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Preamble 
 
One of the key aims of the FMTC is for South African postgraduate students in Financial and 
Insurance Mathematics to have the opportunity to focus on a topical, industry-relevant research 
project, while simultaneously developing links with international students and academics in the 
field. An allied objective is to bring a variety of international researchers to South Africa to give 
them a glimpse of the dynamic environment that is developing at UCT in the African Institute of 
Financial Markets and Risk Management. The primary goal, however, is for students to learn to 
work in diverse teams and to be exposed to a healthy dose of fair competition. 
 
The Tenth Financial Mathematics Team Challenge was held from the 30th of June to the 11th of 
July 2025. The challenge brought together four teams of Master’s and PhD students from Canada, 
Italy, and the United Kingdom to pursue intensive research in Financial Mathematics. Each team 
worked on a distinct research problem over the twelve days. Professional and academic experts 
from Canada, South Africa, France, and the United Kingdom mentored the teams; fostering 
teamwork and providing guidance. As they have in the past, the students applied themselves 
with remarkable commitment and energy. 
 
This year’s research included topical projects on (a) A Tale of Two Regions: A North and South 
Macroeconomic-Ecological Model, (b) Competition Between Market Makers, (c) Development 
and Analysis of a Uniswap v3 Agent-Based Model, and (d) xVA Greeks using the Likelihood Ratio 
Method within an American Monte Carlo Framework. These were either proposed directly by our 
academic/industry partners or chosen from areas of current relevance to the finance and 
insurance industry. To prepare the teams, guidance and preliminary reading was given to them a 
month before the meeting in Cape Town. During the final two days of the challenge, the teams 
presented their conclusions and solutions in extended seminar talks. The team whose research 
findings were adjudged to be the best was awarded a floating trophy. Each team authored a 
report containing a critical analysis of their research problem and the results that they obtained. 
This volume contains these four reports and will be available to future FMTC participants. It may 
also be of use and inspiration to Masters and PhD students in Financial and Insurance 
Mathematics. 
 
To our astonishment, this year was the 10th anniversary edition of the FMTC. Who would have 
thought it! We celebrated in modest fashion by designing a new, special edition hoodie with a 
designer logo. The participants were super impressed. 
 
We’re taking a short hiatus next year, and then FMTC XI returns in 2027. 
 
 
David Taylor, University of Cape Town 
Andrea Macrina, University College London & University of Cape Town 
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Chapter 1

Introduction

The recent COP29 summit, held in Baku, Azerbaijan, brought renewed global at-
tention to the deepening divide between developed and developing nations in ad-
dressing climate change. Branded the “Finance COP,” the conference resulted in
a headline commitment by developed countries to mobilize 300 billion USD per
year by 2035 to support climate adaptation and mitigation in developing nations
(Wei et al., 2025). However, many emerging economies criticized the pledge as in-
sufficient and delayed, given the immediate and escalating costs they face. These
outcomes reaffirmed the structural imbalance in climate negotiations and under-
scored the need for models that capture the differentiated vulnerabilities and ca-
pacities across regions.

Traditional economic models often treat the global economy as a homogeneous en-
tity, overlooking the stark disparities between developed and developing regions
in terms of vulnerability to climate impacts, capacity for mitigation, and access
to green technologies (Gallagher, 2014). This report seeks to bridge this gap by
developing a two-region macroeconomic-ecological model that explicitly accounts
for the divergent dynamics between the Global North (developed nations) and the
Global South (developing nations).

Building on the foundations of the GEMMES (General Monetary and Multisectoral
Macrodynamics for the Ecological Shift) model introduced by Bovari et al. (2018a),
our study extends the framework to incorporate two interconnected economies
linked through trade, investment, and exchange rate mechanisms. Unlike the GEM-
MES model, which aggregates the global economy into a single unit, our approach
captures the asymmetric effects of climate policies and financial interactions be-
tween the two regions. This disaggregation allows us to explore how climate-
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related damages, carbon pricing, and abatement subsidies in one region affect each
other, offering a more nuanced understanding of the global climate-economy de-
bate.

This report begins with an overview of the relevant literature, providing the con-
text for our work. We then present a comprehensive description of the extended
GEMMES model and the methodology used to calibrate and simulate it in a two-
region framework. To explore the dynamic interactions between the North and
South economies, particularly how their policies influence each other and the global
climate, we implement a series of scenarios. These scenarios allow us to evaluate
both the economic and environmental outcomes, offering insights into the trade-
offs, spillover effects, and potential benefits of cooperation in regional climate pol-
icy.

1.1 Literature Review

This report connects several related macroeconomic modelling approaches. In this
section, we give an overview of the different interconnected approaches and ex-
plain where our model fits in.

1.1.1 The DICE model

Numerous studies have been conducted to examine the dynamics between the
global economy and climate, specifically, the effect of policies on greenhouse gas
emissions and global temperature and the effect of global warming and climate
change on an economy. Integrated Assessment Models (IAMs) of global climate
change, model the effect of various interacting economic factors and policies on
global climate over time.

The earliest IAM was the DICE (Dynamic Integrated Climate-Economy) model,
first introduced by Nordhaus (1993), which models the dynamics of emissions and
the resulting damages to the economy, as well as optimal emission reduction poli-
cies. As one of the first economic models including climate change impact, the
DICE model has been adapted and extended extensively since the original 1993
paper and has proven so consequential that Nordhaus was awarded the 2018 No-
bel prize for its development (Nobel Prize Committee / Nobel Media, 2018).

Nordhaus (1993) found that a modest carbon tax (starting at $5 per ton of carbon,
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rising to $20 by 2100) is economically efficient, reducing emissions by 10-15% while
minimizing costs. This work was a key advance in seeing the need for carbon pric-
ing, but also criticized by others for low climate damage assumptions which led to
more modest policy prescriptions. The results of this study were later updated in
Nordhaus (2018), who predicts rapid climate change under minimal climate poli-
cies, with global temperatures rising significantly by 2100. These updated results
show that the 2°C target set by international agreements such as the Paris Agree-
ment is unlikely to be achieved.

1.1.2 The SFC Approach

Stock-Flow Consistent (SFC) modelling, introduced by Godley (1996) and Godley
and Lavoie (2006), is a macroeconomic modelling approach that tracks all finan-
cial and real flows between different sectors of an economy using a balance sheet
approach. These models capture monetary movement between real and financial
economic variables across various sectors of an economy. An SFC model is charac-
terised by a strict accounting framework executed by a balance sheet matrix indi-
cating the stocks and a transaction flow matrix indicating the flows in the economy.
Stock consistency refers to the property that every financial asset of some sector is
a liability of another sector of the economy, flow consistency points to the property
that every monetary flow is between two sectors in an economy, and stock-flow
consistency refers to how every flow changes two stocks (Nikiforos and Zezza,
2017). Moreover, a set of behavioural equations beyond the accounting framework
determine a particular stock flow consistent model.

SFC models offer several advantages in addition to models such as DICE, particu-
larly in capturing macro-financial realism and sectoral interactions. Unlike DICE,
which simplifies the economy into a single representative agent maximizing utility
over time (Barrage and Nordhaus, 2024), SFC models explicitly represent multi-
ple sectors— households, firms, government, and financial institutions— ensur-
ing that all monetary flows and stock changes are accounted for using rigorous
double-entry accounting. This allows SFC models to track debt accumulation, in-
come distribution, and financial fragility, which are key channels through which
climate change and mitigation policies affect the real economy (Godin and Yilmaz,
2020). Thus SFC models are particularly useful for policymakers assessing climate
transition risks, distributional effects, and the macroeconomic feasibility of green
investment strategies.
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1.1.3 GEMMES and Related Models

Many IAMs use traditional macroeconomic models. In contrast, Bovari et al. (2018a)
present an IAM that combines the climate module of the DICE model with the
macroeconomic core of a Keen-based model which allows for rapid economic col-
lapse (Keen, 1995). These models use ordinary differential equation (ODEs) to de-
scribe the interplay of the workers and the productive sector in an economy. For
further work with these models, see Grasselli and Costa Lima (2012) and Grasselli
and Huu (2015).

The GEMMES model of Bovari et al. (2018a) integrates the economic impact of
climate change with the critical role of private debt, where the capital, debt, and
employment dynamics are adapted from the Keen model described above. Their
results highlight that both long-term climate change impacts and too rapid a tran-
sition to a low-carbon economy can lead to severe economic consequences, forc-
ing the private sector to increase leverage and thus endangering financial stability.
This model has been used for many subsequent expansions, including Bovari et al.
(2018b), who introduce a government sector, and Martin et al. (2024), who update
the climate module.

Sensitivity analyses of the GEMMES model are conducted by Bolker et al. (2021)
and Longaretti and Martin (2025). In the former case, the authors identify inflation
dynamics as being key to the outcome of the model. In the latter case, the authors
find that the 2°C global warming target is already out of reach without negative
emissions.

1.2 Summary and Outlook

While Bovari et al. (2018a) provides a comprehensive analysis of climate change
impacts using the GEMMES model, its global aggregate approach could be refined
to better capture regional disparities in climate vulnerability and policy effective-
ness. A key limitation is the lack of disaggregation between developed and emerg-
ing economies, which differ significantly in growth trajectories, decarbonization
capacities, and climate risk exposure. For instance, emerging markets often face
higher adaptation costs and slower technological adoption (Gallagher, 2014), while
developed nations contribute disproportionately to historical emissions (Allen and
Stocker, 2014). Our goal is to address this gap by explicitly modelling financial
flows, trade imbalances, and asymmetric policy impacts between the two region.
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We do this by creating a new model which has two economic regions, who interact
with each other and with a unified climate module. We introduce new exchange
rate and trade dynamics, which link the economies together. We further estimate
initial conditions for our two-region model from a variety of data sources and run
several policy scenarios.

The remainder of the report is structured as follows. In Chapter 2, we detail our
model, explaining how we adapt the GEMMES model and add new exchange inter-
actions. In Chapter 3, we provide a detailed scenario analysis. Finally, in Chapter 4,
we give a brief conclusion and give some next steps for future research.
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Chapter 2

Methodology and Model

In this section, we present our new two-region extension to the GEMMES model,
where one region represents the economic South and the other the economic North.
Our approach is to duplicate the economic module of the GEMMES model Bovari
et al. (2018a), creating two regional economies. We then add economic interactions
between the two regions. Both economic modules feed into a unified global climate
module, based on the DICE model (Nordhaus, 2018). This is because the effects of
each economy on the climate have global implications.

We link the economies mainly via an exchange rate mechanism, which connects the
regions’ domestic interest rates and affects trade. Trade between the two economies
is modelled through an import-export mechanism, where both regions can use for-
eign goods for both investment and consumption. Demand for foreign goods de-
pends on the exchange rate.

In this section, we provide an in-depth overview of how we calculate and de-
termine basic economic and climate metrics. We first describe how the economy
and climate are linked via climate damages and abatement, before describing the
macroeconomic and climate modules in detail. In what follows, parameters that
are set constant are denoted with a bar on top. Table 2.1 provides a list of the 28
state variables used in the model and their respective meanings. Those listed with a
subscript j exists in both regions, North and South, while those without a subscript
are unique and defined for the entire world.
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Variable Description

Kj Real capital stock in each region
aj Labour productivity in each region
Dj Debt level in each region
pj Price level in each region
wj Wage level in each region
Nj Population in each region
pCarj Carbon price in each region
σj Emission intensity in each region
gσj Growth rate of emission intensity in each region
pBSj Price of green (backstop) technology in each region
Eland Exogenous land-use based emissions
COAT

2 CO2-e concentration in the atmosphere
COUP

2 CO2-e concentration in the upper ocean and biosphere
COLO

2 CO2-e concentration in the lower ocean
T Mean temp. of the atmosphere, land surface, and upper ocean
TLO Mean temp. of the deeper ocean
en Nominal exchange rate
een Expected exchange rate

Table 2.1: List of state variables used in the two-region ecological macroeconomic
model, where j ∈ {N,S} indicates two variables, one for each region.

