence of increments of fBM and the roughness it exhibits are
driven by kernel K(x) in equation 11. Roughness is introduced in a similar way in
the rough Heston model as described in 9 by incorporating such kernel. In partic-
ular, as

√
Vt is finite for all t ≥ 0, we note that the component

η

Γ(α)

∫ t

0
(t− s)α−1

√
VsdBs

in System 9 is a (η−)scaled fractional Brownian motion BH
t in equation 14, where

we have H = α − 1/2. In this way, roughness parameter α ∈ (1/2, 1) governs
the smoothness of the volatility sample paths as the Hurst parameter H ∈ [0, 1]
governs the roughness of the path.
Roughness is introduced when α < 1 (or equivalently, when the Hurst parame-
ter H < 1/2 in fBM). And the stochastic process (St)t≥0 described by System 9
is neither Markovian nor a semimartingale. However, by constructing a suitable
sequence of the nearly unstabled Hawkes processes (which are semi-martingales)
that converge to System 9, characteristic function of the rough Heston model can
be determined in closed-form (Euch and Rosenbaum, 2017). Therefore, by defining
a fractional BM in term of a standard BM instead of driving the volatility process
by a fraction BM, one effectively circumvent the issue of non-Markovianity and
non-semimartingularity that from which the naı̈ve fractional BM models suffer.
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To price assets without arbitrage under the rough Heston model, we similarly in-
troduce the risk-neutral version, where we have assumed the same volatility pre-
mium function:

dSt = rStdt+ St
√
VtdW̃t, S0 = s0

Vt = V0 +
1

Γ(α)

∫ t

0
(t− s)α−1κ∗(ξ∗ − Vs)ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
VsdB̃s, V0 = v0

⟨dW̃t, dB̃t⟩ = ρdt,

(15)

where

W̃t =Wt +
µ− r√
Vt

B̃t = Bt +
λVt

η
√
Vt

for all t ≥ 0 and κ∗ = κ+ λ and ξ∗ = κξ/(κ+ λ) as in 7.

3.3 SABR Model

The stochastic alpha-beta-rho (SABR) model is another popular stochastic volatil-
ity model. First proposed by Hagan et al. (2002), the celebrated SABR model is
widely used for modeling the dynamics of forward prices. The original SABR
model makes the arbitrage-free market assumption with zero risk-free rate, where
the forward price do not exhibit a predictable trend (drift) when expressed in terms
of a risk-neutral measure.
Following Yin (2015), we consider a slight generalization of the original SABR
model by allowing the possibility of a deterministic trend in the forward price
evolution. Specifically, we consider the SABR model describing the dynamics of
a forward, Ft, by the following SDE:

dFt = µF β
t dt+ VtF

β
t dWt, F0 = f0

dVt = αVtdBt, V0 = v0

⟨dWt, dBt⟩ = ρdt,

(16)

where α ≥ 0 is the magnitude of volatility, 0 ≤ β ≤ 1 is a parameter controlling
the elasticity of variance, and−1 ≤ ρ ≤ 1 describes the correlation between the for-
ward price and its volatility. Observe that 16 describes an asymptotically arbitrage-
free Markovian process with no arbitrage dynamics of the implied volatility, which
has zero drift. The conditions for which the model 16 is appropriate are given in
Fukasawa and Gatheral (2021).
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Let market fixed interest rate be r. The risk-neutral version of System 16 can be
derived by adjusting the drift of the forward price process:

dFt = rF β
t dt+ VtF

β
t dW̃t, F0 = f0

dVt = αVtdB̃t, V0 = v0

⟨dW̃t, dB̃t⟩ = ρdt,

(17)

where the risk-neutral Brownian motions are

dW̃t =Wt +
µ− r
Vt

dt

dB̃t = Bt.

(18)

For the sake of simplicity and considering that SABR model models forward prices,
which in reality are calculated by discounting w.r.t. the given market interest rate,
we will set µ = r to work directly with the SABR model under an equivalent mar-
tingale measure.
To recover the underlying stock price process, we recall that

Ft = Ste
rt. (19)

Then under the risk-neutral SABR model, the stock price dynamics is described by
the following SDE:

dSt = re−βrtSβ
t dt+ Vte

−βrtSβ
t dWt, S0 = e−rtf0

dVt = αVtdBt, V0 = v0

⟨dWt, dBt⟩ = ρdt.

(20)

A closed-form solution for the implied volatility smile exists for this model, how-
ever issues include inconsistency with market data and inability to reproduce term
structures of the power-law type for typically observed at-the-money markets (Fuka-
sawa and Gatheral, 2021).

3.4 Rough SABR Model

Fukasawa and Gatheral (2021) adapt the SABR model to be a rough volatility
model where the volatility has a rougher path than a semi-martingale. Specifi-
cally, the rough SABR model derived in Fukasawa and Gatheral (2021) presents
a generalized version that includes both the SABR model and the rough Bergomi
model proposed by Bayer et al. (2016) as particular cases.
The proposed rough SABR model under an equivalent martingale measure Q is
governed by the following dynamics:

dFt = Vtβ(Ft)dWt, F0 = f0

dξt(s) = K(s− t)ξt(s)dBt, t < s, ξ0(0) = v20

⟨dWt, dBt⟩ = ρdt,

(21)
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where

Vt =
√
ξt(t)

K(t) = η
√
2HtH−1/2, η > 0, H ∈ (0, 1/2]

(22)

and

ξt(s) = EQ[ξs(s)|Ft]

= ξ0(s) exp{η
√
2H

∫ t

0
(s− u)H−1/2dBu

− 1

2
η2(s2H − (s− t)2H)}, 0 ≤ t ≤ s.

(23)

Here, correlation coefficient ρ ∈ [−1, 1], β(·) is a positive continuous function,
{ξ0(s)}s≥0 is a family of F0 (filtration at time 0) measurable random variables, and
the curve s 7→ ξ0(s) is continuous.
To allow for more flexibility of possible drifts in the forward price process, one
may similarly consider a slight general form of the rough Heston model in 21 by
including a drift term in the forward process as the following:

dFt = µβ(Ft)dt+ Vtβ(Ft)dWt, F0 = f0

dξt(s) = K(s− t)ξt(s)dBt, t < s, ξ0(0) = v20

⟨dWt, dBt⟩ = ρdt,

(24)

where Vt,K(t), ξt(s) are defined in the same way as defined in 22-23. In particular,
System 24 is risk-neutral when we set µ = r. But for the sake of simplicity, we will
work with model 21 .4

For clarity, we write out the corresponding underlying stock price process follow-
ing the risk-neutral Rough SABR:

dSt = rβ(e−rtSt)dt+ Vtβ(e
−rtSt)dWt, S0 = e−rtf0

dξt(s) = K(s− t)ξt(s)dBt, t < s, ξ0(0) = v20

⟨dWt, dBt⟩ = ρdt,

(25)

Notice that the generalization that the rough Heston model in 24 offers is achieved
through the positive continuous function β(·) and through modeling volatility Vt
as a function of the family of F0−measurable random variables (ξt(s))s≥0. For
instance, if we consider the below positive continuous function (since we assume
by convention that Ft ≥ 0 for all t ≥ 0)

β(Ft) = F β
t , 0 ≤ β ≤ 1

4The risk neutral version of Model 24 can be derived in a similar manner as the risk-neutral naı̈ve
SABR model. The specific form of the risk-neutral rough SABR model can be found in the Appendix
7.
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and we require that

ξ0(s) = α2
0 exp{

1

4
η2s},

then when H = 1/2, we recover the naı̈ve SABR model in 16, where η = 2α (α
as defined in model 16). Derivation of this result can be found in the Appendix 7.
In addition, when β(Ft) = Ft, we recover the rough Bergomi model introduced in
Bayer et al. (2016).
The the family of F0−measurable random variables (ξt(s))s≥0 has nice financial
interpretations. The mapping s 7→ ξt(s) is the forward variance curve at time t:∫ s

t
ξt(u)ds =

∫ s

t
EQ[α2

u|Ft]du

= EQ[d⟨logS⟩u|Ft],

and ξ can be determined from weighted variance swap rates:∫ s

t
ξt(u)ds = EQ[

∫ s

t

S2
u

β(Su)2
d⟨logS⟩u|Ft]

On a higher level, as in the rough Heston model in 9, roughness is brought by the
kernel K(s − t). In the following, we will show in detail how and why roughness
is introduced.
First, let us re-represent the volatility SDE in the SABR model 16. Since the volatil-
ity follows a log-normal martingale, we can apply the Ito’s formula. Consider
f(Vt) = ln(Vt). Then:

d(ln(Vt)) =
1

Vt
dVt +

1

2
(− 1

V 2
t

⟨dV ⟩t)

=
1

Vt
(αVtdBt) +

1

2
(− 1

V 2
t

(α2V 2
t dt)

= αdBt −
1

2
α2dt,

where we have used that

⟨dV ⟩t = ⟨αVtdBt⟩ = α2V 2
t ⟨dB⟩t = α2V 2

t dt.

It follows that

ln(Vt) =

∫ t

0
d(ln(Vt)) =

∫ t

0
αdBt −

1

2
α2dt

= ln(V0) + αBt −
1

2
α2t.
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Taking the exponential gives

Vt = v0 exp{αBt −
1

2
α2t}. (26)

Motivated by the fact that log-volatility behaves like a fractional Brownian Motion
with Hurst exponent H of order 0.1 at any reasonable time scale (Gatheral et al.,
2014), the rough SABR model in 21 essentially extends the class of naı̈ve SABR
models defined in 26 via the following:

Vt = V0 exp{γBH
t −

1

2
VarBH

t }, (27)

for some constant factor γ (γ = 1/2 in our case), where

BH
t = η

√
2H

∫ t

0
(s− u)H−1/2dBu (28)

is a fractional Brownian motion with Hurst parameter H and can be obtained from
the Mandelbrot-Van-Ness formula 12 by setting the scaling constant

1

c1(H)
= η
√
2H. (29)

A more detailed derivation can be found in the Appendix 7.
This rough SABR model proposed by Fukasawa and Gatheral (2021) allows an ex-
plicit asymptotic arbitrage-free approximation of the implied volatility under var-
ious models, such as the rough Bergomi model and the celebrated Black-Scholes
model. Furthermore, these models more closely fit the volatility surface and re-
quire less parameters than the standard SABR method. For instance, empirical
evidence suggests that for a large range of time to expiry, the at-the-money (ATM)
volatility skew is of the form

ψ(τ) = Cτ−α,

where C is a constant and 0 < α < 1
2 . The rough SABR model 21, through using

fractional Brownian motion in log-volatility 27, is able to capture this form in the
model as the following

ψ(τ) = CτH− 1
2 ,

whereas the naı̈ve SABR model cannot.
In addition, the empirical results of Fukasawa and Gatheral (2021) show that Model
24 more accurately approximates the prices for higher values of H , and that the
scaling of y(k, τ) offsets the normalized smile’s dependence on maturity. It is sug-
gested that the H can be used to parameterize the classical SABR model for time
dependent parameters implied by the market.
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4 Variance Reduction Techniques

Monte Carlo estimation results in high variance, requiring variance reduction tech-
niques to make this method more computationally efficient. A variety of estab-
lished techniques exist for variance reduction, including antithetic variates, con-
trol variates and endpoint stratification, and the diffusion operator integral (DOI)
method.

4.1 Diffusion Operator Integral (DOI)

The diffusion operator integral (DOI) method, originally proposed by Heath and
Platen (2002), is related to Itô integral representation methods and measure trans-
formation methods for variance reduction. While this method is less commonly
utilized in comparison to its counterparts, it is advantageous given its applicability
to a broader range of valuation problems and its ability to improve most parabolic
partial differential equations (PDEs). Heath and Platen find that application of this
method to the Heston model results in a drastic reduction in variance of 23000
times that achieved by standard antithetic variate Monte Carlo estimation.
Heath and Platen propose that for the SDE

dXd
t = a(t,Xd

t )dt+
m∑
j=1

bj(t,Xd
t )dW

j
t , (30)

where {Xd
t }t∈[τ,T ],τ∈[0,T ] is a general d-dimensional diffusion process with initial

value Xd
τ = xd ∈ Γ. Here the drift coefficient a : [0, T ] × Γ → ℜd : and diffusion

coefficient bj : [0, T ] × Γ → ℜd, j ∈ {1, 2, . . . ,m}, satiesfy appropriate conditions
so that 30 has a unique strong solution and is Markovian, seeKloeden and Platen
(2008).
Consider the payoff function

u(t, x) = E(h(T,Xd
T )|Xd

t ) (31)

Here h satisfies appropriate integrability conditions so that the process {Mt}t∈[0,T ]

with Mt = E(h(T,Xd
T )|Ft) is a square integrable (Ft,P)-martingale. Using the

martingale representation theorem, together with the Markov property forX , it can
be inferred that there exists an m-dimensional ξ = {ξt = (ξ1t , . . . , ξ

m
t )⊤, t ∈ [0, T ]}

with Mt = u(t,Xd
T ) = u(0, x) +

∑m
j=1

∫ T
0 ξjs dW

j
s

Our aim will be to find an unbiased variance-reduced estimator for u(0, x) given
an approximation function ū.
Applying Itô formula and by martingale property of Mt, refer to Heath and Platen
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(2002), the approximation to the value of the option is as follows:

ū(t,Xd
t ) =ū(0, x) +

∫ τ

0
L0ū(t,Xd

τ )dt+

m∑
j=1

∫ t

0
Lj ū(t,Xd

t )dW
j
τ ,

(32)

where the operators L0 and Lj are

L0f(t, x) =
δf

δt
(t, x) +

d∑
i=1

ai(t, x)
δf

δxi
(t, x)

+
1

2

d∑
i,k=1

m∑
j=1

bi,j(t, x)bk,j(t, x)
δ2f

δxiδxk
(t, x),

(33)

Ljf(t, x) =
d∑

i,k=1

bi,j(t, x)
δf

δxi
(t, x), (34)

These operations apply to functions f which are sufficiently smooth and (t, x) ∈
(0, T ) × Γ. The unbiased estimator for the option price, u(0, x), is the following
random variable named the DOI estimator

Z̄τ = ū(0, x) +

∫ τ

0
L0ū(t,Xd

τ )dt. (35)

Z̄τ will have a small variance if Lju is close to Lj ū which is the case if ū is a good
approximation of u. This technique can be applied to parabolic PDE approxima-
tion, however to approximate ū the majority of applications of this method utilize
a diffusion process approximation whose dynamics are assumed to be Markovian
(Heath and Platen, 2002). A convenient chose for this diffusion process approxi-
mation is the Black-Scholes type model. For sufficiently smooth ū, L̄0ū(t, x) = 0, so
the value function can be adjusted as follows

u(0, x) =ū(0, x) + E(

∫ τ

0
L0ū(t,Xd

τ )dt),

= ū(0, x) + E(

∫ τ

0
(L0 − L̄0)ū(t,Xd

τ )dt),

(36)

where the DOI estimator shown in 37 have a small variance if the approximation
to the operator and L0 are close.

Z̄τ = ū(0, x) +

∫ τ

0
(L0 − L̄0)ū(t,X0,x

τ )dt. (37)
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Now we describe a DOI variance reduction technique which can be utilized to
approximate the option price

c(0, x) = e−rTu(0, x), (38)

where

u(0, x) = Ẽ((
1

T

∫ t

0
Sτdτ −K)+). (39)

Recall the risk-neutral dynamics of the Heston model 7, we introduce It to repre-
sent path dependency of Asian option,

It =

∫ t

0
Sτdτ, (40)

then the option price can be written as

c(0, x) = e−rT Ẽ((
It
T
−K)+). (41)

Consider the three-dimensional diffusion process Xt = (St, Vt, It) and the two-
dimensional Wiener process Zt = (W̃t, B̃t). For many practical applications, a sys-
tematic way of obtaining an approximation ū satisfying 39 is to first find an ap-
proximation X̄t to the diffusion process Xt. Then by utilizing the Greeks given by
the Black-Scholes model, we derive the DOI estimator for the Asian option price.
In summary, the DOI variance reduction technique relies on finding an approx-
imated underlying price dynamics process, denoted S̄t, which sets the volatility
term of the stochastic volatility SDE of the original model to 0. This strategy fol-
lows the following three-step procedure:

• Derive the PDE to obtain equality condition.

• Derive expression for σ̄t.

• Derive the Greeks based on the above steps.

In the below, we develop explicit formulation for the Greeks in the DOI variance
reduction method for each of our four models in pricing Arithmetic Asian options.