2.1 Climate-Economic Interactions

2.1.1 Production Before and After Damages

The real output before damages in economy j ∈ {N,S} is defined as:

Y 0
j :=

Kj

ν̄j
= ajLj ,

where Kj is the capital stock, Lj is the level of employed labour, aj is labour pro-
ductivity, and ν̄j is the capital–output ratio which we assume is constant. The
labour productivity in each region grows exponentially according to the follow-
ing ODE:

ȧj
aj

:= ᾱj .
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A key assumption of this model and other IAMs is that the real output Y 0 is not all
available for investment, consumption, and trade, but is first reduced by the effects
of climate change. There are two avenues for this reduction: climate damages,
which directly reduce output due to climate change, and abatement, which reduces
available economic output as firms seek to reduce the effects of climate change.

The available output after climate damages and abatement is given by

Yj := (1−Dj)(1−Aj)Y
0
j ,

where Dj ∈ [0, 1] is the fraction of output lost due to climate damages and Aj is the
abatement cost as a fraction of output.

Damages are calculated using a polynomial damage function. Opinions on the cor-
rect specification of the convexity of the damage curve differ, with three common
opinions given by Nordhaus (2018), Weitzman (2012), and Dietz and Stern (2015).
The general form for the damage curve is as follows:

Dj := 1− 1

1 + π̄1,jT + π̄2,jT 2 + π̄3,jT ξ̄j
,

where π̄1, π̄2, π̄3 and ξ̄j are parameters which differ depending on the damage
curve specification and T is the state variable giving the temperature deviation of
the atmosphere, land, and upper ocean from pre-industrial levels. A comparison
of the three damage curves is given in Figure 2.1. The Stern assumptions lead to a
more convex damage curve, where global warming, measured in degrees Celsius
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Figure 2.1: Comparison of three different damage curves, corresponding to differ-
ent assumptions made in the literature by Nordhaus, Weitzman, and Stern.
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from the preindustrial average temperature, leads to a more significant reduction
in output, compared to the Weitzman or Nordhaus. In our model, we allow for any
one of these three damage specifications, and will explore the impact of different
damages specifications in Section 3.2.

2.1.2 Abatement and Government Policy

In order to reflect that economies are introducing mechanisms to reduce emissions
and limit temperature increases, we model the cost of mitigation through two chan-
nels: the evolution of backstop technology prices and carbon pricing, both of which
influence abatement decisions in each region.

We assume there exists a zero-emission backstop production technology which
firms can switch to. The price of the backstop technology in each region may be
different and is assumed to be decreasing according to the ODE

ṗBSj

pBSj

:= δ̄pBSj
≤ 0 .

The abatement cost, Aj , gives the cost firms face in reducing their emissions. It is
defined as

Aj :=
σj pBSj

θ̄j
n
θ̄j
j ,

where σj is the region’s emission intensity, nj is the region’s emissions reduction
rate, pBS is the price of backstop (green) technology, and θ̄j is a convexity param-
eter (Bovari et al., 2018a). We assume that the government may offer a subsidy
as a fraction of abatement costs, s̄Aj ∈ [0, 1), to cover a portion of the costs of the
productive sector transitioning towards green production technologies. The total
subsidy payment is

Sf,j := s̄AjAY
0 .

The government may also impose a carbon tax of pCarj on industrial emissions
Eindj to incentivize firms to reduce their emissions, with a total cost of

Tf,j := pCarjEindj .

We assume the carbon price is set by the government according to the ODE

ṗCarj

pCarj

:= δ̄pCarj
≥ 0 .
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As the carbon price level is an exogenous variable, we explore different carbon
pricing pathways in the scenarios in Section 3.2,

Given the subsidy and carbon tax amounts, a net transfer of Sf,j − Tf,j takes place
from the households to the productive sector via the government.

Following Bovari et al. (2018a), we assume that firms choose the emissions reduc-
tion rate nj to minimize their abatement cost minus the net transfer they receive
from the government. Thus firms in each region choose nj such that

min
nj∈[0,1]

{
AjY

0
j + Tf,j − Sf,j

}
.

One verifies by taking the first order conditions that this results in an emissions
reduction rate of

nj = min

{(
pCj

pBSj (1− s̄Aj )

) 1
θ̄j−1

, 1

}
.

2.2 Macro-Economic Module

In this subsection, we describe how the relevant macro-economic variables are cal-
culated, based on the approach of Bovari et al. (2018a), extended to a two-economy
set-up where each variable is indexed by j ∈ {N,S} to reflect the respective re-
gion (North or South). The economies are interconnected through an exchange
rate mechanism, which we describe first.

2.2.1 Exchange Rates and Interest Rates

Our approach to modelling exchange rates is based on the work of Godin and Yil-
maz (2020). We first define the nominal exchange rate en, given in units of Southern
currency per unit of Northern currency. Let iS and iN denote the inflation rate in
the South and Nort, respectively, whose evolution will be described later (see Equa-
tion (2.2)). Furthermore, let ExS and ImS denote the exports and imports of the
South, respectively. Then we assume that the nominal exchange rate evolves as
follows:

ėn

en
= (iS − iN )− β̄e

(
ExS − ImS

KS

)
,

where β̄e is a sensitivity parameter and we recall that KS is the capital stock of the
South. Thus the nominal exchange rate is influenced by the difference in inflation
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between the South and the North as well as by the trade balance. When the South-
ern inflation rate exceeds the Northern one, or when imports exceed exports, the
nominal exchange rate depreciates.

We also define the expected exchange rate, which gives the public’s view on the
future value of the nominal exchange rate en. We model the dynamics of the ex-
pected nominal exchange rate using the “backward-looking expectation structure”
of Godin and Yilmaz (2020) which is given as follows:

ėnexp = β̄ex
e (en − een) .

The change in the expected nominal exchange rate is based on how much the actual
exchange rate en differs from what they expected een. The rate at which expectation
of the nominal exchange rate is adjusted is determined by the adjustment parame-
ter βex

e .

The real exchange rate gives the difference in price levels between the economies.
It is defined as follows:

eR =
pN
pS

en ,

where pS and pN denote the price levels in the South and North, respectively.

Having defined the exchange rates, we now discuss interest rates. We assume that
the North sets a constant interest rate rN . Then the interest rate in the South, rS ,
is determined via an interest rate parity condition adapted from Godin and Yilmaz
(2020):

rS = rN + (een + ėen − en) + ῑS .

This condition links the interest rates of the two economies through the nominal
exchange rate en, its expected future value een, and its rate of change ėen. The term
ῑS represents the South’s risk premium, which is assumed constant.

2.2.2 Nominal Profits, Investment, and Dividends

We assume nominal profit of the private sector in economy j is given by:

Πj := pjYj − wjLj − rjDj − pj δ̄jKj + pj(Sf,j − Tf,j),

where Πj is the nominal profit in region j, pj is the price level in region j, Yj is real
output, wjLj is the total wage expense, rjDj is the interest payment on outstand-
ing private debt, Sf,j − Tf,j is the net transfer from the government as defined in
Section 2.1.2, Kj is the capital stock, and δ̄j is the capital depreciation rate.
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We also define
πj :=

Πj

pjYj
,

the ratio that measures total profit relative to the total nominal output of the econ-
omy.

The level of investment in each economy depends on private sector profits and
output after damages and abatement according to

Ij := κj(πj)Yj ,

where the function κ(·) is a smooth increasing function (Bovari et al., 2018a).

As we extend the model from a single-economy to a two-economy framework, each
region is now able to purchase a portion of its investment goods from the foreign
economy, with the remainder purchased domestically. The foreign component of
investment, Ifj , is governed by the real exchange rate through an allocation func-
tion γIj (eR) ∈ [0, 1], such that

Ifj := γIj (eR) · Ij .

The domestic component is then given as:

IDj := (1− γIj (eR)) · Ij .

The function γIj (eR) is decreasing in the real exchange rate for each region as fol-
lows

γIS (eR) := min
{
1, max

{
0, γ̄IS − β̄IS · (eR − ēR)

}}
,

γIN (eR) := min
{
1, max

{
0, γ̄IN − β̄IS · (1/eR − 1/ēR)

}}
,

where eR is the real exchange rate, ēR is the equilibrium exchange rate, γ̄IS , γ̄IN
are the baseline investment share in the foreign goods, and β̄IS , β̄IN are sensitivity
parameters.

Investment determines the accumulation of capital over time. Given the amount of
investment made, the change in capital stock Kj in each region is governed by the
following ODE:

K̇j = Ij − δ̄jKj ,

where we recall that δ̄j is the capital depreciation rate.

Once investment has been made, the productive sector allocates its remaining prof-
its either to dividend payments or to retained earnings. Dividends are distributed
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to households, while retained earnings remain within the productive sector. This
distribution is modelled as follows:

Πd,j := ∆(πj) pj Yj ,

Πr,j := Πj −Πd,j ,

where Πd,j is the amount dividends paid out by the productive sector and Πr,j is the
remaining profits retained by the productive sector after the payment of dividends.
Here, ∆(·) is an increasing, smooth function bounded between 0 and 1. We note
that the size of dividends paid out in region j depends on both the nominal profit
share πj and the nominal output pjYj , which already accounts for damages due to
climate change and abatement costs.

Having now specified how profits are distributed between dividends and retained
earnings, and how investment affects capital accumulation, we have all the neces-
sary components to model the change in nominal debt. The dynamics of change in
debt accumulation in region j are governed by the following ODE:

Ḋj = pjIj −Πr,j − pj δ̄jKj . (2.1)

Debt increases when firms pay dividends (Πd,j) and invest (pjIj), as these activities
require borrowing. Conversely, debt decreases when firms generate nominal prof-
its (Πj) and account for capital depreciation (pj δ̄jKj), which reduces the need for
borrowing.

2.2.3 Labour, Inflation, and Wages

In this section, we discuss how the workforce evolves over time, what drives infla-
tion, and how this impacts the changes in wages in economy j. We also define key
macroeconomic variables.

First, we define the working-age population in each region Nj , and give its evolu-
tion over time. The change in economy j’s workforce Nj is assumed to follow a
sigmoidal function, where q̄j is the speed of convergence of the workforce Nj to its
upper limit P̄N

j :

Ṅj

Nj
:= q̄j

(
1− Nj

P̄N
j

)
.

Next, in order to analyse the performance of the each economy, we define the same
economic ratios as in Bovari et al. (2018a):

λj :=
Lj

Nj
, ωj :=

wjLj

pjYj
, and dj :=

Dj

pjYj
.
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The employment rate λj is the ratio of total employment relative to the size of the
workforce in economy j, ωj represents the wage share in economy j, which is the
proportion of total output paid to workers, and dj measures the proportion of debt
Dj compared to the total output of the economy.

These ratios are important indicators of the macroeconomic health of each econ-
omy. For example, if the ratio λj is approaching zero, this signals rising unemploy-
ment, which may indicate that the economy is experiencing significant distress or
is on the verge of collapse.