4.1.1 Deriving DOI Greeks for Heston and Rough Heston Models

Based on the Black-Scholes model, a convenient choice of diffusion process is as fol-
lows: let X̄t = (S̄t, V̄t, Īt) be the three-dimensional diffusion process which satisfies
the SDE

dS̄t = rS̄tdt+
√
V̄tS̄tdW̃t, S̄τ = sτ

dV̄t = κ∗(ξ∗ − V̄t)dt, Vτ = vτ

dĪt = S̄tdt

(42)
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for t ∈ [τ, T ] and τ ∈ [0, T ], where the price process of the underlying asset follows
the Geometric Brownian Motion. For this system of SDEs the solution V̄ can be
explicitly computed by dividing ξ∗ − V̄t on both side and is given by

V̄t = ξ∗ + (vτ − ξ∗) e−κ(t−τ) . (43)

Now consider the pricing equation for the Fixed Strike Arithmetic Asian option

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ S

∂V

∂I
+ rS

∂V

∂S
− rV = 0, (44)

by omitting the term S ∂V
∂I , we have the Black-Scholes equation for a European call

option, denoted by BS(Sτ ,K, r, σ, T ) with spot price Sτ , short rate r, volatility σ
and maturity T . We utilize the explicit form of European call option to give the
approximate function ū in 39:

ū(t, x) = Ẽ((
1

T

∫ t

0
S̄τdτ −K)+)

≈ er(T−t)BS(St,K, r, σ̄t, T − t),
(45)

where

σ̄t =

√
1

T − t

∫ T

t
V̄zdz

=

√
ξ∗ − (Vt − ξ∗)

e−κ(T−t) − 1

κ(T − t)
.

(46)

We derive the exact form of σ̄ as in 46 for implementation in the Appendix 7.
Evaluation of the expectation appearing in 37 requires initial value ū(0, x) and the
calculation of the values (L0 − L̄0)ū(t,Xt). For the initial value ū(0, x) , we apply
crude Monte-Carlo method to compute the Asian option price under the diffusion
process.
Based on 33 and the explicit form of σ̄t, we have

(L0 − L̄0)ū(t, x) = ηVte
r(T−t)

×
[
ρ
∂2BS

∂St∂σ̄t
(St,K, r, σ̄t, T − t)

∂σ̄t
∂Vt

+
1

2
η

{
∂2BS

∂σ̄2t
(St,K, r, σ̄t, T − t)

)(
∂σ̄t
∂Vt

)2

+
∂BS

∂σ̄t
(St,K, r, σ̄t, T − t)

∂2σ̄t
∂(Vt)2

}].

(47)
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Now we compute the partial derivatives ∂BS
∂σ̄t

, ∂2BS
∂St∂σ̄t

, ∂
2BS
∂σ̄2

t
, ∂σ̄t
∂Vt

and ∂2σ̄t
∂(Vt)2

using the
Black-Scholes formula together with the expression for σ̄t in 46. Then we have

∂σ̄t
∂Vt

=
1

2
σ̄t

−1 1− e−κ(T−t)

κ(T − t)
,

∂2σ̄t
∂(Vt)2

= −1

2

∂σ̄t
∂Vt

σ̄2t

For Rough Heston Model, consider the following diffusion process

dS̄t = rS̄tdt+
√
V̄tS̄tdW̃t, S̄τ = sτ

dV̄t = V̄0 +
1

Γ(α)

∫ t

0
(t− s)α−1κ(ξ − Vs)ds

dĪt = S̄tdt

(48)

for t ∈ [τ, T ] and τ ∈ [0, T ] Based on the same process, we need to find the explicit
expression for σ̄t

4.1.2 Deriving DOI Greeks for SABR and Rough SABR Models

Recall the SABR model 17, we choose the mean-reverting process as the V̄t in the
diffusion process

dF̄t = rF̄ β
t dt+ VtF̄

β
t dW̃t, F̄0 = f0

dV̄t = (Vτ − Vt)dt, Vτ = vτ ,
(49)

which makes sure that the forward price process follows a Geometric Brownian
Motion, and E[Vt|Fτ ] = Vτ . The Greeks can be derived based on previous discus-
sion.

4.2 Antithetic Variates

The general integral

CA(fz) =

∫
A
f(x)z(x)dx, (50)

where A ⊆ Rk and z is a probability density function with supp(z) ⊆ A, can be
estimated using Monte Carlo integration. The estimate is denoted by ĈA(fz).
Antithetic variates is a variance reduction technique used to improve Monte Carlo
estimates that involves using each element from a sequence of random variates
more than once. This allows a sample of n random variates to become a sample
of size 2n using the fact that, if density z is symmetric about its mean, then X and
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2E[X] − X are both distributed according to z (Glasserman, 2004).Here 2E[X] −
X1, . . . , 2E[X]−Xn is referred to as the antithetic sample. Let Ĉ−

A,n(fz) denote the
Monte Carlo estimate using the new sample (of size n). It is clear that this is an
unbiased estimate. Let Ĉ+−

A,n(fz) denote the Monte Carlo estimate using both the
antithetic and original samples. The improved Monte Carlo estimate is calculated
as follows,

Ĉ+−
A,n(fz) =

1

n

n∑
i=1

f(Xi) + f(2E[X]−Xi)

2
. (51)

It can be deduced that the variance of the new estimate is always smaller than or
equal to the original crude Monte Carlo estimate. It is also clear that the origi-
nal and antithetic sample are not independent and the variance of the new Monte
Carlo estimate depends on the correlation between the two samples. The issue
with comparison however is that Ĉ+−

A,n(fz) requires 2n evaluations of f(x), hence
for the technique to produce an improved estimate we require V ar[Ĉ+−

A,n(fz)] ≤
V ar[ĈA,2n(fz)]. This can be proved true with the aid of Chebyshev’s Monotone
Convergence Inequality (Glasserman, 2004). This method has been shown to be
effective. For example, Broadie et al. (1997) find that antithetic branching alone is
highly effective in reducing variance for American option price modelling, how-
ever the result is improved by using a European option price as a control variate.

4.3 Control Variate

Control variates is another variance reduction technique that leverages known in-
formation to improve the Monte Carlo estimate of an integral. The estimate is
calculated as

Ĉ∗
A,n(fz) = ĈA,n(fz) + α

(
ĈA,n(gz)− CA(gz)

)
. (52)

In this equation, it is assumed that CA(gz) can be evaluated exactly and ĈA,n(gz)

is the Monte Carlo estimate using the same sample used to estimate ĈA,n(fz). The
optimal alpha αopt chosen in order to minimize the variance turns out to be

αopt = −Cov[f(X), g(X)]

Var[g(X)]
. (53)

This method is often used because, provided Cov[f(X), g(X)] ̸= 0 its variance is
strictly less than the crude estimator (Glasserman, 2004). The statistics required to
obtain αopt are usually estimated using a small sub-sample (n0 ≪ n) of the simu-
lated data and thus αopt can be estimated as

α̂opt
n0

= − Ĉovn0 [f(X), g(X)]

ˆVarn0 [g(X)]
. (54)
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The variance of this method can be calculated as

Var
[
Ĉ∗
A,n(fz)

]
= Var

[
ĈA,n((f + αg)z)

]
. (55)

4.4 Endpoint Stratification

Stratified sampling is a further variance reduction method which limits the fraction
of observations drawn from partitions of the sample space. These partitions satisfy
supp(z) = A = ∪di=1Ai and ∀ ≤ i ̸= j ≤ d,Ai ∩ Aj = ∅, where z is typically the
uniform density. The Monte Carlo estimate for stratified sampling is as follows

Ĉ≡
A,n(fz) = Σd

i=1pi
1

ni
Σni
j=1f(xij), (56)

where pi represents the probability of being in the ith partition. Ĉ≡
A,n(fz) is an

unbiased estimator of the crude Monte Carlo estimate, and can only produce a
lower variance than crude Monte Carlo given proportional stratification which can
be proved via Jensen’s inequality (Glasserman, 2004). The simplest form of this
method is proportional sampling, however path dependent derivatives are better
modelled using terminal, or endpoint, stratification. Endpoint stratification utilizes
the fact that fixing the terminal value and generating random paths for Brownian
motion using multivariate conditioning leads to lower variance of the Monte Carlo
estimate of the option price. (Glasserman, 2004). Terminal stratification entails gen-
eration of a discretized Brownian path through Brownian bridges and the inverse
transform method to generate intermediate values in each strata. This method can
however be computationally expensive given the need to utilize Brownian bridges.
The variance of this method can be calculated as

Var
[
Ĉ≡
A,n(fz)

]
=

d∑
i=1

p2iVar
[
ĈAi,ni(fz)

]
(57)

5 Numerical Simulation

Approximation of stochastic differential equations requires discretization of the
time grid, with the simplest method being the Euler, or Euler-Maruyama, scheme
(Glasserman, 2004). Let (πn)n≥1 denote a sequence of discrete-time grids on [0, T ],
with πn = {0 = tn0 < tn1 < tn2 < ... < tnn = T} for each n ≥ 1. Denote
δn := |πn| := max0≤k≤n−1∆t

n
k+1, with ∆tnk+1 := tnk+1 − tnk . In below we write

tnk as tk for simplicity.

5.1 Discretization of the Heston and SABR models

For SDEs of the form

dXt = a(Xt)dt+ b(Xt)dW (t), (58)
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where X0 is a constant the conditions for uniqueness and existence of a strong SDE
solution are satisfied by a and b. For i = 0, . . . , n, 0 = t0 < · · · < tn and X̂0 = X0,
the approximation for the one-dimensional case is as follows

X̂ti = X̂ti−1 + a(X̂ti−1)∆t+ b(X̂ti−1)
√
∆tZi, (59)

where Z are independent standard normal random numbers and ∆t = ti − ti−1.
This approximation scheme has strong and weak orders of convergence of 1

2 and
1 respectively (Glasserman, 2004). Now we give the Euler-type scheme for 7. No-
tice that the process Vt is R+-valued in the continuous-time setting, but it could
become negative in a discrete-time simulation. For this reason, we use (Vt)+ :=
max(Vt, 0)in the square root term

√
(Vt)+ to define the discrete-time scheme.

Remark 5.1. Let us define Yt = lnSt, then one has

Yt = Y0 +

∫ t

0
(r − 1

2
Vs)ds+

∫ t

0

√
Vs dW̃t,

in the formulation 15

In view of remark 5.1, we would like to simulate the process Y in place of S in
15. As observed in the Black-Scholes model, the simulation of Y permits to avoid
the time discretization of the process S in the dynamics of S, and one can expect a
better performance for its simulation(Richard et al., 2022).
The approximation for the Heston model is

V n
ti = V n

ti−1
+ κ(θ̃ − V n

ti−1
)∆t+ ϵ

√
(V n

ti−1
)+∆W̃ti ,

Y n
ti = Y n

ti−1
+ (r − 1

2
Vti−1)∆t+

√
(V n

ti−1
)+∆B̃ti ,

Sn
ti = exp(Y n

ti ),

(60)

where

∆W̃ti = ∆Wti +
µ− r√
(V n

ti
)+
,

∆B̃ti = ρ∆W̃ti +
√

1− ρ2∆Bti ,

(61)

and ∆Wti and ∆Bti are normally distributed random numbers with mean zero and
variance ∆t.
The approximation for the SABR model is

Sn
ti = Sn

ti−1
+ (Sn

ti−1
)βr∆t+ (Sn

ti−1
)βV n

ti ∆Wti ,

Y n
ti = Y n

ti−1
− 1

2
α1∆t+ αB̃ti ,

V n
ti = exp(Y n

ti ),

(62)
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where Wti and Bti are correlated by ρ.
In both cases, maturities of 0.5 and 1 year were considered where the period was
broken down into N = 104 and N = 52 time intervals respectively. Tables 1 and
2 contain the parameters used when simulating the Heston and SABR models re-
spectively, each simulated using M = 100000 stock price paths and initial values.

Table 1: Parameter values for Heston Model

T N M S0 r V0

1.0(0.5) 104(52) 100000 100 0.04 0.2

κ θ η µ ρ α

2.0 0.2 0.5 0.04 -0.15 1

Table 2: Parameter values for SABR Model

T N M S0 r V0

1.0(0.5) 104(52) 100000 100 0.04 0.2

β α ρ

1.0 0.4 -0.05

Figure 1: Heston and Rough Heston Model(alpha = 1)

5.2 Discretizing Roughness Kernel

Discretizing the integral approximation of the volatility process in 9 is a crucial
and intricate step in numerically simulating SDEs in the rough Heston model. This
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Figure 2: Heston and Rough Heston Model(alpha = 0.7)

Figure 3: SABR and Rough SABR Model(alpha = 1)

process involves converting continuous-time integrals into discrete sums, making
it possible to perform numerical simulations on a computer.
Now we give the Euler-type scheme for 15. Notice that the process Vt is R+-valued
in the continuous-time setting, but it could become negative in a discrete-time sim-
ulation. For this reason, we use (Vt)+ := max(Vt, 0)in the square root term

√
(Vt)+

to define the discrete-time scheme.
Denote by (Sn, V n) = (Sn

tk
, V n

tk
)k=0,1,··· ,n the corresponding numerical solution,
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Figure 4: SABR and Rough SABR Model(alpha = 0.7)

which is given as Sn
tk

:= exp(Y n
tk
), k = 0, 1, · · · , n, and

Y n
tk

= Y0 +

k−1∑
i=0

(
r∆tni+1 −

1

2
(V n

ti )+∆t
n
i+1

+
√

(V n
ti
)+∆W̃ti+1

)
,

V n
tk

= V0 +
k−1∑
i=0

(
K(tk − ti)

(
ξ − (V n

ti )+
)
∆tni+1

+K(tk − ti)η
√
(V n

ti
)+∆B̃ti+1

)
.

(63)

Similarly, the approximation for the rough SABR model in system 21 is

Sn
ti = Sn

ti−1
+ µβ(Sn

ti−1
)∆t+ σtkβ(S

n
ti−1

)∆W̃ti+1

ξntk(tk) = ξn0 (tk) +
k−1∑
i=0

K(tk − ti)ξnti(tk)∆B̃ti+1

σtk =
√
ξntk(tk)

(64)

where

ξ0(tk) = α2
0 exp{

1

4
η2tk},

Figure 1, 2, 3, 4 show the trajectory of different models. By setting the seed for the
randomness, when α = 1, the rough heston/SABR model will recover the classical
heston/SABR model.
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5.3 Monte-Carlo Pricing Algorithms

We now introduce the different Monte-Carlo pricing algorithms using the four dif-
ferent variance reduction methods. The general crude MC pricing algorithms for
arithmetic Asian options (without variance reduction) with a particular strike k
and maturity T is given by Algorithm ??.

Algorithm 1 Generic Crude Monte Carlo Arithmetic Asian Options Pricing Algo-
rithm

1: Input: S0, k, T , r, θM, N , M , Model
2: Output: Option price C
3: Initialize C ← 0
4: for i = 1 to M do
5: S ← S0, A← 0
6: for t = 1 to N do
7: ∆t← T

N
8: S ←Model(S, θM,∆t)
9: A← A+ S

10: end for
11: A← A

N+1
12: C ← C + exp(−rT )max(A−K, 0)
13: end for
14: C ← 1

MC
15: return C

Here, S0 is the initial stock price, θM is the parameter of underlying asset evolu-
tion model Model, N is the number of time steps, and M is the total number of
Monte Carlo trials. Algorithms for the four asset dynamics models are given in the
Appendix 7.
In addition, we present here the algorithm for the DOI variance reduction tech-
nique.
The other three alternative variance reduction techniques can be found in the Ap-
pendix 7.

5.4 Method Comparison Metrics

The standard error and variance reduction is used as metrics to test the accuracy of
the models. Standard error is calculated as follows

SE =
σ√
M
, (65)
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Algorithm 2 Monte Carlo Arithmetic Asian Options Pricing Algorithm with the
DOI Variance Reduction method

1: Input: S0, V0, T , r, N , M , θ, Model
2: Output: Option price C
3: Initialize C ← 0
4: for i = 1 to M do
5: S ← S0, A← 0
6: for t = 1 to N do
7: ∆t← T

N
8: V̄ ←Model(V, θ,∆t, dW, dB)
9: S̄ ←Model(V, θ,∆t, dW, dB)

10: σ̄ ←Model(V, θ,∆t, T )
11: d1←Model(S,K, r, T, σ̄)
12: d2←Model(S,K, r, T, σ̄)
13: Calculate ∂BS

∂σ̄t
, ∂2BS
∂St∂σ̄t

, ∂
2BS
∂σ̄2

t
, ∂σ̄t
∂Vt

and ∂2σ̄t
∂(Vt)2

14: a = ρ ∂2BS
∂St∂σ̄t

∂σ̄t
∂Vt

15: b = 1
2ξ

∂2BS
∂σ̄2

t

∂2σ̄t
∂(Vt)2

16: c = ∂BS
∂σ̄t

∂2σ̄t
∂(Vt)2

17: u← u0 +
∫ T
0 ξV0 exp(−rT ) + a+ b+ c dt

18: end for
19: C ← C + exp(−rT )u
20: end for
21: C ← 1

MC
22: return C

and the variance reduction is calculated as below

V R =
σ2j − σ2i
σ2i

, (66)

where σ2i is the standard deviation in the crude Monte Carlo error. These meth-
ods only consider the accuracy, however time is another factor to consider when
evaluating these models therefore a further metric described below is calculated.

5.5 Efficiency of the Monte Carlo methods

Monte Carlo simulations typically demand substantial sample sizes to ensure ac-
curate estimates, which can result in lengthy computing times. To expedite these
simulations, variance reduction techniques are employed. However, when eval-
uating their performance, it is essential to consider both the variance reduction
achieved and the associated computing time. Simply reducing variance at the ex-
pense of significantly increased computing time due to a more complex algorithm
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does not provide a practical benefit. What truly matters is the trade-off between ac-
curacy and computation time for a given method. Therefore, we require a criterion
that allows us to determine whether one variance reduction technique outperforms
another.
We propose the introduction of a criterion to assess the efficiency of various simu-
lation methods, whether they involve standard simulations or variance reduction
techniques. This criterion takes into account the computing time required by each
method during the simulation process.

• Efficiency of the method j with regard to the method i is defined by:

ε(i, j) =
σNi(i)

σNj (j)

√
tNi(i)

tNj (j)

where N, tN , σN respectively denote sample size, computing time and standard
error of the estimate from N simulations. This value seems to be dependent on
sample sizes Ni and Nj , but it is not if we assume that computing time is propor-
tional to the sample size, that is there exists a factor k such that tNi(i) = kiNi. This
hypothesis is very realistic. Then:

ε(i, j) =
σi
σj

√
ki
kj

To obtain this formulation, we just use that σ2N (i) = σ2(i)
Ni

where σ2(i) is the variance
of the estimated function for the method i.
k exprimes complexity of the algorithm for the considered method.

• The value of ε(i, j) can not be calculated, unless we know variances σ2(i) and
σ2(j). This is not the case in general: when we estimate I = E[ψ(X)] we don’t
know the parameter σ2 = Var[ψ(X)] too. But we can obtain an estimation of
this efficiency within the Monte Carlo simulation.

ε̃(i, j) =
σ̃Ni(i)

σ̃Nj (j)

√
tNi(i)

tNj (j)

and
lim

Ni,Nj→+∞
ε̃(i, j) = ε(i, j)

where σ̃Ni is the estimated standard error for the estimator with the method i.

• The method j is considered to be more efficient than the method i if ε(i, j) ≥
1. We obviously have ε(i, i) = 1.
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For instance, if ε(i, j) = 3, it means that method i requires 9
(
= 32

)
times more

time than method j to obtain the same accuracy. In other words, with the same
computing time, standard error for method j is 3 times smaller than the one of
method i. The higher ε(i, j) is, the more efficient method j is with regard to the
method i. The crude Monte Carlo method is chosen as the reference method, i,
with ε(i, j) < ε(i, k) indicating that method k is more efficient than the method j.
Although the efficiencies are estimations, given a sample size of 100000 was used
for each simulation the convergence of Monte Carlo is assumes to be sufficient to
provide reliable estimates (Alfeus et al., 2024).

5.6 Results

Tables 3 to 6 show the results for the option price estimate, standard error, variance
reduction and efficiency for each of the Monte Carlo methods used and maturities
of 0.5 and 1 year while differing the strike from 80 to 120 in increments of 5.

5.6.1 Naı̈ve and Rough Heston Model Results

The options price estimates across the varying Monte Carlo methods are relatively
similar, with the exception of DOI estimate which is consistently lower than the
crude Monte Carlo and other variance reduction techniques across strikes and ma-
turities considered for the naı̈ve Heston model.
Considering the naı̈ve Heston model with a maturity of 0.5 years, the standard
errors across models generally decrease as the strike is increased from K = 80 to
K = 120, with the exception of the antithetic variate which increases untilK = 100,
followed by a steady decline. The antithetic technique produces a high variance re-
duction of 92% at K = 80 with a dramatic decline to 55% at K = 120, which is
a relatively larger change in variance reduction as compared to the other variance
reduction techniques with an increase in strike. End point stratification reaches a
similarly low variance reduction at K = 120, however starting at 71% at K = 80,
while control variates have a consistently higher variance reduction with a slight
decline to 99% atK = 120. The DOI method on the other hand displays an increase
in standard error as the strike is increased, however the standard error in this case
is relatively small, being 230 times smaller than the crude Monte Carlo standard
error at K = 80, and decreasing to over 25 times smaller at K = 120. The variance
reduction achieved for this technique is 100% for the lowest strike and decreases
to slightly below this as the strike is increased, which is greater than that achieved
by the remaining three variance reduction techniques. The efficiency generally de-
creases as strike is increased, and comparison of technique efficiency demonstrates
that the DOI method is to be superior across the varied strikes, with it being more
than 170 times greater than the crude Monte Carlo at the lowest strike, and decreas-
ing the over 20 times greater at the highest strike considered.
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Table 3: Results for the naı̈ve Heston model at maturities of 0.5 years (left) and 1
year (right)

Strike Metric
T = 0.5 T = 1

crude MC AV CV ES DOI crude MC AV CV ES DOI

80 Option Price 21.377 21.325 21.253 21.922 19.830 23.086 23.098 23.013 23.758 20.497
Standard Error 0.054 0.015 0.002 0.029 0.000 0.073 0.073 0.005 0.043 0.001

Variance Reduction 0% 92% 100% 71% 100% 0% 0% 100% 66% 100%
Efficiency 1.000 3.262 22.084 2.284 195.597 1.000 0.901 14.625 1.770 60.934

85 Option Price 17.215 17.165 17.103 17.486 15.659 19.434 19.440 19.424 19.816 17.006
Standard Error 0.051 0.017 0.002 0.028 0.000 0.070 0.030 0.005 0.041 0.001

Variance Reduction 0% 89% 100% 70% 100% 0% 82% 100% 65% 100%
Efficiency 1.000 2.753 22.986 2.381 131.240 1.000 2.108 15.033 1.788 48.194

90 Option Price 13.480 13.435 13.406 13.495 12.071 16.155 16.154 16.192 16.299 13.835
Standard Error 0.048 0.019 0.002 0.026 0.000 0.066 0.031 0.004 0.039 0.001

Variance Reduction 0% 84% 100% 69% 100% 0% 78% 100% 64% 100%
Efficiency 1.000 2.284 22.586 2.343 105.485 1.000 1.885 14.984 1.779 45.503

95 Option Price 10.260 10.217 10.237 10.094 9.058 13.267 13.262 13.361 13.256 11.110
Standard Error 0.043 0.021 0.002 0.024 0.000 0.062 0.032 0.004 0.037 0.001

Variance Reduction 0% 77% 100% 68% 100% 0% 73% 100% 63% 100%
Efficiency 1.000 1.918 22.273 2.074 81.788 1.000 1.729 14.653 1.700 35.791

100 Option Price 7.598 7.556 7.623 7.344 6.393 10.778 10.769 10.924 10.684 8.847
Standard Error 0.038 0.021 0.002 0.022 0.000 0.057 0.032 0.004 0.035 0.001

Variance Reduction 0% 70% 100% 67% 100% 0% 68% 99% 62% 100%
Efficiency 1.000 1.666 20.665 2.260 60.594 1.000 1.568 13.713 1.725 26.771

105 Option Price 5.483 5.446 5.545 5.221 4.472 8.675 8.667 8.858 8.558 6.836
Standard Error 0.033 0.020 0.002 0.020 0.001 0.052 0.031 0.004 0.033 0.002

Variance Reduction 0% 64% 100% 65% 100% 0% 64% 99% 60% 100%
Efficiency 1.000 1.501 18.579 2.218 48.679 1.000 1.487 12.702 1.655 22.748

110 Option Price 3.863 3.833 3.947 3.645 2.772 6.921 6.910 7.131 6.829 5.091
Standard Error 0.028 0.018 0.002 0.017 0.001 0.047 0.030 0.004 0.031 0.002

Variance Reduction 0% 60% 100% 63% 100% 0% 61% 99% 58% 100%
Efficiency 1.000 1.513 17.370 2.256 36.674 1.000 1.442 11.976 1.640 19.832

115 Option Price 2.663 2.640 2.755 2.513 1.565 5.480 5.464 5.703 5.439 3.593
Standard Error 0.024 0.016 0.002 0.015 0.001 0.043 0.028 0.004 0.029 0.002

Variance Reduction 0% 57% 100% 59% 100% 0% 58% 99% 55% 100%
Efficiency 1.000 1.395 14.258 2.050 27.699 1.000 1.395 10.990 1.553 16.892

120 Option Price 1.801 1.782 1.890 1.718 0.651 4.310 4.294 4.535 4.329 2.426
Standard Error 0.020 0.013 0.002 0.013 0.001 0.038 0.025 0.004 0.027 0.002

Variance Reduction 0% 55% 99% 55% 100% 0% 56% 99% 52% 100%
Efficiency 1.000 1.346 12.316 1.930 21.060 1.000 1.348 9.814 1.529 13.613
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Table 4: Results for the rough Heston model at maturities of 0.5 years (left) and 1
year (right)

Strike Metric
T = 0.5 T = 1

crude MC AV CV ES DOI crude MC AV CV ES DOI

80

Option Price 20.501 21.220 21.619 23.242 21.091 22.206 22.840 22.835 25.201 22.721
Standard Error 0.053 0.018 0.007 0.036 0.000 0.076 0.033 0.010 0.059 0.000

Variance Reduction 0% 89% 98% 53% 100% 0% 81% 98% 39% 100%
Efficiency 1.000 2.139 5.926 1.429 2618.283 1.000 1.612 5.612 1.433 568.549

85

Option Price 16.351 17.010 16.576 18.798 16.956 18.584 19.171 18.010 21.421 19.371
Standard Error 0.050 0.020 0.007 0.036 0.000 0.072 0.035 0.009 0.058 0.000

Variance Reduction 0% 85% 98% 50% 100% 0% 77% 98% 36% 100%
Efficiency 1.000 1.821 5.817 1.401 1946.117 1.000 1.456 5.669 1.413 446.539

90

Option Price 12.655 13.260 11.975 14.910 13.419 15.378 15.921 15.097 18.128 16.325
Standard Error 0.047 0.022 0.006 0.035 0.000 0.068 0.037 0.007 0.057 0.000

Variance Reduction 0% 78% 98% 46% 100% 0% 71% 99% 31% 100%
Efficiency 1.000 1.517 5.783 1.347 1572.275 1.000 1.322 6.656 1.357 363.765

95

Option Price 9.506 10.066 9.165 11.688 10.334 12.601 13.103 11.992 15.319 13.529
Standard Error 0.043 0.024 0.006 0.033 0.000 0.064 0.038 0.009 0.056 0.000

Variance Reduction 0% 69% 98% 40% 100% 0% 66% 98% 25% 100%
Efficiency 1.000 1.286 5.588 1.284 1146.582 1.000 1.204 5.114 1.283 293.181

100

Option Price 6.945 7.467 6.380 9.121 7.829 10.243 10.706 10.267 12.956 11.353
Standard Error 0.038 0.024 0.006 0.032 0.000 0.060 0.038 0.008 0.054 0.000

Variance Reduction 0% 59% 98% 31% 100% 0% 60% 98% 18% 100%
Efficiency 1.000 1.109 5.134 1.186 828.266 1.000 1.121 4.937 1.224 248.479

105

Option Price 4.958 5.441 4.621 7.118 5.789 8.268 8.702 8.423 10.978 9.379
Standard Error 0.033 0.023 0.004 0.030 0.000 0.055 0.037 0.006 0.053 0.000

Variance Reduction 0% 52% 99% 18% 100% 0% 56% 99% 8% 100%
Efficiency 1.000 1.020 6.395 1.090 657.152 1.000 1.068 6.002 1.158 198.999

110

Option Price 3.473 3.912 3.824 5.579 4.216 6.638 7.045 6.465 16.302 7.711
Standard Error 0.028 0.021 0.005 0.028 0.000 0.051 0.035 0.006 0.030 0.000

Variance Reduction 0% 45% 97% 0% 100% 0% 52% 98% 66% 100%
Efficiency 1.000 0.958 4.525 0.993 526.855 1.000 1.027 5.541 1.894 171.097

115

Option Price 2.401 2.793 2.270 4.402 3.018 5.311 5.690 5.146 7.997 6.306
Standard Error 0.024 0.019 0.005 0.027 0.000 0.047 0.033 0.006 0.050 0.000

Variance Reduction 0% 39% 96% -23% 100% 0% 49% 98% -16% 100%
Efficiency 1.000 0.914 4.141 0.896 370.990 1.000 0.999 5.040 1.030 141.407

120

Option Price 1.645 1.989 1.701 3.500 2.087 4.246 4.596 4.186 6.872 5.103
Standard Error 0.021 0.017 0.004 0.026 0.000 0.043 0.031 0.007 0.049 0.000

Variance Reduction 0% 34% 96% -55% 100% 0% 47% 98% -32% 100%
Efficiency 1.000 0.875 3.842 0.797 310.689 1.000 0.973 4.547 0.984 122.628
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Table 5: Results for the naı̈ve SABR model at maturities of 0.5 years (left) and 1 year
(right)

Strike Metric
T = 0.5 T = 1

crude MC AV CV ES DOI crude MC AV CV ES DOI

80

Option Price 21.637 21.610 21.330 21.515 20.053 23.241 23.263 23.333 1.196 20.122
Standard Error 0.028 0.006 0.001 0.014 0.000 0.042 0.013 0.003 0.022 0.000

Variance Reduction 0% 95% 100% 75% 100% 0% 90% 100% 74% 100%
Efficiency 1.000 4.318 35.927 2.697 2843.801 1.000 2.948 16.893 2.094 757.770

85

Option Price 16.739 16.712 16.519 16.616 15.302 18.472 18.494 18.467 18.325 15.594
Standard Error 0.028 0.006 0.001 0.014 0.000 0.042 0.014 0.002 0.022 0.000

Variance Reduction 0% 95% 100% 75% 100% 0% 90% 100% 74% 100%
Efficiency 1.000 4.100 36.519 2.897 1954.592 1.000 2.729 17.087 2.093 759.553

90

Option Price 11.928 11.902 11.953 11.790 10.717 13.938 13.958 13.961 13.757 11.506
Standard Error 0.027 0.007 0.001 0.014 0.000 0.041 0.015 0.002 0.021 0.000

Variance Reduction 0% 93% 100% 75% 100% 0% 86% 100% 73% 100%
Efficiency 1.000 3.512 37.188 2.880 1575.085 1.000 2.374 16.468 1.997 650.258

95

Option Price 7.620 7.596 7.858 7.441 6.659 9.994 10.014 9.996 9.765 7.876
Standard Error 0.025 0.009 0.001 0.013 0.000 0.038 0.018 0.002 0.020 0.000

Variance Reduction 0% 86% 100% 74% 100% 0% 79% 100% 72% 100%
Efficiency 1.000 2.837 43.804 3.375 1207.451 1.000 1.967 16.129 2.135 522.111

100

Option Price 4.355 4.338 4.742 4.156 3.464 6.892 6.908 6.973 6.629 4.983
Standard Error 0.021 0.011 0.001 0.011 0.000 0.035 0.019 0.002 0.019 0.000

Variance Reduction 0% 72% 100% 71% 100% 0% 70% 100% 71% 100%
Efficiency 1.000 1.768 33.897 2.725 917.470 1.000 1.583 15.780 1.975 374.373

105

Option Price 2.282 2.273 2.585 2.101 1.696 4.640 4.651 4.670 4.375 2.901
Standard Error 0.016 0.010 0.001 0.009 0.000 0.030 0.019 0.002 0.017 0.000

Variance Reduction 0% 60% 100% 68% 100% 0% 62% 100% 69% 100%
Efficiency 1.000 1.379 28.953 2.566 1038.932 1.000 1.391 13.951 1.946 590.981

110

Option Price 1.128 1.123 1.318 0.991 0.485 3.084 3.091 3.083 2.847 1.465
Standard Error 0.012 0.008 0.001 0.007 0.000 0.026 0.017 0.002 0.015 0.000

Variance Reduction 0% 55% 100% 64% 100% 0% 57% 99% 66% 100%
Efficiency 1.000 1.377 22.595 2.387 387.104 1.000 1.330 13.275 1.954 465.322