Inflation in each region is driven by the wage share as follows:

ij :=
ṗj
pj

:= η̄pj (ξ̄jωj − 1) . (2.2)

Here η̄pj is a speed adjustment term that controls how quickly inflation responds
to changes in wage shares. The term ξ̄j represents a markup factor that the private
sector applies to prices. If ξ̄jωj > 1, then there are rising prices in the economy
and thus inflation. Conversely, if ξ̄jωj < 1, then prices are decreasing, leading to
deflation.

Finally, we define the short-run wage dynamics in each region j, based on Bolker
et al. (2021):

ẇj

wj
:= ϕ(λj) + γ̄j ij .

The first term is an increasing function ϕ(·) which represents the Phillips curve. It
implies that as λj (the employment rate in economy j) increases, the bargaining
power of workers also increases, resulting in upward pressure on wages. The sec-
ond term is an inflation indexation component, where ij is the inflation rate and
γ̄j ∈ [0, 1] reflects the degree of money illusion. A higher γ̄j indicates that wages
are more strongly adjusted in response to inflation to maintain purchasing power.

2.2.4 Consumption and Trade

In our two-economy model, part of the domestic economy’s consumption is driven
by the demand for goods from abroad. This demand is, once again, influenced
by exchange rate dynamics. We model the proportion of consumption imported
from the foreign economy using a similar γ function to the one introduced in the
investment case. Let

CS = Cf
S + Cd

S where Cf
j = γCj (eR) · Cj ,
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where the allocation functions are defined as follows

γCS
(eR) := min

{
1, max

{
0, γ̄CS

− β̄CS
· (eR − ēR)

}}
,

γCN
(eR) := min

{
1, max

{
0, γ̄CN

− β̄CN
· (1/eR − 1/ēR)

}}
.

Here, γ̄Cj is the baseline propensity to import for consumption in each region, β̄Cj

are speed parameters, and we recall that eR and ēR are the real and equilibrium
real exchange rates, respectively.

We can now determine the imports and exports for the respective economies. In the
South, they import their foreign-sourced consumption and investment and export
the North’s foreign-sourced consumption and investment:

ImS = Cf
S + IfS , and ExS = Cf

N + IfN .

Given that there are only two economies in the model, this construction implies
that:

ImN = ExS and ExN = ImS .

To determine exports and imports in terms of consumption and investment, we
first need to solve for the consumption levels of the respective economies. This is
done using the following two national income identity equations:

YN = IN + CN + ExN − ImN ,

YS = IS + CS + ExS − ImS .

We define the system of equations for consumption using a matrix representation:

Γ =

[
1− γCN

γCS

γCN
1− γCS

]
, Y =

[
YN
YS

]
, I =

[
IN − IfN + IfS
IS − IfS + IfN

]
,

where YN , YS are the outputs in the North and South, IN , IS are total investments
in each region, IfN , IfS are foreign investments received by the North and South,
respectively. Let C be the vector of total consumption in the North and South.
Then we compute consumption in North and South as

C = Γ−1 · (Y − I) .

With this, we have fully characterised all macroeconomic quantities in our two-
region model.
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2.3 Climate Module

The climate module is based on Bovari et al. (2018a)’s continuous time version of
the DICE model (Nordhaus, 2018). We do not differentiate between regional cli-
mates for the North and South economies, as climate impacts, such as temperature
change and CO2 concentrations are modelled globally. This reflects the assumption
that if one region pollutes, it will affect the climate for both regions.

Industrial emissions in each region depend on raw production Y 0
j , the emissions

intensity σj , and the emissions reduction rate nj :

Eindj := Y 0
j σj(1− nj) .

Total global emissions are then determined as the sum of industrial emissions in
each region and land use emissions, Eland, the latter of which is an exogenous vari-
able in our model:

E := EindN + EindS + Eland .

To capture how emissions evolve over time, we introduce dynamics for both land-
use emissions and emission intensity. Land-use emissions decrease exogenously
at a constant rate, while emission intensity and its rate of change are modelled
endogenously. These dynamics are specified as follows:

Ėland

Eland
:= δ̄Eland < 0 ,

σ̇j
σj

:= gσ,j and
ġσ,j
gσ,j

:= δ̄gσ,j .

The term σ̇j governs the change in emission intensity, which may differ between
regions. The term ġσ,j governs the change in the rate of emissions reduction.

The rest of the climate module is identical to the continuous-time DICE model.
The carbon cycle is represented by Equation (2.3), which describes how carbon
emissions in the atmosphere, upper ocean, and deep ocean evolve over time. This
process is governed by a system of ordinary differential equations, whereby CO2

is redistributed across the three levels according to the diffusion matrix Φ (Bovari
et al., 2018a).  ˙CO

AT
2

˙CO
UP
2

˙CO
LO
2

 :=

E
0
0

+Φ

COAT
2

COUP
2

COLO
2

 , (2.3)
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where Φ is given by

Φ :=

−ϕ̄12 ϕ̄12C̄
AT
UP 0

ϕ̄12 −ϕ̄12C̄
AT
UP − ϕ̄23 ϕ̄23C̄

UP
LO

0 ϕ̄23 −ϕ̄23C̄
UP
LO

 ,

where

C̄AT
UP :=

C̄AT
pind

C̄UP
pind

, C̄UP
LO :=

C̄UP
pind

C̄LO
pind

,

and ϕ̄12, ϕ̄23, C̄AT
pind, C̄UP

pind, and C̄LO
pind are given parameters.

Equation (2.4) and Equation (2.5) calculate radiative forcing, which is a measure
of the difference between the amount of energy that enters the Earth’s atmosphere
and the amount of energy that leaves it (MIT Climate Portal, n.d.). This is due to
the build-up of greenhouse gases, which affects energy levels in the atmosphere
(Bovari et al., 2018a).

F := Find + Fexo, (2.4)

Find :=
F̄2×CO2

log(2)
log

(
COAT

2

C̄AT
pind

)
, (2.5)

If F > 0, there will be a warming effect, and if F < 0, there will be a cooling ef-
fect. We distinguish between forcing caused by industrial CO2 emissions, such as
fossil fuels, and exogenous forcing, which originates outside the model. In Equa-
tion (2.5), F̄2xCO2

is a parameter that represents the increase in radiative forcing re-
sulting from a doubling of the pre-industrial CO2 concentration. The atmospheric
CO2 concentration, COAT

2 , is obtained from the carbon cycle ODE, whose dynam-
ics are presented. Note, C̄AT

pind is the pre-industrial levels of CO2 emissions in the
atmosphere (Bovari et al., 2018a).

The impacts of forcing on global temperatures are showcased with the following
temperature dynamics:

Ṫ :=
1

C̄
(F − ρT − γ̄∗(T − TLO)) , (2.6)

ṪLO :=
γ̄∗

C̄LO
(T − TLO) . (2.7)

Equation (2.6) is the ordinary differential equation (ODE) that governs the change
in global temperature across the land, atmosphere, and upper ocean. Equation (2.7)
represents the change in the temperature of the deep ocean. These two ODEs inter-
act with each other: as radiative forcing increases, the surface temperature T rises.
However, part of this heat is transferred to the deep ocean, which reduces the rate

20



(λS , wS , dS , NS)

YS

E

CO2

F

T

DS

(λN , wN , dN , NN )

YN

DN

(en, rS , Ex, Im)

Figure 2.2: A diagram of the flows between key variables in our two-region climate-
economic model

of surface warming. This exchange is governed by the exchange rate coefficient γ∗,
while ρ represents the rate of heat loss to space. Therefore, as the atmosphere, land,
and upper ocean warm, heat is gradually transferred to the deeper ocean, which in
turn causes the deep ocean temperature TLO to rise over time (Bovari et al., 2018a).

2.4 Summary

All together, we have a two region climate-economic model with 28 state variables:
10 for each region and 8 for the world. Figure 2.2 gives an overview of the inter-
actions in our model. It shows has the two economic models for North and South
both feed into the the climate model via emissions E, and interact with each other
via the exchange rate en, interest rate parity rS , and exports Ex and imports Im.

Finally, a stock-flow consistency table for our model is given in the Appendix in
Table A.4. The table indicates the main transactions between firms, households,
and governments in the two regions, ensuring all financial flows are accounted for
and balanced using a double entry system. It tracks key transactions like consump-
tion, investment, wages, taxes, and importantly trade (imports/exports), with each
entry showing how resources move between sectors while maintaining a zero-sum
equilibrium.
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Chapter 3

Analysis of Results

3.1 Initial Calibration

We compare the simulation results of our model over a 9-year period (from 2016
to 2024) to real-world data over the same period. The model is calibrated using
parameter estimates from 2016, to match Bovari et al. (2018a), who used parameter
estimates from the 2016 DICE model. Since the DICE model is forward-looking, we
can compare real-world data from 2016 onward to the performance of the model.
If the simulation results closely match the observed data it will indicate the model
is appropriately calibrated and analysis of the models can be performed.

Figure 3.1 plots the simulation path given by the model (represented by the lines)
against the observed data (represented by points) for industrial emissions Eind,
population N , temperature T and real GDP, Y . As observed from the plots, our
model is able to closely match the observed data, and almost perfectly matches
population. For real GDP, we match the overall trend, although in the latter years
we slightly overestimate the level. This is primarily due to the global reduction in
real output in 2020 caused by the COVID-19 pandemic and associated lockdowns.
Regarding industrial emissions, Eind, our model captures the downward trajectory
in the North, driven primarily by European investment in green technologies and
the introduction of carbon pricing. Conversely, the model also captures the rise in
industrial emissions in the South, slightly overestimating the level, which can again
be attributed to the impact of the COVID-19 pandemic. For temperature, the model
closely matches observed levels in the early years but underestimates the level in
more recent years, as global temperatures have risen rapidly since the beginning of
the decade. From this analysis, we conclude that our model has been appropriately
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Figure 3.1: Simulated model trajectory (line) vs. observed data (points), 2016–2024.

calibrated to the data and is capable of replicating observed real-world dynamics.

Given this initial calibration and the estimates from real data as described in Ap-
pendix 1.2, we compute a set of initial conditions and model parameters which we
use for all of the following scenarios. Table A.1 gives the initial conditions used in
our simulations while Table A.2 and Table A.3 give the parameter values.

3.2 Scenario Analysis

We implement a different set of scenarios for the two regions with the aim to exam-
ine how they impact each other and their respective economies. In our framework,
a different scenario represents a set of factors we can vary, namely how large the
damages are in each economy; this can be adjusted between Nordhaus, Weitzman,
and Stern. Another scenario we vary is the level of carbon pricing in each economy,
which can vary from none, low, or high. Lastly, as an additional policy, each region
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can introduce a subsidy for the abatement cost ranging from 0 to 1. We initially
look at three policy scenarios.

The first scenario is the one which is most applicable to what we are currently
observing, and hence it is named business as usual. The second scenario is called
best case scenario which reflects the policy framework where both economies take
climate change risk seriously. Finally, the third policy is when neither economy
takes climate risk seriously and is called worst case scenario. The three policies are
summarised in Table 3.1. What our model allows us to now see, which was not
previously possible, is how policy decisions in one economy affect the other and
vice versa.

Table 3.1: Summary of Scenario Settings Across Scenarios

Policy Scenario 1 Scenario 2 Scenario 3
(Business-as-
Usual)

(Best Case) (Worst Case)

Damage Function (North) Nordhaus Nordhaus Weitzman
Damage Function (South) Stern Stern Stern
Carbon Pricing (North) Low High None
Carbon Pricing (South) None Low None
Subsidy (North) 0.25 0.50 0
Subsidy (South) 0 0.25 0

Figure 3.2 shows the performance of key economic and climate variables through to
the year 2175 under Scenario 1, which, as discussed above, represents the business-
as-usual scenario. In this configuration, climate damages in the North are mod-
elled using the Nordhaus damage function, while damages in the South follow the
Stern specification. Nordhaus corresponds to low damages from climate change,
whereas Stern means there are high damages from climate. The motivation behind
this low-high configuration is that climate impacts on the Southern economy are
more severe than in the North, largely because the North possesses more resources
to respond to climate disasters and reduce its impact.

The carbon pricing regime is set to low in the North and none in the South. This
reflects the observation that developed economies have implemented some carbon
pricing schemes (mainly European nations). In contrast, most developing coun-
tries, particularly in the Global South, have yet to introduce carbon pricing in any
significant way (Maplecroft, 2024). Lastly, the North is assumed to subsidize 25%
of abatement costs, while the South provides no such subsidy.

Under this business as usual scenario, the trajectory of key variables is deeply con-
cerning. As shown in the real GDP (Y ) plot, the Southern economy essentially
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Figure 3.2: Scenario 1: business as usual

collapses by 2175. This is accompanied by mass deflation, evidenced by the infla-
tion rate (red line) going negative. Similarly, the employment ratio (λ) also falls to
zero. Furthermore, the nominal exchange rate (en) collapses to zero. This outcome
is driven by the severe deflation and collapse of the Southern economy, rendering
its currency effectively worthless relative to the North. On the climate front, the
global temperature exceeds 3.5◦C by 2100 and reaches over 5◦C by 2150, entirely
missing the internationally agreed target of limiting warming to 2◦C. In contrast,
macro-economic indicators in the North appear relatively resilient. Real GDP con-
tinues to grow, the employment ratio λ oscillates at a stable level, and inflation
stays stable. This suggests that the economic activity of the Northern economy
is stable despite the massive increases in temperature and the Southern economy
collapsing.

These findings raise critical concerns. Our model suggests that developed economies,
under their current climate policy frameworks, can potentially reduce emissions to
near zero before 2100 and still sustain economic growth even while the economies
of developing regions collapse. This raises a serious question of whether or not the
North will be willing to support the South’s transition to cleaner green technologies
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and take climate change seriously if it won’t impact their economies as much.

In Figure 3.3 are the results of the key climate and macro-economic variables under
Scenario 2 which represents the best case scenario. Under this scenario, we have
followed the same damages function as in policy one. However, in this policy
regime, we assume that both regions implement carbon pricing at a high level and
introduce subsidies for abatement costs which is set at 0.5 in the North and 0.25 in
the South, respectively.

When looking at plots we can see that if aggressive carbon pricing and relatively
high subsidies are implemented both regions reduce their industrial emissions to
zero, with the Northern economy reaching zero emissions by 2050 and South after
2100. Furthermore, global temperature rise plateaus by 2175 around a 3.25 ◦C in-
crease. Unfortunately, the goal of maintaining 2 ◦C increase before the year 2100 is
not achieved.

The macro-economic variables also perform well as both regions’ real GDP con-
tinue to grow over the period of simulation. The employment ratio λ is stable;
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Figure 3.3: Scenario 2: best case
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meanwhile, the size of the variation in the employment ratio of the South also sta-
bilizes (note: the oscillations represent the business cycle). The exchange rate keeps
growing between the two regions, which is due to inflation in the South increasing.

The results from Scenario 2 suggest that if both economies take climate change
seriously and implement carbon pricing and subsidies, it is possible to reduce and
eventually halt the rise in temperatures. However, the target of limiting warming
to 2.5◦C before 2100 is still missed. Interestingly, the economic outcomes for the
South are significantly better than in the business as usual case. Not only does the
Southern economy avoid collapse, but it also experiences growth in real output.
The Northern economy also performs well under this scenario. Therefore, based
on these results, it is possible for the Southern economy not only to avoid collapse
but also to grow. However, this would require the implementation of subsidies and
carbon pricing, which may be fiscally and politically challenging for the region due
to constrained resources.
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Figure 3.4: Scenario 3: worst case

Figure 3.4 showcases the results of the climate and macro-economic variables un-
der the worst-case scenario where neither economy does anything about climate
change and in the North the damages of climate change are worse than expected as
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represented by the damages function set to Weitzman which represents a medium
level of damages. It is reasonable to expect in the worst-case scenario that the abil-
ity of the North to use its resources to mitigate the impact of climate disasters is not
as effective as previously thought, which is modeled using the Weitzman function.

This scenario is very concerning as temperature rises to 6 ◦C and looks to keep on
increasing beyond the year 2175 with emissions still increasing in the North but
emissions decreasing in the South due to its economy collapsing.

Looking at the macro-economic variables we see that the real GDP as in scenario
1 goes to zero for the South as well the employment share, wage share going to
zero; there is also serious deflation. However, in this scenario we can see that the
Northern economy starts to experience deflation after 2150 and its real GDP starts
to plateau, suggesting that its economy is slowing and can potentially collapse.

Scenario 3 shows that if the North and South do nothing about rising temperatures,
they will both be impacted, with the South decreasing and the North experiencing
very worrying key macro-economic trends such as deflation.

3.3 Case Study: Intervention by the North to Save Both Re-
gions

We now allow for a new scenario: the North may incentivise the South to enact
climate policies by means of a subsidy, which the North pays to the South. In
particular, the South’s abatement subsidy is now paid as a result of a reduction in
the consumption of the North, i.e.,

C̃N = CN − sAS
ASY

0
S ,

where C̃N denotes the North’s consumption after paying the subsidy.

We now present a scenario where if the North does not help the South via subsidies,
the collapse in the South could impact them. In this setup, both regions face high
climate damages. The North adopts a high carbon tax and subsidizes abatement
at a rate of 0.5, while the South implements neither a carbon tax nor an abatement
subsidy. The simulation results are presented in Figure 3.5.

From the climate perspective, this scenario mirrors the business-as-usual case: global
temperature begins to plateau only around 5.25◦C. This outcome is primarily driven
by continued high emissions in the South, even as the North successfully reduces
its emissions to zero.
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The macroeconomic results are particularly interesting. When both regions are
exposed to high damages, real GDP (Y ) for both economies starts to decline sharply
around 2100. This suggests that the collapse of the Southern economy imposes
spillover effects that drag down the Northern economy as well. Further evidence of
systemic failure can be seen in the collapse of price levels in both regions (inflation
goes negative), indicating deflationary pressure consistent with broad economic
breakdown.

Looking at Figure 3.5b, we examine the scenario titled North helps South. In this sce-
nario, the Northern economy actively supports the South by subsidizing its abate-
ment efforts. The policy settings are as follows: the North adopts a high carbon
tax and subsidizes its own abatement at a rate of 0.5, while the South implements
a low carbon tax and receives a subsidy of 0.75 from the North. Both regions are
subject to high climate damages.

The simulation results provide strong support for this policy configuration. As
with the best-case scenario, global emissions fall to zero by 2075, and global tem-
peratures plateau at approximately 2.75◦C by 2175. On the economic front, both
regions experience robust growth. Real GDP in the North reaches 1250 by the end
of the simulation period, the highest among all policy scenarios, while the South’s
GDP climbs to 750, also a peak value across all five scenarios.

Other macroeconomic indicators further reinforce the strength of this policy. The
North maintains a stable employment ratio, while the South shows a clear reduc-
tion in the volatility of employment over time. Profits in the productive sectors
remain healthy: in the North, they stabilize around 0.3, and in the South, they
show signs of convergence. Inflation in both regions follows a cyclical pattern that
remains bounded and stable throughout the simulation.
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Figure 3.5: Case study: intervention by the North to save both regions
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Figure 3.6: Consumption of the Northern economy

Taken together, these results position the North helps South scenario as the most
favourable among those tested, delivering strong outcomes both from an economic
and climate viewpoint. Importantly, the North’s act of subsidising Southern abate-
ment does not impose a noticeable economic burden. In fact, analysing Figure 3.6,
we observe that consumption, which we use as a proxy for living standards, re-
mains relatively stable and performs well in the non-cooperative scenario where
the North does not subsidize the South. This suggests that the North’s living stan-
dards are not significantly compromised even without providing support. Fur-
thermore, in this scenario, although consumption is slightly lower in the short run,
it eventually surpasses that of the non-cooperative case as consumption collapses
in that case. This indicates that mutual cooperation not only supports Southern
abatement but also leads to higher long-term living standards in the North. In fact,
the North performs better under this cooperative policy than in scenarios where it
acts alone. This makes a compelling case for Northern support of Southern climate
action, both from the standpoint of economic efficiency and from a moral perspec-
tive.

3.3.1 Monte Carlo

To further our analysis, we perform Monte Carlo simulations for our case study.
Following Bovari et al. (2018b) and Bolker et al. (2021), we assume certain key pa-
rameters are drawn from distributions. We focus on two groups of parameters: the
wage-inflation parameters η̄p and γ̄j and the climate parameters S̄ and C̄UP

pind.

In particular, we assume the speed adjustment term from the inflation equation, η̄p,
is drawn from a normal distribution with mean 0.4 and standard deviation 0.12,
while money illusion parameter γ̄j is drawn from a generalized Gamma distribu-
tion with shape parameter s = 6.2327, scale parameter m = 0.0033, and family
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parameter f = 0.3158. In terms of the climate parameters, we assume the equilib-
rium climate sensitivity S̄ is drawn from a log-normal distribution with log mean
1.107 and log standard deviation 0.264 and the intermediate climate reservoir C̄UP

pind

is also drawn from a log-normal distribution, with log mean 5.89 and log standard
deviation 0.25.
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Figure 3.7: Monte Carlo simulation output for two scenarios: the North has only
internal climate policy and no inter-region subsidy (green), and the North pays a
subsidy to the South for them to enact carbon pricing (purple)

Figure 3.7 shows the result of 1000 Monte Carlo runs for our key intervention sce-
nario, with the simulation run until 2100. The plot shows the median of the runs
for the employment rate in North and South, inflation rate in North and South, the
total global emission, and the temperature deviation. The upper 95th and lower 5th
quantiles are shown by the filled areas. We observe that crashes in both the North
and South are much more likely when the North focuses its climate action only
on itself, even on the shortened timescale of 84 years. This gives further evidence
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of the key effect of the North’s intervention in stabilizing global temperatures and
avoiding an economic collapse in both regions.
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Chapter 4

Conclusion

4.1 Summary

In this report, we extended the GEMMES framework to a two-region setting by in-
troducing mechanisms that allow for interaction between regions through invest-
ment, trade, and exchange rate dynamics. This was achieved by incorporating two
additional differential equations governing the nominal and expected exchange
rates. We then aggregated data from 34 countries into two representative regions
and calibrated the model using these initial conditions.

We then implemented a range of policy scenarios to examine how the economic
performance of each region influences the other, as well as their joint impact on the
climate. The scenarios included business as usual, best case, and worst case. In the
business as usual scenario, which reflects current global policy trends, the 2°C tem-
perature target is comfortably missed by 2100. The Southern economy collapses,
while the Northern economy remains relatively resilient. This outcome raises a
critical moral question: if the collapse of the South does not materially affect the
North, will the North have sufficient incentive to support the South’s transition to
a low-carbon economy?