115

Option Price 0.539 0.536 0.651 0.452 0.058 2.041 2.048 2.040 1.844 0.618
Standard Error 0.008 0.006 0.000 0.005 0.000 0.022 0.015 0.002 0.013 0.000

Variance Reduction 0% 53% 100% 58% 100% 0% 54% 99% 63% 100%
Efficiency 1.000 1.344 17.083 2.021 237.134 1.000 1.343 11.158 1.844 174.168

120

Option Price 0.253 0.259 0.319 0.202 0.098 1.355 1.363 1.365 1.196 0.114
Standard Error 0.006 0.004 0.000 0.004 0.000 0.018 0.013 0.002 0.012 0.000

Variance Reduction 0% 52% 99% 50% 100% 0% 52% 99% 59% 81%
Efficiency 1.000 1.293 12.727 1.917 159.391 1.000 1.233 10.311 1.778 95.199
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Table 6: Results for the rough SABR model at maturities of 0.5 years (left) and 1
year (right)

Strike Metric
T = 0.5 T = 1

crude MC AV CV ES DOI crude MC AV CV ES DOI

80 Option Price 19.623 19.616 19.626 19.678 20.053 19.269 19.299 19.661 19.395 20.122
Standard Error 0.025 0.002 0.001 0.013 0.000 0.035 0.005 0.005 0.018 0.000

Variance Reduction 0% 99% 100% 75% 100% 0% 98% 98% 74% 100%
Efficiency 1.000 8.297 13.153 1.799 2609.941 1.000 4.734 4.443 1.804 621.992

85 Option Price 14.775 14.767 14.709 14.811 15.302 14.720 14.747 14.347 14.796 15.594
Standard Error 0.025 0.003 0.003 0.012 0.000 0.033 0.007 0.005 0.017 0.000

Variance Reduction 0% 99% 99% 75% 100% 0% 96% 98% 74% 100%
Efficiency 1.000 6.186 6.753 1.808 1770.433 1.000 3.351 4.648 1.772 603.497

90 Option Price 10.153 10.151 10.105 10.138 10.717 10.577 10.601 10.568 10.580 11.506
Standard Error 0.024 0.005 0.003 0.012 0.000 0.031 0.009 0.005 0.016 0.000

Variance Reduction 0% 96% 99% 74% 100% 0% 92% 97% 73% 100%
Efficiency 1.000 3.251 6.571 1.784 1369.949 1.000 2.275 4.392 1.748 489.198

95 Option Price 6.148 6.158 6.126 6.074 6.659 7.083 7.104 7.235 7.021 7.876
Standard Error 0.020 0.007 0.002 0.011 0.000 0.027 0.011 0.005 0.015 0.000

Variance Reduction 0% 88% 99% 73% 100% 0% 83% 97% 71% 100%
Efficiency 1.000 1.930 6.096 1.696 985.545 1.000 1.589 4.020 1.706 365.544

100 Option Price 3.188 3.203 3.248 3.089 3.464 4.399 4.413 4.773 4.306 4.983
Standard Error 0.016 0.008 0.002 0.009 0.000 0.022 0.012 0.005 0.012 0.000

Variance Reduction 0% 71% 98% 70% 100% 0% 70% 95% 69% 100%
Efficiency 1.000 1.257 4.974 1.634 684.924 1.000 1.216 3.446 1.642 239.008

105 Option Price 1.397 1.406 1.461 1.312 1.696 2.528 2.532 2.087 2.445 2.901
Standard Error 0.010 0.007 0.002 0.006 0.000 0.017 0.011 0.005 0.010 0.000

Variance Reduction 0% 59% 96% 65% 100% 0% 61% 93% 65% 100%
Efficiency 1.000 1.117 3.520 1.524 677.262 1.000 1.059 2.708 1.553 334.422

110 Option Price 0.513 0.518 0.519 0.467 0.485 1.349 1.345 1.286 1.291 1.465
Standard Error 0.006 0.004 0.002 0.004 0.000 0.013 0.008 0.004 0.008 0.000

Variance Reduction 0% 53% 89% 57% 100% 0% 56% 87% 61% 100%
Efficiency 1.000 0.991 2.148 1.375 206.802 1.000 0.992 2.050 1.449 225.498

115 Option Price 0.158 0.160 0.157 0.142 0.058 0.669 0.664 0.835 0.635 0.618
Standard Error 0.003 0.002 0.002 0.003 0.000 0.009 0.006 0.004 0.006 0.000

Variance Reduction 0% 51% 64% 45% 100% 0% 53% 75% 54% 100%
Efficiency 1.000 0.963 1.112 1.193 96.905 1.000 0.970 1.483 1.356 69.743

120 Option Price 0.042 0.043 0.047 0.037 0.098 0.312 0.307 0.335 0.297 0.114
Standard Error 0.002 0.001 0.002 0.001 0.000 0.006 0.004 0.004 0.004 0.000

Variance Reduction 0% 52% -31% 29% 100% 0% 51% 45% 44% 100%
Efficiency 1.000 0.971 0.607 1.063 47.017 1.000 0.953 0.974 1.234 30.477
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The above trends are observed for the 1 year term option as well, however the
standard error is generally higher for this higher maturity and the efficiency is
typically lower with relatively similar variance reduction achieved. Additionally,
the trend in standard error for the antithetic model sees a shorter increasing trend,
from K = 80 to K = 85, followed by a longer decline.
Now considering the rough Heston model, the estimates for the variance reduction
techniques for the were typically greater than the option price estimate for crude
Monte Carlo, with the difference in estimates between endpoint stratification and
crude Monte Carlo being greatest, and comparable estimates from the antithetic
variate and DOI techniques.
The trends in method metrics observed for the naı̈ve model are generally pre-
served, with some differences to be noted as follows. Considering a maturity of
0.5 years, the same pattern is observed for the variance reduction, however with a
larger difference in variance reduction between the highest and lowest strikes for
the antithetic method, the difference being 55% for the rough model and 37% for
the naı̈ve model. Additionally, endpoint stratification for the rough Heston model
achieved poor variance reduction when compared to the naı̈ve Heston model and
in comparison to the other variance reduction techniques for the rough Heston
model, with the variance reduction at strikes of 115 and 120 being lower than ex-
pected (Glasserman, 2004). Additionally, the DOI method achieves even greater
efficiency for the rough Heston model as compared to the naive model, with the
efficiency being nearly 2620 times greater than the crude Monte Carlo efficiency
for the 0.5 year maturity option and as much as 565 times greater for the 1 year
maturity option.

5.6.2 Naı̈ve and Rough SABR Model Results

The values for the control variates for the SABR models are based on selected val-
ues of σ for the closed form of the geometric Asian option price which allow for a
reasonable option price estimate. Although previous publications investigating the
SABR model typically calculate σ as the implied volatility for a Black-Scholes Eu-
ropean option, the implied volatility results in poor estimation which we conclude
to be a scaling issue, given that use of the implied volatility for out-the-money
options overestimates the option price, which underestimating the price of in-the-
money options. The heuristic approach of selecting reasonable values for σ was
therefore adopted, while a mechanical correction of the scaling issue or a different
form of the implied volatility equation are further methods to potentially alleviate
the issue.
With regard to the naı̈ve SABR method, the estimates for the options prices are
relatively similar for the differing Monte Carlo methods, with the DOI method
being comparatively lower for both maturities and for most strikes considered.
For the half year term option, the pattern observed for the standard error in the
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naı̈ve SABR model is a general decrease with an increase in strike. The standard
error in the antithetic variate method increases until a strike of 100 and thereafter
decreases, as observed for the naı̈ve Heston model, while the other models exhibit
a steady decrease with increase in maturity, with the exception of the DOI method
whose standard error is negligible, being to the power of negative 5 and 6 across
all maturities. Regarding variance reduction, this metric for the antithetic method
decreases from 95% at K = 80 to 52% at K = 120, while efficiency generally de-
creases. Endpoint stratification sees a decrease in variance reduction from 75% and
K = 80 to 50% at K = 120, while the control variate method achieving better
variance reduction, the highest being 100% at K = 80 and the lowest being 99%
at K = 120. A variance reduction of 100% is consistently observed for the DOI
method, with an efficiency over 2800 times greater than crude Monte Carlo for
K = 80, and nearly 160 times greater at K = 120. The all the variance reduction
techniques generally decreases with an increase in strike, however the efficiency of
the DOI method starkly higher, being almost 80 times greater than the second most
efficient method, the control variate method, at the lowest strike considered and
over time times greater than this method at the highest strike considered.
Most patterns are preserved for higher term option modelled by the naı̈ve SABR
model, however the standard errors are greater for the higher term option, and
lower variance reduction is achieved by the antithetic, control variate, and end-
point stratification methods, while the DOI method results in a variance reduction
of 100% of the highest strike where the variance reduction is 81%, which is the only
instance where the variance reduction is lower than that achieved by the control
variate method.
Regarding the rough SABR model, the option price estimates are generally higher
than the crude Monte Carlo estimate, and overall lower than the estimates from
the naı̈ve SABR model. The trends in standard error, variance reduction and ef-
ficiency are generally the same, with the standard errors and variance reduction
being comparable when comparing the naı̈ve and rough at the same strikes and
maturities. One notable difference is the performance of the control variate method
for the rough models. Where the naı̈ve SABR model’s control variate estimate had
consistently high variance reduction, this technique applied to the rough model
resulted in variance reduction comparable to the antithetic variate method, with
a greater decrease in variance reduction, being 52% for the one-year option and
an even greater reduction for the maturity of half a year. Additionally, while the
DOI method yielded a 100% variance reduction for all cases of the naı̈ve SABR
model, values marginally below this are recorded for the rough SABR model at
strikes of 115 and 120 for both maturities considered, however this still greatly
outperforms the crude Monte Carlo method and the other variance reduction tech-
niques. Lastly, unlike the Heston model, the efficiency achieved by the DOI method
is lower for the rough SABR models than the naı̈ve SABR models, being nearly 2610
times greater than the crude Monte Carlo efficiency for the 0.5 year maturity option
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and as much as 620 times greater for the 1 year maturity option.

5.6.3 Results Discussion

The estimate for the DOI method is typically furthest from the crude Monte Carlo
estimate as compared to the other variance reduction techniques, however this shift
is likely a result of the model used for deriving the Greeks being Black-Scholes.
Regarding the method comparison metrics, the DOI method outperforms the other
variance reduction techniques in terms of standard error and variance reduction
across all strikes and maturities considered and all four models investigated. Ad-
ditionally, the efficiency of the DOI estimate is typically the highest across models
and varied parameters, indicating that the DOI method is superior when consider-
ing both accuracy and model complexity.
The dramatic reduction in variance achieved by the DOI method can be explained
by it being its variance being related to the variance of the approximation method
used. For a well chosen approximation method, the variance of the operator term
will be small thereby resulting in a low variance for the estimate (Heath and Platen,
2002). Given that we used Monte Carlo simulation to generate the initial option
price for the DOI method, and calculated said price via the arithmetic option pric-
ing formula, it is expected that the variance will be low. Additionally, the DOI
method is similar to the martingale representation method which generally results
in low variance (Heath and Platen, 2002), and can explain why the control variate
estimate generally results in the next best variance reduction.
Lastly, the pattern observed with respect to maturity can be attributed to a longer
term allowing for greater variation, and the patterns in metrics with respect to
strike are attributed to being in-the-money, at-the-money, or out-the-money cases,
where in-the-money options result in greater variance reduction and higher effi-
ciency.

6 Conclusion

This paper investigates the application of Monte Carlo methods on non-stochastic
volatility and stochastic volatility Heston and SABR models for arithmetic Asian
option pricing. Variance reduction techniques were considered, given the poor
variance associated with Monte Carlo estimation, namely the DOI method, control
variates, antithetic variates, and endpoint stratification with the main focus being
the application of the DOI method. Considering accuracy and efficiency metrics,
our results indicate that the DOI method is superior in both regards, achieving
100% reduction in variance for most of the cases tested and achieving efficiencies
as of over 2600 times greater than crude Monte Carlo for the rough models. The
price estimate from the DOI method further from the crude Monte Carlo estimate
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than desired, likely a result of the diffusion process chosen to approximate the
dynamics.
Further research will focus on testing the DOI method with different diffusion pro-
cess approximations, investigating the performance of importance sampling as a
variance reduction technique, and applying the developed models to market data
to check if the simulation results are reasonable.
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7 Appendix

7.1 Deferred Proofs

7.1.1 Derivation of Risk-Neutral Naı̈ve Heston Model

We consider the naı̈ve Heston model under the historical measure P in 3. By
Cameron-Martin-Girsanov Theorem (Girsanov, 1960), given Brownian motion (Wt)t≥0

and (Bt)t≥0, then their respective risk-neutral Brownian motion under the measure
Q is

W̃t =Wt − λ1t
B̃t = Bt − λ2t,

where λ1 =
∫ t
0 α

1
sds, λ2 =

∫ t
0 α

2
sds are scaling constants representing drift adjust-

ments and (α1
t )0≤t≤T and (α1

t )0≤t≤T are predictable processes in L2. The equivalent
risk-neutral measure Q is given by

dQ = ZTdP,

where the process (Zt)0≤t≤T is a martingale given by

Zt = e
−1
2

∫ t
0 ∥α1

s∥2ds+
∫ t
0 α1

s·dWs .

Given riskless fixed interest rate as r, the risk-neutral stock price process is given
by

dSt = rStdt+
√
VtStdW̃t

= rStdt+
√
VtSt(Wt − λ1t)

= (rSt −
√
VtStλ1)t+

√
VtStdWt

Therefore the following equation holds

(rSt −
√
VtStλ1)dt = µStdt.

So

λ1 =
r − µ√
Vt
.

It follows that

W̃t =Wt +
µ− r√
Vt
.
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For the risk-neutral process for the variance, we introduce a function λ(S, V, t) =
λVt into the drift of dVt in Equation 3 as follows

dVt = [κ(ξ − Vt)− λ(S, V, t)]dt+ η
√
VtdB̃t

= [κ(ξ − Vt)− λ(S, V, t)]dt+ η
√
Vt(dBt − λ2dt)

= .[κ(ξ − Vt)− (λVt + η
√
Vtλ2)]dt+ η

√
VtdBt

It follows that the below equality must hold

λVt + η
√
Vtλ2 = 0.

Thus we have

λ2 =
−λVt
η
√
Vt

Therefore we recover the risk-neutral Brownian motion

B̃t = Bt +
λVt

η
√
Vt
.

For the sake of compactess of notation, we define transformed risk-neutral param-
eters κ∗ = κ+ λ and ξ∗ = κξ/(κ+ λ). Then we have

dVt = κ∗(ξ∗ − Vt)dt+ n
√
VtdB̃t.

Verify that

(κ+ λ)(κξ/(κ+ λ)− Vt)dt = κ(ϵ− Vt)− λVt. □

7.1.2 Derivation of Naı̈ve Heston Risk-Neutral Log-price Process

We consider the risk-neutral naı̈ve Heston model stock process described in 4. Let
ξt = rSt and Vt =

√
VtSt. By Ito’s formula:

df(St) = (
∂f

∂t
+
∂f

∂St
ξt +

1

2

∂2f

∂S2
t

σ2t )dt+
∂f

∂t
VtdW̃t

Using f(St) = ln(St), we have

d lnSt = (
1

St
(rSt) +

1

2
(− 1

S2
t

)(
√
VtSt)

2)dt+
1

St
(
√
VtSt)dW̃t

= (r − 1

2
Vt)dt+

√
VtdW̃t. □
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7.1.3 Derivation of Risk-Neutral Rough Heston Model

Since the rough version of the naı̈ve Heston Model only introduces a kernel func-
tion K(s) as described in equation 11 to the volatility SDE but does not interfere
with its drift adjustments, we expect to have the same risk-neutral parameters as
the original Heston model. Let us show this rigorously. We assume the same risk-
less fixed interest rate r and volatility premium function λ(S, V, t) = λVt.
First, the stock price process is intact so we have the same risk-neutral formula as
before:

dSt = rStdt+
√
VtStdW̃t,

Next, the risk neutral stochastic integral of the variance process is given by

Vt =V0 +
1

Γ(α)

∫ t

0
(t− s)α−1[κ(ξ − Vt)− λ(S, V, t)]ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
VsdB̃s,

where we similarly have by Girsanov’s theorem the below representation for B̃t:

B̃t = Bt − λ2t,

for some λ2 =
∫ t
0 α

2
sds with predictable process (α2

t )t≥0 ∈ L2. It follows that

Vt = V0 +
1

Γ(α)

∫ t

0
(t− s)α−1[κ(ξ − Vs)− λ(S, V, s)]ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
Vs(dBs − λ2ds)

= V0 +
1

Γ(α)

∫ t

0
(t− s)α−1[κ(ξ − Vs)− λVs]ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
Vs(dBs − λ2ds)

= V0 +
1

Γ(α)

∫ t

0
(t− s)α−1[κ(ξ − Vs)− (λVs + η

√
Vsλ2)]ds

+
√
VsdBs.

It follows that given any fixed t ≥ 0, the below equality holds true for all s ∈ [0, t]:

λVs + η
√
Vsλ2 = 0

or equivalently

λ2 = −
λVs

η
√
Vs
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for all s ∈ [0, t]. As before, we define transformed risk-neutral parameters κ∗ =
κ+ λ and ξ∗ = κξ/(κ+ λ). We can write the risk-neutral rough Heston model as

dSt = rStdt+ St
√
VtdW̃t, S0 = s0

Vt = V0 +
1

Γ(α)

∫ t

0
(t− s)α−1κ∗(ξ∗ − Vs)ds

+
η

Γ(α)

∫ t

0
(t− s)α−1

√
VsdB̃s, V0 = v0

⟨dW̃t, dB̃t⟩ = ρdt,

where

W̃t =Wt +
µ− r√
Vt

B̃t = Bt +
λVt

η
√
Vt
,

for all t ≥ 0. □

7.1.4 Derivation of Risk-Neutral SABR Model

The risk-neutral SDE for the forward price process follows the same analysis as
that for the stock process in Heston models described above.
For the stochastic volatility, since there are no drift adjustment for the volatility
process, we have B̃t = Bt. □

7.1.5 Derivation of Risk-Neutral Rough SABR Model

As the SDE for process ξt(s) is under the risk-neutral measure Q as before, the
volatility σ, which is a deterministic function of ξt(s) is also risk-neutral. To adjust
to the risk-neutral version of System 24, we follow the same procedures as before:

dFt = rβ(Ft)dt+ Vtβ(Ft)dW̃t, F0 = f0

dξt(s) = K(s− t)ξt(s)dB̃t, t < s, ξ0(0) = v20

⟨dW̃t, dB̃t⟩ = ρdt,

(67)

where W̃t, B̃t follow the same dynamics as in 18. □

7.1.6 Recovering SABR from Rough SABR

Let

β(Ft) = F β
t , 0 ≤ β ≤ 1
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and

ξ0(s) = α2
0 exp{

1

4
η2s},

Then when H = 1/2, we recover SABR model in 16 from rough SABR model in 24.
To see this, we set H = 1/2. We have

ξt(s) = EQ[ξs(s)|Ft]

= ξ0(s) exp{ηBt −
1

2
η2t}, 0 ≤ t ≤ s

and

K(s− t) = η.

It follows that

dξt(s) = η exp{ηBt −
1

2
η2t}dBt

and

Vt =
√
ξt(t) =

√
ξt(t) exp{

η

2
Bt −

1

4
η2t}.

Taking the natural logarithm:

lnVt =
1

2
ln ξt(t)(

η

2
Bt −

1

4
η2t).

It follows that

d ln(Vt) =
d

dt
(
1

2
ln ξ0(t))dt+

η

2
dBt −

1

4
η2dt

= (
1

2

ξ′0(t)

ξ0(t)
− 1

4
η2)dt+

η

2
dBt.

Denote stochastic process Yt = ln(Vt). Let f(Yt) = exp{Yt}. By Ito’s formula:

d(exp{Yt}) = exp{Yt}dYt +
1

2
exp{Yt}⟨dYt, dYt⟩

= Vt((
1

2

ξ′0(t)

ξ0(t)
− 1

4
η2)dt+

η

2
dBt) +

1

2
Vt(

η2

4
dt)

= Vt((
1

2

ξ′0(t)

ξ0(t)
− 1

4
η2 +

1

8
η2)dt+

η

2
dBt)

= Vt((
1

2

ξ′0(t)

ξ0(t)
− 1

8
η2)dt+

η

2
dBt),

(68)
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since we note that the quadratic variation term simplifies to

⟨dYt, dYt⟩ = ⟨
η

2
dBt,

η

2
dBt⟩

=
η2

4
⟨dBt, dBt⟩

=
η2

4
t.

Substituting ξ0(0) into equation 68:

d(exp{Yt}) = dVt

= Vt((
1

2
(
1

4
η2)− 1

8
η2)dt+

η

2
dBt)

= Vt
η

2
dBt.

Hence, the system of SDE is given by

dFt = µF β
t dt+ VtF

β
t dWt, F0 = f0

Vt = αVtdBt, V0 = v0

⟨dWt, dBt⟩ = ρdt,

where α = η
2 . Notice that this is exactly the vanilla SABR model described in 16. □

7.1.7 Recovering Fractional Brownian Motion from the Rough SABR Model

We offer more details in recovering the Mandelbrot-Van Ness representated frac-
tional BM from the rough SABR model 21 introduced by Fukasawa and Gatheral
(2021).
First, we show that the rough SABR model 21 can be re-written into the form

Vt = V0 exp{γBH
t −

1

2
VarBH

t },

where γ = 1/2 and

BH
t = η

√
2H

∫ t

0
(s− u)H−1/2dBu.

Observe that

Vt =
√
ξ0(t) exp{

1

2
(η
√
2H

∫ t

0
(s− u)H− 1

2dBu −
1

2
η2t2H)}
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Since

Var(BH
t )

= (η
√
2H)2

∫ t

0

∫ t

0
(s− u)H−1(s− v)H−1E[dBu, dBv]

= (η
√
2H)2

∫ t

0

∫ t

0
(s− u)H−1(s− v)H−1δ(u− v)dudv

= (η
√
2H)2

∫ t

0
(s− u)H−1du

= (η
√
2H)2

∫ t

0
w2H−1du

= (η
√
2H)2

t2H

2H

= η22H
t2H

2H

= η2t2H

where we have used the substitution w = t − u and δ(·) is the Dirac function, we
can write

Vt =
√
ξ0(t) exp{

1

2
(BH

t − VarBH
t )},

as desired.
Second, we show that BH

t can indeed be represented as a fractional Brownian mo-
tion with Hurst parameter H via the Mandelbrot-Van-Ness formula 12 by setting
the scaling constant

1

c1(H)
= η
√
2H.

Let us start by analyzing formula 12. Note that:

• For u ≤ 0: ((−u)+)H−1/2 = (−u)H−1/2.

• For u > s: ((s− u)+)H−1/2 = 0.

So for 0 ≤ u ≤ s, we have that

fs(u) = (s− u)H−1/2

and ft(u) = 0 otherwise. Since t ≤ s, it follows that∫ t

0
(s− u)H−1/2dBu =

∫ t

−∞
((s− u)+)H−1/2dBu.
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If we further set the normalization constant

1

c1(H)
= η
√
2H,

then we exactly recover the effective Mandelbrot-Van-Ness formula 12 on the do-
main [0, t].
For a more rigorous discussion, we note that scaling constant η

√
2H is exact in

recovering its Mandelbrot-Van-Ness fractional BM representation when η = 1. To
see this, recall that in this case

Var(BH
t ) = t2H .

If we vary η, then we will, as in the rough Heston model, obtain a scaled Mandelbrot-
Van-Ness represented fractional BM. □

7.1.8 Deriving σ̄ for Rough Heston Model DOI Estimator

Recall σ̄ defined in Equation 46:

σ̄t =

√
1

T − t

∫ T

t
V̄zdz

and recall we use the following non-stochastic V̄t to approximate Vt defined in the
risk-neutral rough Heston model 15:

V̄t = V0 +
κ∗

Γ(α)

∫ t

0
(t− s)α−1(ξ∗ − V̄s)ds, V̄0 = v̄0

Thus we have

σ̄t =

√
1

T − t

∫ T

t
V̄zdz

=

√
v̄0 +

1

T − t

∫ T

t
(
κ∗

Γ(α)

∫ t

0
(t− s)α−1(ξ∗ − V̄s)ds)dz

We first examine the inner integral. Observe that integral

κ∗

Γ(α)

∫ t

0
(t− s)α−1(ξ∗ − V̄s)ds (69)

is a so-called Riemann-Liouville fractional integral of order α. We recall the defini-
tion.
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Definition 7.1 (Riemann-Liouville Fractional Integral). We define the Riemann-
Liouville fractional integral of order α as the following:

aI
n
x f(x) :=

1

Γ(n)

∫ x

a
(x− t)n−1f(t)dt. (70)

where n ∈ N ∪ {0} (Mathai, 2008).

Thus we have:

κ∗

Γ(α)

∫ t

0
(t− s)α−1(ξ∗ − V̄s)ds = κ∗0I

α
t (ξ

∗ − V̄t) (71)

To further simplify, we exploit the relation between fractional integrals and the
so-called Mittag-Leffler function of parameter (α, β) is defined as the following
Mathai (2008):

Eα,β(x) =
∞∑
k=0

(
xk

Γ(αk + β)
) (72)

Moreover, for (a, λ) ∈ (0, 1)× R+, define

fα,λ(t) := λtα−1Eα,α(−λtα), t > 0,

Fα,λ(t) :=

∫ t

0
fα,λ(s)ds, t ≥ 0

= 1− Eα,1(−λtα).

(73)

fα,λ is known as the Mittag-Leffler density function and fα,λ ∈ L2. Functions in 73
have the following asymptotic properties (Haubold et al., 2009):

lim
t→0+

fα,λ =
λ

Γ(α)
tα−1,

lim
t→∞

fα,λ =
α

λΓ(1− α)
t−(α+1)

(74)

and

lim
t→0+

Fα,λ =
λ

Γ(α+ 1)
tα,

lim
t→∞

(1− Fα,λ) =
1

λΓ(1− α)
t−α

(75)

Using definition 7.1, 72, and 73, we observe that

0I
1−α
t fα,λ =

1

Γ(1− α)

∫ t

0
(t− s)n−1λtα−1Eα,α(s)ds

= λ(1− Fα,λ).

(76)
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We are now ready to present a derivation for the DOI σ̄ in the rough Heston model,
which approximates σ̄ by calculating the expected value of V̄t 5.
First, instead of finding the exact integral representation, we take the expectation
of V̄t to approximate integral

∫ T
t V̄zdz:

E[V̄t] = v0 + E[
κ∗

Γ(α)

∫ t

0
(t− s)α−1(ξ∗ − V̄s)ds],

which is well-defined, since by Jaisson and Rosenbaum (2015), we can show that
for any t ≥ 0,

E[
∫ t

0
Vsds] <∞.

This implies that t→ E[Vt] is locally integrable. Further, building on results of Jais-
son and Rosenbaum (2015), proposition 3.1 in Euch and Rosenbaum (2017) shows
that 6

E[V̄t] = v0 + (ξ∗ − v0)
∫ t

0
κ∗sα−1Eα,α(−κ∗sα)ds

= v0 + (ξ∗ − v0)
∫ t

0
fα,κ

∗
(s)ds.

(77)

Then we can approximate the integral in Equation 46 as the following

σ̄t =

√
1

T − t

∫ T

t
V̄zdz

≈

√
1

T − t

∫ T

t
E[V̄z]dz

=

√
1

T − t

∫ T

t
v0 + (ξ∗ − v0)

∫ z

0
fα,κ∗(s)dsdz

=

√
v0 +

(ξ∗ − v0)
T − t

∫ T

t

∫ z

0
fα,κ∗(s)dsdz

=

√
v0 +

(ξ∗ − v0)
T − t

∫ T

t
(1− Eα,1(−κ∗zα))dz

=

√
v0 + (ξ∗ − v0)−

(ξ∗ − v0)
T − t

∫ T

t
Eα,1(−κ∗zα)dz

=

√
ξ∗ − (ξ∗ − v0)

T − t
(TEα,2(−κ∗Tα)− tEα,2(−κ∗tα)),

5Stochastic process {E[Vt]}t≥0 is known as the Forward Variance Curve.
6Note that the η term in the original formulation scales to 1 as V̄s no longer has the volatility term.

Equation 77 is also referenced in Gatheral and Keller-Ressel (2019).
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Here, the third to last equality is due to property 73 and the second to last equality
is derived from the following:∫ T

t
Eα,1(−κ∗zα)dz =

∫ T

t

∞∑
k=0

(−κ∗zα)k

Γ(αk + 1)
dz

=
∞∑
k=0

∫ T

t

(−κ∗zα)k

Γ(αk + 1)
dz

=
∞∑
k=0

(−κ∗)k

Γ(αk + 1)

∫ T

t
zαkdz

=
∞∑
k=0

(−κ∗)k

Γ(αk + 1)

Tαk+1 − tαk+1

αk + 1

= T
∞∑
k=0

(−κ∗Tα)k

Γ(αk + 2)
− t

∞∑
k=0

(−κ∗tα)k

Γ(αk + 2)

= TEα,2(−κ∗Tα)− tEα,2(−κ∗tα),

where we can interchange the order of summation and integration since the Mittag-
Leffler function

Eα,1(−κ∗zα)

converges uniformly for α > 0 (Gorenflo et al., 2014). □

7.1.9 Deriving σ̄ for Rough SABR Model DOI Estimator

First, we note that since the rough SABR model 21 does not have a drift term, its
DOI estimate should be the same as in the naı̈ve SABR model 16.
Recall that the moments of the rough SABR model for 0 ≤ β < 1 is given by the
following (Musiela, 2016):

E[V m
t∧τn ] ≤ a(t) + b

∫ t

0
E[V m

s∧τn ]ds,

where X is a martingale in Lm (1 < m <∞) and stopping time

τn = inf{s ≥ 0 : Vs ≥ n}.

In particular, a closed-form moments function is possible when β = 1, in which
case we recover the log-normal rough SABR model:

Elognormal[V
m
t ] = vm0 exp{1

2
α2t2α−1m(m− 1)} (78)
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It follows that

Elognormal[Vt] = v0.

Hence, we have

σ̄t =

√
1

T − t

∫ T

t
V̄zdz

≈

√
1

T − t

∫ T

t
Elognormal[V̄z]dz

=

√
1

T − t
(T − t)v0

=
√
v0.

We note that for the best possible performance of the DOI technique on the SABR
model, we present both the SABR model and the rough SABR model with β = 1.
But in general, we note that using Elognormal[Vt] to estimate σ̄t for the SABR models
(both naı̈ve and rough) still perform well. □

7.2 Deferred Algorithms

We present in this section the deferred algorithms.

Algorithm 3 Heston Model

1: Function Model(S, θ, ∆t)
2: Extract parameters: θ = {µ, κ, ξ, η, ρ, v}
3: Generate correlated random variables W,B ∼ N (0, 1) with correlation ρ
4: Wt ←W

√
∆t

5: Bt ← ρW
√
∆t+

√
1− ρ2B

√
∆t

6: S ← S + µS∆t+ S
√
vWt

7: v ← v + κ(ξ − v)∆t+ η
√
vBt

8: v ← max(v, 0)
9: return S

7.3 Deferred Plots

We present in this section the deferred algorithms.