We also examined a best case scenario, where both regions take aggressive ac-
tion through carbon pricing and abatement subsidies and a worst case scenario,
where neither region implements meaningful climate policies. In the best case sce-
nario, both economies continue to grow and temperature increases are significantly
slowed, although the 2°C target is still missed. In contrast, the worst case scenario
leads to economic collapse in both regions, driven by runaway temperature in-
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creases and widespread systemic breakdown.

As a final set of scenarios, we examined two important cases. In the first, we ex-
plored what happens when the effects of climate change on the North are more
severe than previously anticipated, and the North acts in isolation without sup-
porting the South. In this case, although the North initially reduces its own emis-
sions, the continued high emissions from the South lead to global temperature rise.
As the Southern economy collapses under the pressure of climate damages, it gen-
erates systemic spillovers that ultimately trigger economic decline and collapse in
the North as well.

In contrast, the second scenario considers a cooperative approach where the North
subsidizes the South’s abatement costs. This leads to significantly better outcomes.
Emissions fall to zero, temperature stabilizes at the same level as in the best case
scenario, and both regional economies experience strong, sustained growth. This
highlights that supporting global mitigation efforts not only delivers climate bene-
fits but also protects long-term economic stability in the North.

4.2 Model Extensions and Future Work

We now discuss a possible extension for future work on this project. One area for
improvement is to strengthen the linkages between the two economies. Currently,
they are connected through an exchange rate mechanism as well as exports and
imports. This also feeds into an interest rate mechanism. This is a significant im-
provement on the GEMMES model, and allows us to capture interdependencies
in both the economies and the climate of the two regions. However, the inter-
connections could be strengthened to better capture the complexity of real-world
economic interdependencies.

In our model, each economy allocates imports a portion of its consumption, both
based on the exchange rate. However, this structure, modeled using a gamma func-
tion, allows the allocation of investment and consumption to vary continuously
between 0 and 1. This implies that if the foreign economy collapses, the domestic
economy will fully reallocate its consumption to domestic sources.

The issue with this assumption is that it overlooks product differentiation and im-
port dependence. In reality, many goods are not available domestically and must
be imported. Therefore, if the foreign economy collapses, it is unrealistic to assume
that all consumption can simply shift to domestic markets without any loss. Some
goods and services would become unavailable, leading to reduced consumption.
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Future research should incorporate these constraints. Doing so would enhance the
realism of the model and deepen our understanding of economic interdependen-
cies under climate stress.
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Appendix A

Additional Details

Variable Value Description

North
YN 43.41 Real output in the North
dN 0.82 Debt ratio in the North
λN 0.70 Employment level in the North
ωN 0.56 Wage share in the North
NN 0.60 Working-age population level in the North
gσN -0.0152 Growth rate of emission intensity in the North
nN 0.03 Emissions reduction rate in the North
pN 1 Price level in the North
EindN 10.96 Industrial emissions in the North
pBSN

446.67 Price of green (backstop) technology in the North

South
YS 21.00 Real output in the South
dS 0.80 Debt ratio in each region
λS 0.65 Employment level in the South
ωS 0.54 Wage share in the South
NS 2.48 Working-age population level in the South
gσS -0.0152 Growth rate of emission intensity in the South
nS 0.03 Emissions reduction rate in the South
pS 1 Price level in the South
EindS 21.61 Industrial emissions in the South
pBSS

600.00 Price of green (backstop) technology in the South

World
Eland 2.6 Gt CO2 -e Exogenous land-use based emissions
COAT

2 851 Gt C CO2-e concentration in the atmosphere
COUP

2 460 Gt C CO2-e concentration in the upper ocean and biosphere
COLO

2 1740 Gt C CO2-e concentration in the lower ocean
T 0.85◦C Mean temp. of the atmosphere, land surface, and upper ocean
TLO 0.0068◦C Mean temp. of the deeper ocean
en 6.6036 Nominal exchange rate
eexp 6.6036 Expected nominal exchange rate

Table A.1: List of initial conditions used for simulations in our two-region ecolog-
ical macroeconomic model. These are converted to the state variables used in the
model.
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Parameter Value Description

North
P̄N
N 1 Ceiling on Northern workforce, in billions

q̄N 0.01 Speed of growth of Northern workforce dynamics
ᾱN 0.02 Growth rate of Northern labour productivity (const spec)
δ̄N 0.04 Depreciation rate of capital
ν̄N 2.7 Capital to output ratio
rN 0.02 Real interest rate
η̄pN 0.2 Adjustment speed for prices
ξ̄N 1.6 Mark-up rate for inflation
γ̄N 0.9 Money illusion
ϕ̄0N -0.292 Constant of linear Phillips curve
ϕ̄1N 0.469 Slope of linear Phillips curve
κ̄0N 0.0318 Constant of investment function
κ̄1N 0.575 Slope of investment function
κ̄minN 0 Min of investment function
κ̄maxN 0.3 Max of investment function
∆̄0N -0.078 Constant of dividend function
∆̄1N 0.553 Slope of dividend function
∆̄minN 0 Min of dividend function
∆̄maxN 0.3 Max of dividend function
δ̄pBSN

-0.0051 Growth rate of the backstop tech price
δgσN -0.001 Variation rate of the growth of emission intensity
γ̄IN 0.2 Baseline investment share in foreign goods
β̄IN 0.01 Foreign investment sensitivity parameter
ēR 0.6667 Equilibrium exchange rate in foreign propensity functions
γ̄CN

0.1 Baseline consumption share of foreign goods
β̄CN

0.01 Foreign consumption sensitivity parameter

South
P̄N
S 4 Ceiling on Southern workforce, in billions

q̄N 0.02 Speed of growth of Southern workforce dynamics
ᾱS 0.02 Growth rate of Southern labour productivity (const spec)
δ̄S 0.04 Depreciation rate of capital
ν̄S 2.7 Capital to output ratio
η̄pS 0.2 Adjustment speed for prices
ξ̄S 1.6 Mark-up rate for inflation
γ̄S 0.9 Money illusion
ϕ̄0S -0.292 Constant of linear Phillips curve
ϕ̄1S 0.469 Slope of linear Phillips curve
κ̄0S 0.1 Constant of investment function
κ̄1S 1 Slope of investment function
κ̄minS 0 Min of investment function
κ̄maxS 0.5 Max of investment function

Table A.2: List of parameters used for simulations in our two-region ecological
macroeconomic model.

39



Variable Value Description

∆̄0S 0.3 Constant of dividend function
∆̄1S 0.5 Slope of dividend function
∆̄minS 0 Min of dividend function
∆̄maxS 0.5 Max of dividend function
δ̄pBSS

-0.0051 Growth rate of the backstop tech price
δgσN -0.001 Variation rate of the growth of emission intensity
γ̄IS 0.5 Baseline investment share in foreign goods
β̄IS 0.05 Foreign investment sensitivity parameter
ēR 1.5 Equilibrium exchange rate in foreign propensity functions
γ̄CN

0.15 Baseline consumption share of foreign goods
β̄CN

0.01 Foreign consumption sensitivity parameter

World
β̄e 0.05 Exchange rate sensitivity parameter
β̄ex
e 0.95 Expected exchange rate sensitivity parameter

ῑS 0.01 Southern risk premium
C̄AT
preind 588 Preind. concentration of CO2 in the atmosphere, in Gt C

C̄UP
preind 360 Preind. concentration of CO2 in the upper ocean, in Gt C

C̄LO
preind 1720 Preind. concentration of CO2 in the lower ocean, in Gt C

ϕ̄23 0.0013409 Transfer coefficient for carbon from UP to LO
δ̄Eland

-0.022 Growth rate of land use change CO2-e emissions
F̄dbl 3.6813 Change in radiative forcing from doubling of preind CO2

F̄ start
exo 0.5 Initial value of exogenous radiative forcing

F̄ end
exo 1 Initial value of exogenous radiative forcing

T̄preind 13.74 Preindustrial temperature, in degrees Celsius
C̄ 49.76 Heat capacity of AT and UP
C̄LO 3.52 Heat capacity of the lower ocean layer
γ̄∗ 0.0176 Heat exchange coefficient between temperature layers, in SI
S̄ 3.1 Equilibrium climate sensitivity, in degrees Celsius
ξ̄1 0 Damage function parameter
ξ̄2 0.00236 Damage function parameter
ξ̄3 0.00000507 Damage function parameter - Weitzman
ξ̄3 0.0000819 Damage function parameter - Dietz and Stern
θ̄ 2.6 Abatement cost function parameter

Table A.3: List of parameters used for simulations in our two-region ecological
macroeconomic model.
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1.1 Stock-Flow Consistency Table

NORTH

FIRMS HOUSEHOLDS GOVERNMENT SUM

CURRENT CAPITAL

Transactions
Consumption Cd

N + Cf
S −CN 0

Investment IdN + IfS −IN 0
Wage Cost −WNLN WNLN 0
Capital Depreciation −δNKN δNKN 0
Carbon Tax −TfN TfN 0
Abatement Subsidies SAN

−SAN
0

Dividends −
∏

dN

∏
dN

0
Imports −IfN −Cf

N −IfN − Cf
N

Exports IfS Cf
S IfS + Cf

S

SOUTH
Transactions
Consumption Cd

S + Cf
N −CS 0

Investment IdS + IfN −IS 0
Wage Cost −WSLS WSLS 0
Capital Depreciation −δSKS δSKS 0
Carbon Tax −TfS TfS 0
Abatement Subsidies SAS

−SAS
0

Dividends −
∏

dS

∏
dS

0
Imports −IfS −Cf

S −IfS − Cf
S

Exports IfN Cf
N IfN + Cf

N

Sum 0

Table A.4: Stock-flow consistency table for the North-South model
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1.2 Data Collection and Estimation

This study uses four main databases to gather time series data for 34 countries,
grouped into two regions (North and South). The data sources are given in Ta-
ble A.5. These countries follow the same sample used in Bovari et al. (2018a), with
the addition of Brazil. The division of the countries into the Global North and the
Global South is as follows:

• North (developed economies): Canada, Denmark, Finland, France, Germany,
Greece, Hungary, Ireland, Israel, Italy, Japan, Netherlands, Norway, Portugal,
Singapore, Spain, Sweden, Switzerland, United Kingdom, United States.

• South (emerging markets): Argentina, Brazil, Chile, China, India, Indonesia,
Malaysia, Mexico, South Africa, Thailand, Turkey.

We note that exchange rates are converted from the local currency unit per US$ to
US$ per local currency unit. The U.S. CPI (base year 2010) is adjusted to obtain a
base 2015 index. Since the Penn World Table data ends in 2019, labour share data
for 2020–2024 is sourced from the United Nations database.

Next, from the raw data, the following variables are constructed:

λ =
Employment-to-population % × (Population 65+ % + Population 15–64 %)

Population 15–64 %
N = Population 15–64 % × Total Population
L = λ×N

wL = Wage Share × GDP

w =
wL

L

Regional nominal exchange rates (US$ per LCU) are calculated as GDP-weighted
averages of country-level exchange rates. These are used to derive a cross-region
exchange rate (South per North currency unit). Inflation rates, nominal interest
rates, and real interest rates are also computed at the regional level.