7.3.1 Histogram of price frequency

In below we give the histogram of the frequency of price under crude Monte-Carlo
method and DOI variance reduction method.
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Algorithm 4 Rough Heston Model

1: Input: ρ, µ, r, κ, ξ, η, T , S0, V0, N , M
2: Output: M Simulated path {St}t=0,...,N−1, {Vt}t=0,...,N−1

3: Initialize St, Vt, Yt ← S0, V0, log(S0)
4: Generate random variables ∆W and ∆B for each time step
5: ∆t← T

N
6: for t = 1 to n do
7: for i = 0 to t do
8: Compute adjusted dW̃ and dB̃
9: Vt ← Vt +K(t− i)(ξ − Vmax)∆t+K(t− i)η

√
Vmax

10: Yt ← Yt + (r − Vmax)∆t+
√
Vmax∆W

11: end for
12: St ← expYt
13: end for
14: return {St}t=0,...,N−1, {Vt}t=0,...,N−1

Algorithm 5 SABR Model

1: Function Model(S, θ, ∆t)
2: Extract parameters: θ = {α, β, µ, ρ, v}
3: Generate correlated random variables W,B ∼ N (0, 1) with correlation ρ
4: Wt ←W

√
∆t

5: Bt ← ρW
√
∆t+

√
1− ρ2B

√
∆t

6: v ← v + αv∆Bt

7: F ← F + vF β∆Wt

8: S ← Fexp(−rt)
9: v ← max(v, 0)

10: return S

7.3.2 Trajectory

Here we give the trajectory of 10 simulations of heston/rough heston, SABR/rough
SABR model.
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Algorithm 6 Rough SABR Model

1: Input: ρ, µ, r, β(·) ,α0, T , F0, ξ0, N , M
2: Output: M Simulated path F , V
3: Initialize Ft, ξt ← F0, ξ0
4: Generate random variables ∆W and ∆B for each time step
5: ∆t← T

N
6: for t = 1 to n do
7: for i = 0 to t do
8: Compute adjusted dW̃ and dB̃
9: ξt ← ξt +K(t− i)ξi∆B

10: St ← St + µβ(St)∆t+
√
ξtβ(St)∆W

11: end for
12: end for
13: return {St}t=0,...,N−1, {Vt}t=0,...,N−1

(a) (Crude MC)Asian Option Price under
Heston Model

(b) (Crude MC)Asian Option Price under
Rough Heston Model

Figure 5: Asian Option Prices under Heston and Rough Heston Models

(a) (Crude MC)Asian Option Price under
SABR Model

(b) (Crude MC)Asian Option Price under
Rough SABR Model

Figure 6: Asian Option Prices under SABR and Rough SABR Models
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Algorithm 7 Monte Carlo Arithmetic Asian Options Pricing Algorithm with an
Antithetic Variate

1: Input: S0, V0, T , r, N , M , θ, Model
2: Output: Option price C
3: Initialize Ĉ ← 0
4: for i = 1 to M do
5: S ← S0, A← 0
6: Sa ← S0, Aa ← 0
7: dWa ← −dWa, dBa ← −dBa

8: for t = 1 to N do
9: ∆t← T

N
10: V ←Model(V, θ,∆t, dW, dB)
11: Va ←Model(Va, θ,∆t, dW, dB)
12: S ←Model(S, θ,∆t, dW, dB)
13: Sa ←Model(Sa, θ,∆t, dWa, dBa)
14: A← A+ S
15: Aa ← Aa + Sa
16: end for
17: A← A

N+1

18: Aa ← Aa
N+1

19: C ← C + exp(−rT )max(A−K, 0)
20: Ca ← Ca + exp(−rT )max(Aa −K, 0)
21: m = M

2

22: Ĉ ← 1
m

∑m
i=1(

C(1:m)+Ca(1:m)
2 )

23: end for
24: C ← 1

M

∑
C

25: return C
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Algorithm 8 Monte Carlo Arithmetic Asian Options Pricing Algorithm with a Con-
trol Variate

1: Input: S0, V0, T , r, N , M , θ, σ, Model
2: Output: Option price C
3: Initialize Ĉ ← 0
4: µ̄ = (r − 0.5σ2)(T/2)
5: σ̄ = sqrt(((σ2T )/6)(T/(T + dt) + 1))
6: a = (log(S0/K) + µ̄)/σ̄
7: c = exp(−rT )(S0exp(µ̄+ 0.5σ̄2)ϕ(a+ σ̄)−Kϕ(a))
8: for i = 1 to M do
9: S ← S0, A← 0

10: Sa ← S0, Aa ← 0
11: for t = 1 to N do
12: ∆t← T

N
13: V ←Model(V, θ,∆t, dW, dB)
14: S ←Model(S, θ,∆t, dW, dB)
15: Af ← Af + S
16: Ag ← Ag · S
17: end for
18: Cf ← C + exp(−rT )max(

Af

N+1 −K, 0)

19: Cg ← C + exp(−rT )max(A
1

N+1
g −K, 0)

20: m = n/2
21: Ĉ ← Cf + αopt(Cg − c)
22: end for
23: C ← 1

M

∑
C

24: return C
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Algorithm 9 Monte Carlo Arithmetic Asian Options Pricing Algorithm with End-
point Stratification

1: Input: S0, T , t, r, N , M , d θ, Model, BM
2: Output: Option price C
3: Initialize C ← 0
4: for i = 1 to M do
5: S ← S0, A← 0
6: Z ← equally distributed between dstrata
7: for t = 1 to N do
8: ∆t← T

N
9: W0,i ← 0

10: Wend,i ←
√
(T )Z

11: Wmid,i ← BM(t,W0,Wend, Z)
12: Wi ← appended W0,i,Wmid,i,Wend,i

13: V ←Model(V, θ,∆t,W1)
14: S ←Model(S, θ,∆t,W2)
15: A← A+ S
16: end for
17: A← A

N
18: C ← C + exp(−rT )max(A−K, 0)
19: C ← reshaped to M

d rows and d columns
20: end for
21: C ← 1

d

∑
( 1
M/d

∑
C)

22: return C
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(a) (Crude MC)Asian Option Price under
Heston Model

(b) (Crude MC)Asian Option Price under
Rough Heston Model

(c) (Crude MC)Asian Option Price under
SABR Model

Figure 8: (Crude MC)Asian Option Price under SABR Model
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Figure 9: (Crude MC)Asian Option Price under SABR Model

Figure 10: (Crude MC)Asian Option Price under SABR Model
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Figure 11: (Crude MC)Asian Option Price under SABR Model
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Abstract

This report introduces a robust framework for analyzing transition risk in the trad-
ing book, employing the Nelson-Siegel-Svensson model to parameterize the yield
curve and a calibrated three-factor short rate model to estimate profit and loss dis-
tributions for interest rate derivatives. We find that transition risk shocks similar to
those identified by ISDA align closely with impacts observed during the COVID-19
pandemic in the USA, as indicated by changes in swap and swaption distributions
and Tail Value at Risk estimates. However, this correlation does not extend to the
South African market. The framework is adaptable for potential extension to the
banking book and inclusion of additional risk factors. This work contributes to
the advancement of climate risk quantification, consistent with the Fundamental
Review of the Trading Book (FRTB) through the use of Expected Tail Loss for com-
prehensive risk assessment.

Keywords: Transition Risk, Trading Book, Nelson-Siegel-Svensson Model, Three-
Factor Short Rate Model, ISDA, COVID-19 Pandemic, Climate Risk, FRTB.
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Chapter 1

Introduction

In an era where the impacts of climate change are becoming increasingly apparent,
integrating climate risk analysis into the banking and trading books is no longer
a choice but a necessity. To begin with, the focus of climate risk analysis has been
on the long-term effects and climate shock implications in the banking book. How-
ever, this emphasis on the long term has paved the way for developing a robust
framework for climate risk analysis in the trading book. By ensuring that both
long-term and short-term climate risks are consistently addressed, this framework
aligns the banking book and trading book, enabling traders and risk managers to
better navigate the complexities of an evolving market landscape.

The International Swaps and Derivatives Association (ISDA) has commissioned
practitioners to develop and implement climate risk scenarios specifically for the
trading book. This framework addresses various critical use cases, including stress
testing, internal capital adequacy assessment, risk management, and strategy de-
velopment. It outlines coherent and plausible climate scenarios that produce cli-
mate shocks, which in turn generate shocks to macroeconomic variables. By incor-
porating these scenarios, financial institutions can better prepare for and manage
the potential impacts of climate change on their trading activities.

The scenarios encompass physical risk, transition risk, and combined risk scenar-
ios. The physical scenario is characterized by a sudden deterioration in the envi-
ronment due to increased global emissions. This results in an instantaneous rise in
average global surface temperature by 1.5 degrees Celsius above the current global
average (Defra et al., 2013). Transition risks arise from how effectively and rapidly
an organization responds to both internal and external pressures to cut greenhouse
gas emissions and shift to renewable energy sources. This transition encompasses
changes in policy and legal frameworks, technological advancements, and market
dynamics necessary to meet climate change mitigation and adaptation goals. The
financial impact of these risks on organizations depends on the speed, nature, and
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focus of these changes. Combined risk scenarios incorporate both physical and
transition risks, providing a comprehensive view of potential climate-related chal-
lenges. We shall focus only on transition risk.

This is important because there is some degree of agency in having a consistent
framework for modeling the impact of transition risk in the trading book. Shocks
due to policy change can occur at any time from the present. As an example, in
Denmark, the country’s coalition government agreed this week to introduce the
world’s first carbon emissions tax on agriculture 1. Starting in 2030, an annual tax
of 672 kroner ($96) per cow will be introduced to account for the planet-heating
emissions generated by livestock (Ziady, 2024). Farmers will face higher costs due
to the carbon tax on their cattle’s emissions. These increased costs might be passed
on to consumers through higher prices for beef and dairy products. Some farmers
might reduce their cattle herds to lower their tax burden, potentially reducing the
overall output of beef and dairy. Higher food prices could contribute to an increase
in inflation, especially if beef and dairy products constitute a significant portion
of the consumer price index. Central banks might respond to rising inflation by
adjusting interest rates, which in turn affects the sovereign bond curve.

Another example of a policy shift is the European Union’s Carbon Border Adjust-
ment Mechanism (CBAM). This market friction is designed to ensure that imported
carbon-intensive goods reflect their true environmental cost. By applying a fair
price on the carbon emissions associated with their production, CBAM aims to
promote cleaner industrial practices in countries outside the EU. In its initial phase,
CBAM focuses on specific sectors. These include cement, iron and steel, aluminum,
fertilizers, electricity, and hydrogen. Therefore, CBAM is identified as a transition
risk that could have a significant influence on the financial markets of South Africa
and the US. CBAM is planned to be implemented in January 2026, and it aims at
eliminating carbon leakage.

In this report, we apply the framework to the interest rate markets of the United
States of America (USA) and the Republic of South Africa (RSA), focusing partic-
ularly on South Africa’s interest rate swap market known for its liquidity and sus-
ceptibility to macroeconomic shocks such as GDP and inflation fluctuations. We are
aware of the spill-over risk between the US market and SA swap market, hence in
our analysis we consider the two jurisdictions in isolation. This report adds to the
ISDA working group’s analysis, which previously covered European, Asian, and
American markets but excluded Africa. We enhance the analysis of the US interest
rate market by adopting a three-factor interest rate model instead of the traditional
one-factor Hull-White model, applying the same approach to South Africa. Our
model draws on the methodologies of Babbs and Nowman (1999); Duffie and Kan

1https://edition.cnn.com/2024/06/26/business/denmark-cows-carbon-tax/index.html
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(1996); Pang (1997); Beaglehole and Tenney (1991) and Nunes et al. (1999).

We obtain the government yield curve using the Nelson-Siegel-Svensson (NSS)
parametric representation (Svensson, 1995). This representation allows us to char-
acterize the yield curve in terms of its level, slope, and curvature (Gilli et al., 2010)
providing insights into how transition risk affects the sovereign bond curve. We
then calibrate our three-factor short rate model to historical yield curve data using
the Kalman filter (Nunes et al., 1999; Babbs and Nowman, 1999; Huang et al., 2009;
Wells, 2013). Time series analysis of the NSS parameters is performed on histor-
ical data pre-, post, and at times of shocks, including the DotCom crash, Global
Financial Crisis (GFC), and Covid-19. This analysis is used to develop the corre-
sponding shocks on the sovereign bond curve. This is not a trivial exercise, as it
enables the observation of how the different financial crises affect the sovereign
bond curve and with what magnitude, therefore enabling us to analyse the coher-
ence and plausibility of our framework.

Given scenarios, we then price swaps and swaptions using our computationally
efficient pricing engine. We use our pricing engine to perform risk analysis on
the fixed-income trading book by considering the distribution of profit and loss,
given the policy shocks. Our framework is in line with the fundamental review
of the trading book (FRTB), which forms part of the Basel Committee’s broader
agenda to reform regulatory standards for banks. We use the expected shortfall as
a quantitative risk metric, as it accounts for the tail risk in a more comprehensive
manner, considering both the size and likelihood of losses above a certain thresh-
old (Porretta and Agnese, 2021). We calculate the expected shortfall for periods of
significant financial stress.

Figure 1.1 serves as a road map for the framework that is implemented. The first
part starts with the calibration of the three-factor Vasicek model on historical bond
yield data, using the Kalman filter. The model parameters and the state variables
are then used in the pricing engine to calculate probability distributions for profit
and loss for interest rate derivatives. The second part pertains to the NSS parame-
terization of the yield curve. On the one hand we have the ’business as usual’ case
and on the other hand we have changed NSS parameters due to certain shocks to
the yield curve. The estimated state variables, corresponding to these changes in
the yield curve, are then estimated. Lastly, the pricing engine is used to price swaps
and swaptions and obtain profit and loss distributions for each shock for these in-
terest rate derivatives, facilitating risk analysis for the given scenarios.

The report proceeds as follows: in Section 1 we outline the parameterisation of the
government bond curve using the Nelson-Siegel-Svensson function and we discuss
the 3-factor model of Nunes et al. (1999); Huang et al. (2009) and its calibration
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using the Kalman filter in Section 2. Sections 1 and 2 are the quantitative finance
building blocks for climate risk analysis in the trading book framework discussed
in Section 4.1. We then discuss the results in Section 3 and conclude this report in
Section 4.

Model calibration
Historical yield curve data
Three-factor Vasicek model
Kalman filter

NSS curve
Business as usual

Pricing
Swaps and swaptions

PnL distributions

Model parameters
State variables

Shocked NSS curve
DotCom
Global financial crisis
COVID-19
Hypothetical transition risk

Change in NSS
parameters

Estimated state variables 
corresponding to
the change in NSS yield

Risk metrics

Figure 1.1: Our road map.
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Chapter 2

Framework

This chapter discusses the necessary theory that is required for use in the rest of the
document. It outlines the necessary yield-curve modeling framework, the Nelson-
Siegel-Svensson paramaterisation, the Kalman filter algorithm for calibration of
our interest-rate model, the pricing engine for generating profit and loss distri-
bution of swaps and swaptions and, finally, explains the necessary machinery for
climate risk analysis.

1 Yield Curve Modelling

The Nelson-Siegel-Svensson (NSS) model, an extension of the Nelson-Siegel (NS)
model, is widely used in finance as a parametric representation of the term struc-
ture of interest rates. This term structure represents the relationship between bond
yields and their maturities, which is crucial for valuing bonds, managing risk, and
formulating monetary policy. Nelson and Siegel (1987) introduced a straightfor-
ward, parsimonious model capable of depicting the variety of forms typically asso-
ciated with yield curves. These yield curves exhibit characteristics such as mono-
tonicity, humps, or occasional S-shapes, which reflect diverse term structures of
interest rates.

Let y(Γ) be the zero coupon rate for maturity T . The yield curve as parameterised
by Nelson and Siegel (1987) can be formulated as follows,

y(Γ) = β0 + β1

(
1− e

(− T
τ1

)

T
τ1

)
+ β2

(
1− e

(− T
τ1

)

T
τ1

− e
(− T

τ1
)

)

where the vector of constants Γ = (β0, β1, β2, τ1) characterises the model.

According to Gilli et al. (2010), the parameter β0 represents the level of the yield
curve and is independent of T , often interpreted as the long-run yield level. The
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parameter β1 influences the slope of the yield curve and is weighted by a function
of time to maturity. This function is unity when T = 0 and decays exponentially
to zero as T increases, meaning the impact of β1 is primarily felt at the short end
of the curve. The parameter β2 accounts for the curvature of the yield curve. This
parameter effect on the yield curve is zero at T = 0, increases to create a hump,
and then decreases back to zero as T grows, thereby introducing a hump-shaped
curvature to the yield curve. Finally, the parameter τ1 determines the rate of decay
and specifically controls the position of the hump on the yield curve.

The model constraints are,

β0 > 0, β0 + β1 > 0, τ1 > 0.

Svensson extends the NS model by adding an extra term to capture the shapes of
yield curves better, especially those with multiple humps or U-shapes. This allows
more than one local extreme along the maturity profile and hence can be useful in
improving the fit of the yield curves. The extended model is defined by

y(Γ) = β0 + β1

(
1− e

(− T
τ1

)

T
τ1

)
+ β2

(
1− e

(− T
τ1

)

T
τ1

− e
(− T

τ1
)

)
(2.1)

+ β3

(
1− e

(− T
τ2

)

T
τ2

− e
(− T

τ2
)

)
(2.2)

where Γ = (β0, β1, β2, β3, τ1, τ2). The constraints are the same as the NS model,
with τ2 > 0. The inclusion of β3 and τ2 enables the model to achieve more flexibil-
ity. β3 adds an additional hump term to the NS model. According to Gürkaynak
et al. (2007), the NSS model will accurately capture the shape of the yield curve
whilst simultaneously smoothing out any idiosyncratic issues for specific finan-
cial securities, such as liquidity premia, hedging demand or market segmentation.
The model allows for two humps in the yield curve at the short end and the long
end. Monetary policy expectations are accounted for at the short end, while the
long end takes convexity effects and market segmentation into account Gürkaynak
et al. (2007).

Once NSS parameters have been estimated for (2.2), these parameters can be used
to estimate yields for various maturities. Svensson (1995) describes methods for es-
timating the parameters; either minimising the sum of squared price errors or the
sum of squared of yield errors. Minimising the price errors often results in fairly
large yield errors for bonds and money market rates for short maturities due to
the insensitivity of yields to prices for short maturities. Minimising yield errors di-
rectly minimizes the differences between observed yields and the yields predicted
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by the model. We will minimize yield errors, as this approach provides a better fit
for the term structure of interest rates across different maturities.