The backstop price levels are set such that the price in the South is assumed level of
600 in 2016, while the price in the North is set so that the 2016 global GDP-weighted
average is 550. Both levels decline annually at a rate of 0.5%, following Bovari et al.
(2018a).
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Table A.5: Data Sources

Source Description

World Bank Provides macroeconomic variables including
GDP (constant 2015 US$), total population, pop-
ulation aged 15–64 (% of total), population aged
65+ (% of total), employment-to-population ra-
tio (15+, total, %, modeled ILO estimate), gross
fixed capital formation (% of GDP), nominal ex-
change rate (LCU per US$, period average), con-
sumer price index (base 2010), final consumption
expenditure (% of GDP), imports (% of GDP), ex-
ports (% of GDP), and real exchange rate index.
data.worldbank.org

Penn World Table Provides the share of labour compensation in
GDP at national prices until 2019.
rug.nl/ggdc/productivity/pwt

UN DESA (SDG Database) Provides SDG Indicator 10.4.1: Labour share of
GDP (used for 2020–2024).
unstats.un.org/sdgs/dataportal/
database

Bank for International
Settlements (BIS)

Contains data on labour share in GDP and central
bank interest rates.
data.bis.org

EDGAR Supplies greenhouse gas emissions for all coun-
tries (up to 2023).
edgar.jrc.ec.europa.eu/report 2024

NASA (Temperature Data) Provides global temperature data.
climate.nasa.gov/vital-signs/global-
temperature
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Chapter 1

Introduction

Modern financial markets operate primarily through sophisticated electronic trad-
ing systems known as limit order books (LOBs). These systems serve as the techno-
logical backbone enabling efficient price discovery and trade execution in today’s
markets. A LOB represents an electronic record keeping system used by exchanges
to organize and match buyers and sellers of financial instruments, acting essen-
tially as a digital marketplace where trading orders are systematically arranged
and executed according to well-established priority rules Gould et al. (2013).

The LOB operates as a continuous two-sided auction mechanism where buy orders,
known as bids, are ranked by price with the highest offers positioned at the top of
the queue, while sell orders, termed asks, are similarly organized with the low-
est prices receiving execution priority. When a buyer’s maximum acceptable price
meets or exceeds a seller’s minimum price requirement, the electronic matching
system automatically facilitates the transaction, see Cartea et al. (2015) for further
details. The numerical difference between the highest bid price and the lowest ask
price constitutes what market participants refer to as the bid-ask spread can be seen
as the cost of immediate execution, see e.g. Amihud and Mendelson (1986), which
serves as a proxy of market liquidity.

Within this electronic framework, two primary categories of orders interact to cre-
ate market dynamics. Limit orders specify both a desired quantity and a maximum
(minimum) purchase price for buy (sell) orders, effectively providing liquidity to
the market. Conversely, market orders execute immediately at the best available
prices in the book, consuming the liquidity that limit orders have previously sup-
plied. The depth and overall liquidity of any given market can be assessed by
examining the thickness of the limit order book, which reflects the aggregate num-
ber of orders waiting at each discrete price level Ho and Stoll (1983). An example of
how a LOB works in practice is shown in Figure 1.1, where market orders of both
small and large sizes are simulated, highlighting how it works in practice.
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Figure 1.1: Simulations of market order executions for small and large amount of
shares.

Liquidity providers (LPs) emerge as crucial market participants whose primary
function involves enhancing overall market liquidity by ensuring continuous avail-
ability of both buyers and sellers across various price points. These entities, most
prominently represented by market makers, maintain a persistent presence in fi-
nancial markets by continuously quoting bid and ask prices while standing ready
to transact specific quantities of securities at their posted prices.

Financial regulators maintain ongoing oversight of liquidity provision activities to
ensure fair and orderly market operations, adequate liquidity availability during
periods of market stress, prevention of manipulative trading practices, and pro-
tection of investor interests across all market segments. As an example, the EU
introduced MiFiD II Regulatory Requirements, in the US market makers must be
compliant with Rule 7E, in South Africa the Financial Markets Act regulates the
market-making business, and so on.

The fundamental business model of liquidity providers centers on their ability to
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earn the spread between their bid and ask quotes while carefully managing their
exposure to adverse price movements, commonly referred to as inventory risk.
This creates an ongoing optimization problem where market makers must balance
their desire to post prices that generate substantial profits against the necessity of
positioning their quotes to effectively manage their accumulated inventory posi-
tions. Additionally, liquidity providers face adverse selection risk when trading
against informed market participants who possess superior information about an
asset’s true underlying value.

The foundations of inventory risk modeling in market making trace back to Gar-
man (1976) seminal work on market microstructure, which first distinguished be-
tween dealership and auction market models and characterized the inventory prob-
lems faced by market makers managing security and cash holdings. Ho and Stoll
(1981) provided the first systematic treatment of dealer inventory risk using stochas-
tic dynamic programming. The framework modeled dealer behavior under uncer-
tainty with stochastic demand processes and return risk, deriving optimal bid-ask
prices that maximize expected utility of terminal wealth. The theoretical frame-
work was extended in Ho and Stoll (1983), where the authors analyze competing
dealers.

Glosten and Milgrom (1985) introduced the adverse selection component to bid-
ask spreads, demonstrating that positive spreads exist even with risk-neutral spe-
cialists making zero expected profits, while Kyle (1985) the continuous auction
model further developed the understanding of information incorporation in mar-
ket making, analyzing the dynamic interaction between informed traders and mar-
ket makers. The modern era of inventory risk modeling began with Avellaneda
and Stoikov (2008), which formalized the Ho and Stoll (1983) framework mathe-
matically for limit order book markets.

This work introduced a rigorous stochastic control approach to market making
optimization, modeling the reference price as Brownian motion with order ar-
rival rates dependent on distance to the reference price. Guéant et al. (2013) pro-
vided significant mathematical innovations by transforming the Hamilton-Jacobi-
Bellman equations into systems of linear ordinary differential equations, and in a
similar setting Cartea et al. (2015) models the objective as a linear-quadratic func-
tional form. Most research in market microstructure considers inventory risk and
asymmetric information risk separately, yielding highly significant findings; how-
ever, few studies have investigated the interaction among multiple market makers
and their impact on market liquidity.

As a matter of fact, competition among multiple liquidity providers can create com-
plex strategic interactions that significantly influence market dynamics. Boyce et al.
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(2025) were among the first to consider the interaction between a reference and
competing market makers, with competition modeled through exponential depen-
dence on spread differences between market makers. Guo et al. (2024) established
connections between the market making problem, price impact, and the optimal
execution problem in a Nash equilibrium framework. In Bergault and Sánchez-
Betancourt (2025), the authors study a mean field game between between bro-
kers and informed traders, finding out that the Nash equilibrium helps informed
traders in decision making and brokers in externalizing (or internalizing) order
flow.

This work represents a first attempt to extend the theoretical framework in Boyce
et al. (2025) by considering a Stackelberg equilibrium between two LP entities: the
leader, representing the aggregate of market makers, and the follower, which is the
reference market maker.

A Stackelberg equilibrium represents a fundamental solution concept in hierarchi-
cal game theory, originally introduced by Von Stackelberg (2010) (English trans-
lation of the original German volume) and subsequently formalized in dynamic
game theory in Simaan and Cruz Jr (1973), while extensively developed in Başar
and Olsder (1998). The equilibrium captures the strategic interaction between play-
ers in a hierarchical decision-making framework where one player, designated as
the leader, possesses a structural advantage through the ability to commit to a
strategy before other players, termed followers, make their decisions. The criti-
cal feature distinguishing the Stackelberg equilibrium from the simultaneous Nash
equilibrium lies in the information structure and timing of decisions. The leader
possesses the strategic advantage of commitment power, enabling anticipation of
followers’ rational responses, while followers observe the leader’s committed strat-
egy before making their own decisions.

This hierarchical information pattern creates an asymmetric game structure where
the leader can effectively manipulate the subsequent equilibrium to optimize his
own objective. In stochastic differential game settings, as analyzed in Moon and
Başar (2018), the Stackelberg equilibrium concept extends naturally to dynamic
environments. The existence and uniqueness of Stackelberg equilibria depend crit-
ically on the structural properties of the game, including the convexity of strategy
spaces, continuity of payoff functions, and the uniqueness of followers’ best re-
sponse correspondences.

In linear-quadratic (LQ) frameworks, as demonstrated by Yong (2002) and Xu and
Zhang (2015), the Stackelberg solution often admits explicit characterization through
coupled systems of differential equations, where the leader’s optimal strategy in-
corporates the anticipated trajectory of the followers’ optimal responses. In the
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same LQ framework, many financial applications have been proposed, such as
Zheng and Shi (2020) and the references therein. The fundamental requirement for
a well-defined Stackelberg equilibrium is that the follower must know ex ante that
leader will observe the committed strategy, and followers must possess no means
of committing to strategies that deviate from their best responses to the leader’s
announcement, as stated in Başar and Olsder (1998).

In our theoretical framework, two different entities act in the financial market as
LPs. Firstly, the leader is constituted by the set of market makers, and therefore is
the agent that can influence the market by quoting bid and ask spreads. This can
be considered as the market maker that quotes the smallest spread at every instant
in the considered time horizon. The second entity is the follower, who observes
the spreads in the market and defines his optimal strategy as a function of these,
quoting his spreads accordingly. In contrast, the leader anticipates the follower’s
response and optimizes the minimum spread to maximize its utility function.

These are a number of novelties in this work. First of all, the theoretical frame-
work in Boyce et al. (2025) is generalized by allowing the leader to precommit to
a strategy that takes into account the follower’s inventory. Furthermore, the co-
efficients of the spreads quoted by the leader are, in full generality, deterministic
time dependent functions. Moreover, in Boyce et al. (2025), the authors analyze the
market-making competition exclusively from the follower’s perspective. Consid-
ering a Stackelberg equilibrium, instead, this work also aims to analyze the leader’s
point of view, and therefore to verify the existence of an optimal strategy for the
leader.

The work is organized as follows: in Chapter 2 the theoretical framework is pre-
sented and approximated closed-form solutions are obtained, Chapter 3 contains
an extensive numerical analysis and comparisons with other existing frameworks,
then Chapter 4 concludes.
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Chapter 2

The model

1 Theoretical framework

We consider a financial market operating under a limit order book mechanism
where liquidity provision is facilitated by competing market makers. We model
a competitive environment with heterogeneous market participants consisting of a
leader market maker (denoted by “he”), characterized as the participant offering
the best aggregate available price at any given time, and a follower market maker
(denoted by “she”), who responds strategically to the leader’s pricing decisions.
This leader-follower structure captures the realistic asymmetry observed in mod-
ern electronic markets, where certain market makers (often due to technological
advantages, information, or scale) consistently provide the best quotes, while oth-
ers adapt their strategies in response Cartea et al. (2015).

Let (Wt)0≤t≤T be a standard Brownian motion, where T > 0 represents the finite
trading horizon. Additionally, we define independent Poisson processes for mod-
eling liquidity taking orders: (Ma

t )0≤t≤T for ask-side market orders with intensity
λa > 0 and (M b

t )0≤t≤T for bid-side market orders with intensity λb > 0.
The fundamental asset price follows the following equation,

St = S0 + σSWt, S0 > 0. (2.1)

We denote by δL := {δa, Lt , δb, Lt }0≤t≤T the ask and bid depths for the leader and
by δF := {δa, Ft , δb, Ft }0≤t≤T the ask and bid depths for the follower, where δa, it , δb, it

represent the depths at which players place their ask and bids quotes relative to the
fundamental asset price St. The depths represent the price “half spreads” that each
market maker offers relative to the fundamental price, determining their competi-
tiveness and expected profit margins.

8



The observable market mid-price of the leader is given by

Smid,L
t =

1

2

(
2St + δa, Lt − δb, Lt

)
,

while the mid-price of the whole market is given by

Smid
t =

1

2

(
St +min{δa, Lt , δa, Ft }

)
+

1

2

(
St −min{δb, Lt , δb, Ft }

)
.

The filled orders for each market maker are represented by the point processes

(Na, L
t )0≤t≤T and (N b, L

t )0≤t≤T ,

(Na, F
t )0≤t≤T and (N b, F

t )0≤t≤T .

Along the lines of Boyce et al. (2025), the intensities for order fills incorporate com-
petitive effects through exponential functions:

Λa, L
t := λa

(
1− Λa, F

t

λa

)
,

Λb, L
t := λb

(
1− Λb, F

t

λb

)
,

Λa, F
t := λamin

{
exp

{
−κ
(
δa, Ft − δa, Lt + ι

)}
, 1
}
,

Λb, F
t := λamin

{
exp

{
−κ
(
δb, Ft − δb, Lt + ι

)}
, 1
}
,

where κ > 0 is the decay rate parameter, ι > 0 is the minimum tick size, and the
min{1, ·} operation ensures intensities remain bounded. From now on we will as-
sume that ι is absorbed in the leader’s spread, such that δL stands for a tick more
generous than the leader bid-ask quotes.

The intensity functions satisfy monotonicity properties, such as Λa, L
t is decreasing

in δa, Lt and increasing in δa, Ft , while Λa, F
t is decreasing in δa,Ft and increasing in

δa, Lt , with similar properties holding for bid-side intensities. In accordance with
the economic intuition, offering better prices (smaller spreads) increases the proba-
bility of order execution. Furthermore, probability conservation holds, such as for
any side s ∈ {a, b}, we have Λs, L

t + Λs, F
t ≤ λs, ensuring that all market orders are

filled by either the leader or follower.

In a general framework where λa and λb are fixed, the execution probability of both
market agents depends exclusively on the difference in quoted spreads between
them. This feature is not realistic, since higher spreads correspond to a lower fre-
quency of incoming market orders, even if the spread difference between leader
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and follower is negligible. Therefore, a possible solution could be consider the ar-
rival frequency of orders as dependent on the base spread level. In this case, when
quoted spreads are very distant from the base price of the stock, market orders de-
crease, introducing a trade-off for operators between trade frequency and revenue
per trade.

We return to the point below under the stated assumptions, the market making
model is well-posed in the sense that the intensity processes (Λs, i

t ) are well-defined
and bounded, the order fill processes (N s, i

t ) exist as point processes with the spec-
ified intensities, for i = {L,F}. The inventories dynamics are given by

dQi
t = dN b, i

t − dNa, i
t , Qi

0 = qi0, for i = {L,F}. (2.2)

Let the inventory space of both agents be Qi = {qi, qi + 1, . . . , qi} with cardinality
ni = qi − qi + 1, for i = {L,F}, such that qi ≤ Qi

t ≤ qi.

The cash account is

dXi
t =

(
St + δa, it

)
dNa, i

t −
(
St − δb, it

)
dN b, i

t , Xi
0 = xi0, for i = {L,F}. (2.3)

Extending the existing literature, see e.g. Boyce et al. (2025), we assume the leader’s
strategy depending on his own inventory and on the follower’s one. In our frame-
work, the leader precommits his quoting strategy in t = 0 and the follower can
observe it in the market without noise, such as

δa, Lt = a(t)− β(t)QL
t − θ(t)QF

t ,

δb, Lt = b(t) + β(t)QL
t + θ(t)QF

t ,
(2.4)

where a(t), b(t), β(t) and θ(t) are deterministic functions of time. In order to pre-
commit, the leader should know the follower inventory in t = 0, so he can observe
the transactions on the LOB and extrapolate the inventory of the counterparty. To
this end, from now on we will always assume qL0 = qF0 = 0.

A rigorous definition of the probability space in this framework is necessary, reiter-
ating the argument in Barucci et al. (2025). Consider first Ωd as the set of increasing
piecewise constant càdlàg functions from [0, T ] into N with jumps equal to one, and
let Ωc denote the set of continuous functions from [0, T ] into R. The sample space
is then defined as Ω = Ωc×Ω4

d, where the components correspond to the Brownian
motion driving the fundamental asset price and the point processes for ask and bid
market orders arriving. Let(

Wt, N
a,L
t , N

b,L
t , N

a,F
t , N

b,F
t

)
t∈[0,T ]
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be the canonical process on Ω, where (Wt)t∈[0,T ] represents the fundamental price

innovation and (N
s,i
t )t∈[0,T ] for s ∈ {a, b} and i ∈ {L,F} are the canonical counting

processes. The associated filtration is given by F = (Fc
t ⊗ F

a,L
t ⊗ Fb,L

t ⊗ Fa,F
t ⊗

Fb,F
t )t∈[0,T ], where (Fc

t )t∈[0,T ] is the right-continuous completed filtration generated
by (Wt)t∈[0,T ], and (Fs,i

t )t∈[0,T ] are the right-continuous filtrations generated by the
respective point processes for market maker i.

We denote by P0 the probability measure on (Ω,F) such that: (1) (Ma,L
s = N

a,L
s −

s,M
b,L
s = N

b,L
s − s,M

a,F
s = N

a,F
s − s,M

b,F
s = N

b,F
s − s)s∈[0,T ] are F-martingales;

(2) (Wt)t∈[0,T ] is a standard Brownian motion; and (3) all processes are mutually
independent.

The actual point processes (Na,L
t , N b,L

t , Na,F
t , N b,F

t )t∈[0,T ] representing filled orders
for both market makers can be defined as solutions to the coupled system

dNa,L
t = 1{QL

t−
>qL}dN

a,L
t , dN b,L

t = 1{QL
t−

<qL}dN
b,L
t ,

dNa,F
t = 1{QF

t−
>qF }dN

a,F
t , dN b,F

t = 1{QF
t−

<qF }dN
b,F
t ,

where [qi, qi] for i ∈ {L,F} define the inventory constraints for each market maker.

Let U denote the set of admissible control processes δ = (δa,Lt , δb,Lt , δa,Ft , δb,Ft )t∈[0,T ] ∈
L2(Ω × [0, T ]) such that δ ≥ −δ∞ and the processes are F-predictable, where
δ∞ = (δa,L∞ , δb,L∞ , δa,F∞ , δb,F∞ ) characterizes the lower bounds of the controls.

For δ ∈ U , we define the state processes (St, Q
L
t , Q

F
t , X

L
t , X

F
t ), where the dynamics

are given by equations (2.1), (2.2), and (2.3). For any control δ ∈ U , we define the
probability measure Pδ via the Radon-Nikodym derivative dPδ

dP0
= LδT , where Lδt is

the Doléans-Dade exponential.

Since the control processes (δa,Lt , δb,Lt , δa,Ft , δb,Ft )t∈[0,T ] are bounded from below and
the intensities are uniformly bounded by construction through the min{1, ·} oper-
ation, the process (Lδt )t∈[0,T ] is a P0-martingale by Novikov’s criterion. Under Pδ,
the compensated processes M s,i,δ

t := N s,i
t −

∫ t
0 Λ

s,i
u du, for s ∈ {a, b} and i ∈ {L,F},

are true F-martingales, and by Watanabe’s characterization theorem, all point pro-
cesses (N s,i

t )t∈[0,T ] for s ∈ {a, b} and i ∈ {L,F} are F-Poisson processes with the
specified stochastic intensities.

Throughout the analysis, we work on the probability space (Ω,F ,Pδ) , which sat-
isfies the usual conditions of right-continuity and completeness, ensuring that all
stochastic processes are well-defined and the market making optimization prob-
lems for both the leader and follower are mathematically well-posed.
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2 Maximization problem

The follower aim is to maximize their objective function

J(δF ) = E
[
XF

T +QF
T S

mid,L
T − γ(QF

T )
2 − ϕ

∫ T

0
(QF

s )
2ds

∣∣∣∣F0

]
= E

[
XF

T +QF
T

(
ST +

a(T )− b(T )

2
− β(T )QL

T − θ(T )QF
T

)
−γ(QF

T )
2 − ϕ

∫ T

0
(QF

s )
2ds

∣∣∣∣F0

]
,

(2.5)

under the cash 2.3 and inventory 2.2 constraints where δF is the set of F-adapted
and integrable strategies for the follower. By setting a(t), b(t), β(t) ∈ R as fixed
∀t ∈ [0, T ] and θ(t) = 0, ∀t ∈ [0, T ], we obtain the model in Boyce et al. (2025)
without noise, while setting also δL = 0 and ι = 0 our framework reduces in the
Avellaneda and Stoikov model.

Starting at t = 0, during the time horizon the follower will quote her spreads, and
hopefully these will be filled by random market orders. At the end of the time hori-
zon, at t = T , the follower’s wealth will be equal to cash XF

T plus the marked-to-
market inventory QF

T S
mid,L
T . Since we consider the follower as a risk-averse agent,

we include in the objective function a penalization term on the square of the ter-
minal inventory and a running penalization on the square of the inventory. These
terms ensure that the follower is not excessively exposed to inventory risk, and
therefore reduces her exposure to the stock market.

The intuition behind the terms in the HJB equation (A.4) follows the same argu-
ment and interpretation made by Boyce et al. (2025).
The value function differences capture

v(t, s, x, qF , qL − 1)− v(t, s, x, qF , qL) ask side leader execution

v(t, s, x, qF , qL + 1)− v(t, s, x, qF , qL) bid side leader execution

v(t, s, x+ s+ δa, qF − 1, qL)− v(t, s, x, qF , qL − 1) ask side follower versus leader

v(t, s, x− s+ δb, qF + 1, qL)− v(t, s, x, qF , qL + 1) bid side follower versus leader

These differences are weighted by: (1) the intensities λa and λb for market order
arrivals, and (2) the follower’s fill probabilities, for both bid and ask sides:

min{e−κ(δa−a(t)+β(t)qL+θ(t)qF ), 1},

min{e−κ(δb−b(t)−β(t)qL−θ(t)qF ), 1}.
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Proposition 2.1. Consider the problem (2.5). Then, for any t ∈ [0, T ], the value
function is

v(t, s, x, qF , qL) := x+ qF s− 1

2
(β(t) + θ(t))

(
qF
)2 − β(t)qF qL + g(t, qF , qL), (2.6)

where g(t, qF , qL) satisfies the following equation

0 = +
∂g

∂t
(t, qF , qL)− 1

2

(
∂β

∂t
(t) +

∂θ

∂t
(t) + 2ϕ

)(
qF
)2 − ∂β

∂t
(t)qF qL

+ λa
(
g(t, qF , qL − 1)− g(t, qF , qL) + β(t)qF

)
+ λb

(
g(t, qF , qL + 1)− g(t, qF , qL)− β(t)qF

)
+ sup

ca, F

{
λamin

{
e−κ(ca, F+ 1

2
(β(t)+θ(t))−a(t)), 1

}
[
ca, F + g(t, qF − 1, qL)− g(t, qF , qL − 1)

]}
1qF>qF

+ sup
cb, F

{
λbmin

{
e−κ(cb, F+ 1

2
(β(t)+θ(t))−b(t)), 1

}
[
cb, F + g(t, qF + 1, qL)− g(t, qF , qL + 1)

]}
1qF<qF ,

(2.7)

with terminal condition

g(T, qF , qL) =
a(T )− b(T )

2
qF −

(
γ +

θ(T )− β(T )

2

)(
qF
)2

.