Gilli et al. (2010) describes the optimisation problem as

min
Γ

∑
(y − yM )2

where y are the model yields and yM are the observed yields, subject to the con-
straints above.

2 Kalman Filter Algorithm and Three-Factor Vasicek model

Kalman filtering and Maximum Likelihood Estimation(MLE) are often used in
combination to estimate optimal model parameters (Chatterjee, 2005). A brief overview
of these two methods, as well as the calibration procedure, is given below.

Applying the Kalman filter requires us to formulate the transition and measure-
ment equation and they are given as follows respectively,

xk = Ak−1xk−1 + ak−1 + wk,

yk = Hkxk + hk + vk.

The transition equation describes how the hidden state evolves while the mea-
surement equation relates the observed values to the hidden states (Duan and Si-
monato, 1999). Here xk is a hidden state vector (the short rate), yk denotes a vector
of observations (bond yields), wk and vk are zero-mean uncorrelated noise vectors,
furthermore, they have covariance matrices Qk and Rk, respectively. The Kalman
filter uses the observation vector to determine the state vector by using a prediction
step followed by an update step.

In the update step, the log-likelihood can be calculated. Here, the main idea is to
find the set of parameters that are most likely to yield the given observations. This
is achieved by maximising the log-likelihood function with respect to the model
parameters, as suggested by James and Webber (2000).

The above is detailed by the following equations, providing a general summary of
the algorithm that is implemented:
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1. Prediction:
x̂−k = Ak−1x̂

+
k−1 + ak−1

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk

2. Update:

Fk = HkP
−
k HT

k +Rk

Kk = P−
k HT

k F
−1
k

ȳk = Hkx̂
−
k + hk

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

x̂+k = x̂−k +Kk(yk − ȳk)

LLk = LLk−1 −
dy
2

log(2π)− 1

2
log(det(Fk))−

1

2
(yk − ȳk)

TF−1
k (yk − ȳk)

To apply this algorithm we initialise values for the prediction and update step, i.e.,
x̂+0 , P+

0 and LLk respectively. The Kalman filter is known to converge quickly,
therefore this initialization does not have to be perfect, according to Chatterjee
(2005).

We have outlined the Kalman filter procedure, now we consider the three-factor
Vasicek model and represent it as a system of stochastic differential equations

dXt = K(X̄ −Xt)dt+ΣdWQ
t , (2.3)

where

Xt =

X1

X2

X3

 K =

κ1 0 0
0 κ2 0
0 0 κ3

 X̄ =

θ1θ2
θ3

 Σ =

σ11 0 0
σ21 σ22 0
σ31 σ32 σ33

 .

Xt is the hidden state process, κi for i = 1, 2, 3 are the rates of mean reversion of
the hidden state variables to their long-term means, θi for i = 1, 2, 3 and Wt is a
vector of independent Brownian motions, Wt ∈ R3. The martingale measure, Q,
denotes the probability measure obtained when the bank account is the numeraire
asset underlying the model.

The Duffie and Kan (1996) model, presented in Nunes et al. (1999), gives the price
of a risk-free zero coupon bond as

P (t, T ) = exp [A(τ) +BT(τ)Xt], (2.4)
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where

A(τ) = τ(GTa−1b− f) +BT(τ)a−1b

+
τ

2
GTa−1Θ(a−1)TG

+GTa−1(In − eaτ )Θ(a−1)TG

+
τ

2
GTa−1∆(τ)(a−1)TG

BT(τ) = GTa−1(In − eaτ )

∆(τ) = eaτY ea
Tτ − Y

Θ = ΣΣT.

Y is computed the same way as in Nunes et al. (1999). The short rate rt is given by

rt = f +GTXt. (2.5)

Abu-Mostafa (2001) mentions that for the three-factor generalised Vasicek model,
the short rate is simply the sum of the state variables. Which implies that f = 0

and G =

11
1

.

The SDE of Xt under the deterministic volatility formulation of the Duffie and Kan
(1996) model has the following form

dXt = [aXt + b]dt+ΣdWt. (2.6)

From (2.3), it can be deduced that a = −K and b = KX̄ . From the above, the bond
yields can be calculated using

y(τ) = −1

τ
[A(τ) +BT(τ)Xt]. (2.7)

For the implementation of the Kalman filter, the transition equation based on Eu-
ler’s discretization is

Xt+∆t = (I3 −K∆t)Xt +KX̄∆t+
√
∆tΣZt (2.8)

where Zt ∼ N3(0, I3). Following from (2.7), the measurement equation is

y(τ) = −1

τ
BT(τ)Xt −

1

τ
A(τ) + v (2.9)

where v is the noise vector.
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3 The Pricing Engine

The pricing engine was developed to provide risk-neutral prices for fixed-interest
financial instruments and derivatives making use of the estimated state process
and optimised parameters provided by the calibrated interest rate model. These
risk-neutral prices are then used in a one year profit and loss analysis under the
’Business as usual’ scenario relative to the stressed scenarios considered. The en-
gine provides the distributions of risk-neutral prices of interest rate swaps, bonds
and swaptions for any inputed maturities for base and shocked scenarios one year
after the shock.

The instantaneous shocks were implemented in the model by changing the initial
state variable from which the discretised state process is evolved. This analysis
considered maturities of half a year, one year, three years, five years, ten years and
twenty years as these give insight into the impact of shocks on short, medium and
long-term maturities and tenors. The derivative instrument considered was a two
year swaption, valued one year after the shock, on swaps of the above-mentioned
tenors. For this analysis, only payer swaps and swaptions on payer swaps with
nominals of one million were considered, however, it could easily be extended to
receiver swaps with any chosen nominal or portfolios of swaps. The probability
distributions, using Kernel Density Estimation (KDE), of the Monte Carlo prices
of the instruments were then plotted for our ’business as usual’ scenario relative
to each shocked scenario. This was done to see how the distribution of swap and
swaption values changed under shocks to the yield curve for each maturity consid-
ered. The Monte Carlo procedure used 100 000 simulations for increased accuracy.

The value at risk (VaR) and tail value at risk (TVaR) were calculated for each distri-
bution of swap prices and swaption prices. This facilitated comparison of these risk
metrics and how they changed when shocked. VaR was calculated using equation
(2.10) and TVaR was calculated using equation (2.11), where X is the price distribu-
tion of the instrument in question and α is the quantile at which losses are deemed
extreme. The α parameter used was 0.25%, in order to achieve consistency with the
confidence level of 97.5% recommended in BIS (2013).

VaRα(X) = − inf{x ∈ R : FX(x) > α} (2.10)

TVaRα(X) = E(−X|X ≤ −VaRα(X)) (2.11)

The use of TVaR is consistent with the recommendations in BIS (2013) as deficien-
cies have been pointed out concerning the use of VaR as a risk measure as it does
not sufficiently quantify tail risk. TVaR quantifies both size and the likelihood of
losses beyond a confidence level and is, thus, preferred BIS (2013).
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4 Climate Risk Analysis in Trading Book

In this section we outline the general framework for analysis of transition risk in
the trading book. Section 4.1 outlines the framework and in section 4.2 we discuss
the application of this framework to historical events.

4.1 Climate Risk Analysis in Trading Book

We start by calibrating the 3-factor Vasicek model (2.3) to historical data using the
Kalman filter, this calibration is under the risk neutral measure and we assume no
transition risk. The price of the bond under the calibrated model is given by,

PtT := P (t, T ;Xt,Θ), (2.12)

where Θ is the set of parameters that characterise (2.3), given information up to
time t.

To analyse the impact of transition risk on the trading book, we consider a finite set
P of transition scenarios, defined by

P := {pj |j = 0, 1, 2, ....},

and the sovereign bond curve for our segmented sovereign jurisdiction correspond-
ing to the transition scenario pj , which characterized by NSSj 1. The yield of a zero
coupon bond with maturity Ti is given by,

Rj
t,Ti

:= R(t, Ti; Γ
j), (2.13)

where Γj is the set of NSSj parameters corresponding to scenario j. The current
scenario or ’business as usual’ can be indexed by j = 0. To determine the corre-
sponding Γj for j, which characterise the sovereign bond curve induced by sce-
nario j, we first need to determine the magnitude of the scenario shock to Γ0, that
if applied to the bond curve will produce Γj , j > 0 of j scenario. Given the shocks
corresponding to each transition scenario, we can calculate the corresponding NSS
parameters Γj for the government bond curve, which can then be used to perform
climate risk impact on the trading book.

To assess transition risk impact on the trading book for a given arbitrary transition
scenario j > 0, we begin by estimating the initial state variables for our calibrated
model with set model parameters Θ. To obtain the shocked state variables, shocks
are first determined through scenario shocks of changes in yield curves through
NSS parameters. The shocked yield curves can be obtained by minimising the er-
ror between yield curves obtained with state variables as described by (2.4) and

1We omit p and index scenario pj by j
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the shocked NSS yield curve. The state variables that minimise these are then
regarded as the shocked state variables. Once we have the shocked initial state
variable from the minimisation procedure in (2), we evolve the state process from
this point to price interest-rate derivatives and determine their profit and loss dis-
tribution, given the stressed scenario. We calculate the expected tail loss for both
’business as usual’ and the stressed scenario, j, for comparative analysis.

Types of shocks to the model include shocks to only the state variables and shocks
to state variables and model parameters. Shocks to the state variables correspond
to the case where the initial state variable, Xt, changes due to the policy shock
induced by pj , with model parameters in Θ remaining unchanged. Thus, the long-
term mean of our model (2.3) remains the same, and our state variables revert to
the same long-term mean. Shocks to state variables and model parameters result
in a regime shift in our state variable process. Given Γj , we find the corresponding
Θ, which means our 3-factor short rate model dynamics will change, prompting
short rates to revert to a new long-term mean. For a given shock we then price
zero-coupon bonds, and interest rates derivatives. This analysis we only consider
shocks to the state variables as this corresponds with the one year time horizon of
the trading book, however further analysis could consider changes to state vari-
ables and model parameters in response to a shock.

Risk analyses on the fixed-income book is done by considering the distribution
of profit and loss, given the specific policy shocks. We apply this analysis to the
SA and USA fixed-income market. To ensure that our analysis is consistent with
the fundamental review of the trading book (FRTB), we use expected shortfall as
a quantitative risk metric, as it accounts for the tail risk in a more comprehensive
manner, considering both the size and likelihood of losses above a certain threshold
(Porretta and Agnese, 2021).

4.2 Application of the Framework to Historical Events

We consider three historical crises that had an extensive impact on the financial
markets, namely the Dotcom Bubble, the Global Financial Crisis (GFC) and the
COVID-19 pandemic. We obtain the sovereign yield curve pre-event and post-
event and perform an analysis of the NSS model parameters to determine the
change in percentage in the model parameters. It is important to emphasize that
we are not assuming climate change policy shocks are of an equivalent magnitude
to the past financial crisis. This is not a trivial exercise, as it enables us to observe
how the different financial crises affect the sovereign bond curve, gauge the mag-
nitude of the effect and check the coherence and plausibility of our framework.

We perform risk analysis for each historical crisis, to the SA and USA fixed-income
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market using the framework in Section 4.1.
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Chapter 3

Numerical Results

1 Calibration Results

The calibration results of the three-factor Vasicek model on the historical USA and
RSA sovereign bond data can be seen in the Appendix. For both of these jurisdic-
tions, the model is capable of accurately predicting the yields of bonds with differ-
ent maturities, using the estimated short rate and the estimated model parameters.
Thus, validating its use in the pricing engine for swaps and swaptions. In the next
section we discuss the results of the transition risk analysis in the trading book.

2 Risk Analysis on the Trading book

In this section, we examine the impact of financial shocks on the trading book. We
begin by analyzing the shocks to the sovereign bond curve in Section ??. We then
observe how these shocks affect the interest rate swap and swaption markets in the
USA (Section 2.2) and RSA (Section 2.3), with a primary focus on the latter.

2.1 Financial Shocks on the Sovereign Bond Curve

In this section, we analyse how different absolute spread changes (as proposed by
ISDA and given in basis points) of government bond yields for different liquid-
ity horizons affect the NSS parameterisation. We also discuss the results obtained
from a time series analysis of the NSS model parameters performed on historical
data pre-crisis, post-crisis, and at the time of the crisis. These crises include the Dot-
Com Bubble, GFC, and Covid-19. We observe how these different financial crises
affect the sovereign bond curve.

Table 3.1 and 3.2 summarise the basis point (bps) spread changes in yields of bonds
with different maturities, for different liquidity horizons, for the USA and RSA.
Table 3.1 was obtained from the ISDA (2023, 2024) documentation, while Table 3.2
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was obtained by changing the parameters of the NSS paramaterisation (β and τ
parameters) to replicate the spread changes reported in ISDA (2023, 2024).

Table 3.1: Absolute spread change in basis points of government bond yields for
various liquidity horizons, as proposed by ISDA.

ISDA USA
1D 10D 3M 1Y

GOV Bond 1D 30 70 80 160
GOV Bond 6M 25 60 70 150
GOV Bond 1Y 20 50 60 140

Table 3.2: Absolute spread change in basis points of government bond yields for
various liquidity horizons possible with the NSS model.

This report USA
1D 10D 3M 1Y

GOV Bond 1D 33 63 87 161
GOV Bond 6M 1.3 12 63 160
GOV Bond 1Y 1 10 53 137

From Table 3.1 and Table 3.2, it is clear that there is a discrepancy between the
spread changes of the two longer maturities over the two shorter liquidity hori-
zons. However, for the two longer liquidity horizons, the spreads agree within
10 basis points for all maturities. This also holds true for the one day bond and
the shorter liquidity horizons. The reason for this can only be speculative as it is
unknown how ISDA obtained their proposed shocks. Due to this restriction, and
given that the NSS parameterisation does achieve the majority of the proposed
spread changes, the NSS parameterisation is considered satisfactory for the pur-
poses of this report.

Figure 3.3 illustrates the NSS parameters obtained for yield curves corresponding
to ’business as usual’ for both the USA and RSA. The observed changes in the shape
of the yield curve due to shocks are contingent upon the initial values of the NSS
parameters, as these values serve as the baseline from which percentage adjust-
ments are made to derive new yield curves.

The percentage change in the NSS parameters for various shocks has driven sig-
nificant shifts in yield curve dynamics. The percentage changes obtained for each
shock can be found in Table 3.4. The magnitude and direction of these percentage
changes, relative to the original parameters, play a crucial role in shaping the resul-
tant yield curves. This dependency underscores the significance of understanding
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both the initial parameterisation and the subsequent adjustments in elucidating the
dynamics of the yield curve. This is illustrated by Figures 3.1 and 3.2, where the
same shocks are applied to different ’business as usual’ NSS parameters (USA and
RSA), however very different changes in the yield curves are observed.

Table 3.3: Original NSS parameters - ’business as usual’.

NSS Parameters
β0 β1 β2 β3 τ0 τ1

USA 2.6562 3.0513 -0.0001 4.8198 1.0437 17.3374
RSA 0.0752 -0.0303 -0.2915 0.4200 4.2727 6.3746

Table 3.4: Percentage change in the NSS parameters for different shocks.

β0 β1 β2 β3 τ0 τ1

Shocks

DotCom 6.84 20.87 -8.6 29.06 22.29 -8.84
GFC 2.51 30.17 27.68 18.84 -31.17 -29.78

COVID-19 -15.42 89.99 61.09 57.91 -4.88 25.59
ISDA 2.06 -1.93 228.19 68.07 0.58 123.16
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Figure 3.1: Shocks caused by Various Crises Applied to USA.
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Figure 3.2: Shocks caused by various crises applied to RSA.

For the DotCom Bubble shock, the increase in β0 by 6.84% suggests a rise in overall
long-term interest rates, influencing yields across different maturities. A notable
20.87% increase in β1 has steepened the yield curve, indicating higher short-term
rates relative to longer-term rates. Conversely, a -8.6% change in β2 adjusts the
curvature, impacting medium-term yields. The substantial 29.06% increase in β3
introduces complexity, affecting yield differentiation across maturities. Moreover,
with τ0 increasing by 22.29% and τ1 decreasing by -8.84%, the adjustments imply
prolonged effects on slope and curvature adjustments, influencing market expec-
tations and economic conditions through dynamic interest rate dynamics. These
changes can be observed in both the USA (Figure 3.1a) and RSA (Figure 3.2a),
where the magnitude of the parameter percentage changes cause different shifts
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in the original yield curve.

For the GFC shock, a slight increase of 2.51% in β0 suggests a modest rise in overall
long-term interest rates, affecting yields across different maturities. A substan-
tial 30.17% increase in β1 has steepened the yield curve notably, indicating higher
short-term rates relative to longer-term rates. Moreover, a 27.68% increase in β2
has intensified the curvature of the yield curve, impacting medium-term yields.
The 18.84% increase in β3 introduces additional complexity, influencing yield dif-
ferentiation across various maturities. Additionally, with τ0 decreasing by -31.17%
and τ1 decreasing by -29.78%, these adjustments suggest a faster decay in the effects
of β1 and β3, affecting slope and curvature adjustments over time. These changes
can be observed in both the USA (Figure 3.1b) and RSA (Figure 3.2b), where the
magnitude of the parameter percentage changes cause different shifts in the origi-
nal yield curve.

For the COVID-19 shock, a notable decrease of -15.42% in β0 suggests a lower over-
all long-term interest rate environment, influencing yields across various maturi-
ties. A substantial 89.99% increase in β1 has sharply steepened the yield curve,
indicating significantly higher short-term rates relative to longer-term rates. Fur-
thermore, a 61.09% increase in β2 has enhanced the curvature of the yield curve,
affecting medium-term yields. The 57.91% increase in β3 introduces additional
complexity, influencing yield differentiation across different maturities. Moreover,
with τ0 decreasing by -4.88% and τ1 increasing by 25.59%, these adjustments sug-
gest varying impacts on the decay rates of β1 and β3, influencing the persistence of
slope and curvature adjustments over time. These changes can be observed in both
the USA (Figure 3.1c) and RSA (Figure 3.2c), where the magnitude of the parameter
percentage changes cause different shifts in the original yield curve.

A hypothetical transition risk shock is considered to be the NSS curve that best
represents the bps spread changes provided in ISDA (2023, 2024). This assesses
the magnitude of the ISDA-induced shock relative to historical shocks in terms of
transition risk. The percentage changes resulting from these shocks are detailed
in Table 3.4, while the corresponding alterations in the yield curve are depicted in
Figure 3.3 for the USA and Figure 3.4 for RSA. β0 experiences a modest 2.06% in-
crease, indicating a slight rise in long-term interest rates. Conversely, β1 decreases
by -1.93%, suggesting a potential decline in short-term rates relative to longer-term
rates. The most pronounced effect is seen in β2, which surges by 228.19%, substan-
tially altering the curvature of the yield curve and impacting medium-term yields
prominently. Moreover, β3 increases by 68.07%, introducing additional complexity
and influencing yield differentiation among various maturities. The adjustments
in τ0 (-0.58%) and τ1 (123.16%) further refine these impacts by altering the decay
rates of β2 and β3 effects over time, respectively.
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Figure 3.3: Shock produced by ISDA on USA.

Notably, the observed shift in the yield curve induced by the ISDA transition risk
shock appears less pronounced compared to shifts caused by historical event shocks,
but it can be argued is the most similar in shape and magnitude to the shock in-
duced by the COVID-19 pandemic on the USA.

20



0 5 10 15

Years

400

500

600

700

800

900

1000

1100

1200

Y
ie

ld
 (

bp
s)

Term Structure for ISDA Shock (j=4)

Nunes yield
NSS yield
NSS yield 0

Figure 3.4: Shock produced by ISDA on RSA.

When applying the ISDA shocks to the RSA data, an even smaller shift in the yield
curve is observed. Despite the smaller magnitude, the resulting curvature closely
resembles that produced by the NSS yield curve under the COVID-19 shock. How-
ever, the slope generated by the ISDA shock is notably less steep than that observed
in the COVID-19 shocked NSS yield curve.

After determining the shocked yield curves, the corresponding shocked state vari-
ables Xj

t are computed. This involves identifying the values of Xj
t required in the

yield curve formulation of Nunes et al. (1999) (see equation (2.7)) that replicate the
yield curves generated by the NSS yield curve shocks. Subsequently, these values
of Xj

t are employed in the pricing engine for swaps and swaptions.

2.2 Risk Analysis on the Trading book: USA

This analysis assesses the change in swap value distributions under each stressed
scenario, where the scenarios considered correspond to the Dot Com Bubble, the
GFC and the Covid-19 pandemic. This is done by using the calibrated parameters
from the interest-rate model, the shocked state process value provided by the NSS
model and the pricing engine discussed in Section 3 of Chapter 2.

For example, this analysis will present the results of the GFC shock on the US swap
and swaption markets, where the corresponding plots for the Dot Com Bubble can
be found in Section 5 for brevity. We see in Figure 3.5 that there was a decrease in
the value of swaps one year after the shock occurred, seen in the apparent mean
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shift leftwards of the stressed scenario distribution. In this case, the shock was con-
sistent with the magnitude and direction of the GFC. It can also be seen in Figure
3.11 that there is a marked increase in TVaR over all tenors with a shock consistent
with the GFC. This indicates an increase in the tail risk of US swaps one year after
the shock as well as a significant reduction in value.
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Figure 3.5: Shock to US swap prices caused by GFC.

Furthermore, there is a corresponding reduction in the value of two-year swaptions
on swaps of the same tenor, seen in Figure 3.16. However, this reduction is capped,
owing to their optionality, seen where there is a shift leftwards of the distribution
but this becomes concentrated around zero rather than becoming significantly neg-
ative. There is a stark comparison between the significant increase in TVaR of the
US swaps, relative to the capping of the TVaR of the swaptions to 0 in the stressed
scenario, as seen in Figures 3.11 and 3.12. We also see significant distributional
changes with increasing tenor of swaps, as the distributions become flatter with a
reduction in mean and an increase in variance. However, the same behaviour does

22



not occur for swaptions, where distributions reduce in variance. The reduction in
the values of the swaps implies that many of the swaptions expire out of the money
and thus the distributions in the shocked scenario become concentrated around 0.
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Figure 3.6: Shock to US swaption prices caused by GFC.
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Figure 3.7: Shock to US swap prices caused by Covid-19.

We see in Figure 3.7 that there is an increase in swap prices for all maturities with a
shift rightwards of all the distributions relative to the ’business as usual’ scenario.
For longer maturities there are greater distributional changes where there is a shift
leftwards of the mean as well as an apparent reduction in variance as they are more
peaked, as seen in Figure 3.7.
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Figure 3.8: Shock to US swaption prices caused by Covid-19.

This result is the same for the swaption distributions under the Covid-19 shock
scenario, as is seen in Figure 3.8, where all distributions shift to the left. There
are, however, distributional changes at all maturities for the swaption prices with
greater variance. The TVaR for all maturities of swaps and swaptions is also signif-
icantly reduced, as seen in Figures 3.11 and 3.18.
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Figure 3.9: Shock to US swap prices caused by the ISDA shock.

The shock to the yield curve, consistent with the ISDA transition risk shock, seem-
ingly had a small impact on the yield curve, as seen in Section 2.1. This can be
seen in the short-term tenors being relatively unaffected, with small shifts in the
distributions under the shocked scenario. However, for longer tenors, this small
change to initial state has a compounded effect and precipitates a larger shift in
distribution for tenors greater than three years, as seen in Figure 3.9.
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Figure 3.10: Shock to US swaption prices caused by the ISDA shock.

The first part of the previous result is also seen in swaption prices under the shock
scenario proposed by ISDA. Figure 3.10 shows that, across all maturities, there is
an increase in swaption prices corresponding to the increased swap prices seen in
Figure 3.9. However, the distributional changes in the swaption prices are more
significant than those seen in the swap prices. So the ISDA shock, whilst exhibiting
a modest impact on the yield curve, does imply changes in the behaviour of swap
and swaption prices.
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Figure 3.11: Changes in the TVaR of US swaps in each shock scenario.
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Figure 3.12: Changes in the TVaR of US swaps in each shock scenario.

We see in Figures 3.11 and 3.12 that the behaviour of TVaR under the ISDA shock
behaves similarly to the behaviour of TVaR under a shock consistent with the
Covid-19 pandemic. This is corroborated by the changes to swap distributions
in Figures 3.7 and 3.9 behaving similarly for all maturities. Analogously, for swap-
tions, the distributional shifts seen in Figures 3.8 and 3.10 correspond. Covid-19 is
an economic shock that was induced by a natural occurrence, this being the closest
shock to that proposed by ISDA, therefore, intuitively makes sense. This allows a
hypothesis that when ISDA releases transition shocks for South Africa, a starting
point for an analysis of that shock on the South African swap and swaption market
would be to compare the proposed shock with that of the Covid-19 pandemic.

2.3 Risk Analysis on the Trading Book: RSA

The analysis on the trading book for South Africa considers all three stress scenar-
ios: the Dot Com bubble, the GFC and the Covid-19 pandemic. For each scenario,
the swap distributions, the swaption distributions, the changes in TVaR for swaps
and the changes in TVaR for swaptions are presented.
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Figure 3.13: Shock to SA swap prices caused by the DotCom Bubble.

The DotCom shock presents a uniform increase in the mean of swap prices across
all maturities, seen in Figure 3.13. The values of payer swaps actually increased
using the shocked state variables with the interest rate models calibrated on the
full data set. The TVaR decreased significantly, as seen in Figure 3.21. This increase
in swap values is consistent with the increase in swaption values, seen in Figure
3.14. If receiver swaps had been considered, this shock would have decreased their
values and so this downside risk would have reflected in the capping of TVaR
of the swaption distribution, consistent with the behaviour of the US swaps and
swaptions during the GFC discussed in Section 2.2.
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Figure 3.14: Shock to SA Swaption Prices caused by the Dot Com Bubble.

31



-15000 -10000 -5000 0 5000

Price

0

2

4

6

8
P

ro
ba

bi
lit

y
#10 -4 0.5 year tenor

Business as usual Stress scenario VaR TVaR

-15000 -10000 -5000 0 5000

Price

0

2

4

6

8

P
ro

ba
bi

lit
y

#10 -4 1 year tenor

Business as usual Stress scenario VaR TVaR

-1 -0.5 0 0.5 1

Price #105

0

2

4

P
ro

ba
bi

lit
y

#10 -5 3 year tenor

Business as usual Stress scenario VaR TVaR

-1 -0.5 0 0.5 1

Price #105

0

2

4

P
ro

ba
bi

lit
y

#10 -5 5 year tenor

Business as usual Stress scenario VaR TVaR

-1 0 1 2

Price #105

0

0.5

1

1.5

P
ro

ba
bi

lit
y

#10 -5 10 year tenor

Business as usual Stress scenario VaR TVaR

-1 0 1 2

Price #105

0

0.5

1

1.5

P
ro

ba
bi

lit
y

#10 -5 20 year tenor

Business as usual Stress scenario VaR TVaR

Figure 3.15: Shock to SA Swap Prices caused by GFC.

Conversely, the impact on swaps for the GFC stressed scenario differs significantly
by tenor. The impact is negative for half a year and one year tenors, with the three
year swap being relatively unaffected and the five year, ten year and twenty year
swaps increasing in value, as seen in Figure 3.15. This corresponds to a decrease in
TVaR for all maturities above one year, as seen in Figure 3.21.
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Figure 3.16: Shock to SA Swaption Prices caused by GFC.

Since the maturity of the swaption is beyond the tenors of the swaps that decreased
in value during the GFC stress scenario, it can be seen in Figure 3.16 that the values
of swaptions increased for all maturities. This corresponds to a decrease in TVaR
for swaptions for each maturity, as seen in Figure 3.22.
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Figure 3.17: Shock to SA Swap Prices caused by Covid-19.

Figure 3.17 shows how Covid-19 negatively impacted all maturities, with all distri-
butions showing a significant lefward shift of their means. However, this negative
impact decreases with increasing tenor, where the distribution is reasonably un-
changed for the twenty year tenor, perhaps because of a view of the market around
how long the crisis was expected to persist.

This result is consistent with the swaption prices seen in Figure 3.18 as the swaption
prices collapse to zero for short-term maturities, the distributions are heavily con-
centrated around zero and skewed to the left for the medium maturities and the
longer-term maturities are relatively unchanged for the shocked and unshocked
scenarios.

Moreover, this is seen in the changes in the TVaR of the swaps compared to the
swaptions. Figure 3.21 shows how the tail risk increases considerably relative to
the ’business as usual’ scenario, whereas the TVaR for the swaptions is worse than
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the ’business as usual’ scenario, however it is capped to zero. This implies that
the swaptions are an appropriate risk management instrument for a shock that is
consistent with the Covid-19 pandemic.
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Figure 3.18: Shock to SA Swaption Prices caused by Covid-19.
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Figure 3.19: Shock to SA Swap Prices caused by the US ISDA shock.

We see in Figure 3.19 that when applying the ISDA transition risk shock, proposed
for the US, on the South African swaps, we see a rightwards shift in distributions
for short-term tenors and a leftwards shift in distributions for tenors greater than
one year. The shape of the distributions remained reasonably similar, despite the
changes in mean.
However, the swaption distributions remain virtually unchanged when shocked
using the US ISDA transition risk shock, as seen in Figure 3.20. We do, however,
see in 3.21 that the ISDA shock is behaves similarly to the Covid-19 pandemic shock
in the behaviour of TVaR under the stressed scenario where, like Covid-19, there
is an increase in TVaR across all maturities. The TVaR for the swaptions behaves
almost exactly as the same as the ’business as usual’ scenario, as seen in Figure 3.22.
These results indicate that the ISDA transition risk shock proposed for the US does
not behave as similarly to the Covid-19 pandemic shock scenario in the South
African swap and swaption markets as it did in the US. The behaviour in TVaR for
the swaps and swaptions had similarities but the distributional changes in swap
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Figure 3.20: Shock to SA Swaption Prices caused by Covid-19.

and swaption prices were not the same as the Covid-19 pandemic shock in the
South African market. However, upon the release of ISDA’s transition risk shock
appropriate to South Africa this analysis could be revisited to see whether the hy-
pothesis that the transition risk shock behaves similarly to the pandemic shock is,
in fact, true.
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Figure 3.21: Changes in the TVaR of SA swaps in each shock scenario.
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Figure 3.22: Changes in the TVaR of SA swaptions in each shock scenario.
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Chapter 4

Conclusion

In conclusion, we have developed a framework that can be used to analyse the im-
pact of transition risk in the trading book. We parameterized the yield curve using
the Nelson-Siegel-Svensson model and calibrated the three-factor short rate model
to historical data using the Kalman filter. This calibrated three-factor short rate
model was used in a pricing engine to price and calculate probability distributions
for profit and loss of interest rate derivatives. Our framework enables analysis of
the impact of different transition risk shocks on the interest rate swap market. This
is achieved by inducing a shock to the yield curve, parameterized by the NSS pa-
rameters, and using this shocked NSS yield curve to estimate the corresponding
initial state variables. These estimated initial state variables can then be used in the
pricing engine to produce profit and loss distributions for the considered interest-
rate derivatives, for each transition risk shock.

A significant finding of this study revealed that the historical shock that most
closely resembles the transition risk shock identified by ISDA is the COVID-19
pandemic in the USA. The shock of the NSS curve induced by the transition risk
aligns notably with the shocks observed during the COVID-19 period. Moreover,
the changes in distributions of swaps and swaptions under the transition shock ex-
hibit similarities to those observed during the pandemic, further evidenced by the
Tail Value at Risk estimates. Unfortunately, the same result was not seen for this
shock applied to the South African market.

Looking ahead, once ISDA provides transition risk spreads for South Africa, it
would be valuable to replicate the analysis conducted in this report to assess their
implications for the South African market and an apt starting point would, there-
fore, be comparing its magnitude and behaviour to that of the COVID-19 pandemic
in South Africa.

Additionally, future research could explore integrating the market price of risk into
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a more sophisticated interest rate model and incorporating the potential counter-
party risk associated with swaps and swaptions.

Our framework is flexible and could be extended to the banking book, however
this was beyond the scope of this analysis. We have used previous historical crises
that had an impact on financial markets to gauge the coherence and plausibility
of our framework. Consistent with the Fundamental Review of the Trading Book
(FRTB), our framework uses Expected Tail Loss as the quantitative risk metric for
the trading book, ensuring robust and compliant risk assessment. This analysis has
contributed to the existing discourse around how to quantify the impact of climate
risk in the financial sector, specifically with respect to the South African trading
book.
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Chapter 5

Appendix
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Figure 5.1: RSA Observed and Estimated Yield.
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Figure 5.2: RSA Error.
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Figure 5.3: RSA Estimated Short Rate.
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Figure 5.4: USA Observed and Estimated Yield.
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Figure 5.5: USA Errors.
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Figure 5.6: USA Estimated Short Rate.
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Figure 5.7: Shock to Swap Prices caused by the Dot Com Bubble.
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Figure 5.8: Shock to Swaption Prices caused by the Dot Com Bubble.
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