The optimal follower quoted spreads are

δa, F⋆
(
t, qF , qL

)
= max

{
δ̂a, F⋆

(
t, qF , qL

)
, a(t)− β(t)qL − θ(t)qF

}
,

δb, F⋆
(
t, qF , qL

)
= max

{
δ̂b, F⋆

(
t, qF , qL

)
, b(t) + β(t)qL + θ(t)qF

}
.

(2.8)

where
δ̂a, F⋆

(
t, qF , qL

)
=

1

κ
− g(t, qF − 1, qL) + g(t, qF , qL − 1)

− β(t)qL − θ(t)qF +
1

2
(β(t) + θ(t))

δ̂b, F⋆
(
t, qF , qL

)
=

1

κ
− g(t, qF + 1, qL) + g(t, qF , qL + 1)

+ β(t)qL + θ(t)qF +
1

2
(β(t) + θ(t)).

(2.9)

Proof. See Appendix 1.
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The follower’s optimal quoted depths align with Boyce et al. (2025), but in extend
formulation, given the introduction of the time-dependent parameters a(t), b(t), β(t),
and an additional term θ(t). This new parameter θ(t) directly captures how the fol-
lower’s inventory qF affects the leader’s quote adjustments.

This assumes that the leader has information relating to the inventory of the fol-
lower at each point in time and posts his quotes relative to such information. The
economic interpretation for θ fixed is intuitive. Consider the follower has a large
amount of inventory qF , so the leader might increase the inventory risk for the
follower by decreasing his depths on the ask side so that the follower has higher
probability to be filled in that side of the LOB. We will delve on this aspect in the
next chapter, when analyzing the equilibrium.

3 Approximate closed-form solution

Here we propose an approximate solution for the problem (2.5). We assume that
the unrestrained maximizers (2.9) are always greater (or equal) than the leader
depths and β(t) fixed for t ∈ [0, T ].

In this case, (2.7) simplifies as

0 =
∂g

∂t
(t, qF )− 1

2

(
∂θ

∂t
(t) + 2ϕ

)(
qF
)2

+
(
λa − λb

)
βqF

+
λa

κ
e−1−κ( 1

2
(β+θ(t))−a(t)) exp

{
−κ[g(t, qF )− g(t, qF − 1)]

}
1qF>qF

+
λb

κ
e−1−κ( 1

2
(β+θ(t))−b(t)) exp

{
−κ
[
g(t, qF )− g(t, qF + 1)

]}
1qF<qF ,

g(T, qF ) =
a(T )− b(T )

2
qF −

(
γ +

θ(T )− β

2

)(
qF
)2

.

Theorem 3.1. Assume qF = −qF . Assume also the unrestrained maximizers (2.9)
to be equal or greater than the one tick more generous leader’s spread.
Given the time interval [0, T ], we define its discretization as τ = {tn, n = 0, 1, . . . , N},
where ∆t = tn − tn−1 and N = T

∆t .
Define the function ω : τ ×QF −→ (0,∞), the tridiagonal set of matrices
(Ai,q,n)qF≤i,q≤qF ,0≤n≤N and the vector (Bq)qF≤q≤qF . Then the function v : τ ×
(0,∞)× R×QF × Z is given by

v(tn, s, x, q
F , qL) := x+qF s− 1

2
(β+θ(tn))

(
qF
)2−βqF qL+ 1

κ
log
(
ω(tn, q

F )
)
, (2.10)
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where

ω(tn, q) =

(
exp

{
−

N−1∑
m=n

Am · dt

}
B

)
q, (2.11)

and

Ai,q,n =



κ

2

(
∂θ

∂t
(tn) + 2ϕ

)
q2 − βκ(λa − λb)q if i = q,

−λa exp
(
−1− κ

(
β+θ(tn)

2 − a(tn)
))

if i = q − 1,

−λb exp
(
−1− κ

(
β+θ(tn)

2 − b(tn)
))

if i = q + 1,

0 otherwise,

Bq = exp

{
κ

[
a(T )− b(T )

2
q −

(
γ +

θ(T )− β

2

)
q2
]}

.

If the following conditions are satisfied, (2.10) solves problem 2.5.

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF − 1)

)]
+

1

2
(β + θ(tn)) ≥ a(tn), tn ∈ τ , qF ∈ {qF + 1, . . . , qF }

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF + 1)

)]
+

1

2
(β + θ(tn)) ≥ b(tn), tn ∈ τ , qF ∈ {qF , . . . , qF − 1}.

(2.12)
Then the candidate optimizers satisfy

δ̂a, F⋆
(
tn, q

F , qL
)
=

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF − 1)

)]
− βqL − θ(tn)q

F +
1

2
(β + θ(tn))

δ̂b, F⋆
(
tn, q

F , qL
)
=

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF + 1)

)]
+ βqL + θ(tn)q

F +
1

2
(β + θ(tn)).

(2.13)

Proof. See Appendix 2

Proposition 3.2. Under the assumptions of Theorem 3.1. Consider a(t), b(t), θ(t) ∈
R, to be constant values denoted by a, b, θ ∈ R.

Define the function ω : [0, T ]×QF −→ (0,∞), the tridiagonal matrix (Ai,q)qF≤i,q≤qF

and the vector (Bq)qF≤q≤qF .

Then, for any t ∈ [0, T ], the value function v : [0, T ]× (0,∞)× R×QF × Z is

v(t, s, x, qF , qL) := x+ qF s− 1

2
(β + θ)

(
qF
)2 − βqF qL +

1

κ
log
(
ω(t, qF )

)
, (2.14)
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where
ω(t, q) = (exp {−A(T − t)}B)q , (2.15)

with

Ai,q =


κϕq2 − βκ(λa − λb)q if i = q,

−λa exp
(
−1− κ

(
β+θ
2 − a

))
if i = q − 1,

−λb exp
(
−1− κ

(
β+θ
2 − b

))
if i = q + 1,

0 otherwise,

Bq = exp

{
κ

[
a− b

2
q −

(
γ +

θ − β

2

)
q2
]}

.

Proof. The proof comes directly from the solution of the ODEs system when the
matrix A is fixed.

Obtaining the matrix form of the approximated solution of ω(t, qF ) makes the com-
putational process immediate. This also gives insight into the follower’s response
strategy and how the parameters affect its value function. Since −A is essentially
positive, in the sense that all off-diagonal elements are nonnegative, ω(t, qF ) takes
values in (0,∞).

We show in Appendix C the goodness of the approximated closed form for the
optimal quoted spreads via numerical experiments. With a reasonable set of pa-
rameters, violations of (2.12) appear in less than 0.01% of the total simulated runs.

4 Leader objective function

In order to characterize a Stackelberg game, we must define an objective function
for the leader. The latter can influence the average market prices, so he might be
incentivized to quote high spreads so that his final inventory is valued at a much
higher price compared to the base price. For this reason, we consider an objective
function slightly different from the follower’s one, where the final inventory is val-
ued at the base price ST . This ensures that the leader has no arbitrage opportunities
by increasing the quoted spreads.

As mentioned earlier, it is also necessary to introduce a trade-off for the leader so
that he is not incentivized to raise the quoted spreads excessively. For this purpose,
we consider the intensity of market order arrival processes as functions of the base
spread level, such as λa(t) = λa

0e
−κa(t), λb(t) = λb

0e
−κb(t). In this way, when the

market is less liquid, that is when spreads are higher, market orders arrive at a
lower frequency.
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We set the leader’s objective function given by

E
[
XL

T +QL
TST − γ(QL

T )
2 − ϕ

∫ T

0
(QL

s )
2ds

∣∣∣∣F0

]
. (2.16)

Denote u ∈ C1,2([0, T ]× (0,∞)× R×QL × Z) as

u(t, s, x, qL, qF ) = E
[
XL

T +QL
TST − γ(QL

T )
2 − ϕ

∫ T

0
(QL

s )
2ds

∣∣∣∣Ft

]
, ∀t ∈ [0, T ].

(2.17)
The following proposition aims to characterize the leader’s objective function using
the Feyman-Kac formula, permitting a partial-integro differential equation repre-
sentation.

Proposition 4.1. Consider the leader’s objective function (2.16). Recalling the con-
ditional expectation in (2.17), the u function solves the following equation

0 =
∂u

∂t
(t, s, x, qL, qF ) +

σ2
S

2

∂2u

∂s2
(t, s, x, qL, qF )− ϕ

(
qL
)2

+ λa
(
u(t, s, x, qL, qF − 1)− u(t, s, x, qL, qF )

)
+ λb

(
u(t, s, x, qL, qF + 1)− u(t, s, x, qL, qF )

)
+ Λa, L

(
u(t, s, x+ s+ δa, L, qL − 1, qF )− u(t, s, x, qL, qF − 1)

)
1qL>qL

+ Λb, L
(
u(t, s, x− s+ δb, L, qL + 1, qF )− u(t, s, x, qL, qF + 1)

)
1qL<qL

(2.18)

with terminal condition

u(T, s, x, qL, qF ) = x+ qLs− γ
(
qL
)2

. (2.19)

Proof. The argument follows the Feynman-Kac representation theorem, see Zhu
et al. (2008).

Through Proposition 4.1, it is possible to solve the equation (2.18) using numeri-
cal techniques, which allows computing the expectation of the leader’s objective
function without the need to use Monte Carlo methods. Direct computation of
the expectation is impossible because of the stochastic nature of the intensities Λa,s

and Λb,s where s ∈ {F,L}. Indeed, by solving equation (2.18) backward in time
and plugging the initial conditions into the function u, one obtains (2.16).

Before proceeding with the characterization of the u function, it is useful to observe
how the filling probability for the leader does not depend on his own inventory, but
only on the parameters of his precommitted strategy and on the follower’s inven-
tory.
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Remark 4.2. The filling intensities for the leader Λa,L and Λb,L depend on his own
precommitted strategy and on the inventory of the follower

Λa,L(t, qF ) = λa

[
1−min

{
exp

[
β + θ(t)

2
+

1

κ

(
1 + log

ω(t, qF )

ω(t, qF − 1)

)
− a(t)

]
, 1

}]
,

Λb,L(t, qF ) = λb

[
1−min

{
exp

[
β + θ(t)

2
+

1

κ

(
1 + log

ω(t, qF )

ω(t, qF + 1)

)
− b(t)

]
, 1

}]
.

According to this remark, the follower, through her optimal response, determines
her proximity to the leader in the LOB, affecting both filling probabilities. The
leader, by pre-committing, only sets a baseline for his own fill probability.

The equation (2.18) consists of high dimension PIDE, for which its resolution usu-
ally requires computationally expensive numerical techniques. The aim is therefore
to transform (2.18) into a linear system of ODEs in matrix form, in a similar fashion
to what done in Theorem 3.1. Due to the dependence of function u on both in-
ventories qL and qF , a closed form is not obtainable, but the following proposition
permits us to use computationally efficient numerical techniques, typically used
for solving Sylvester equations.

Proposition 4.3. Consider the differential equation (2.18) characterizing the evolu-
tion of the leader objective function with the terminal condition (2.19). Consider
also the following ansatz for the function u:

u(t, s, x, qL, qF ) = x+ qLs+ h(t, qL, qF ), (2.20)

with h(T, qL, qF ) = −γ
(
qL
)2.

Let qL = −qL, qF = −qF and qL = qF . We represent the function h(t, qL, qF ) as a
matrix (H i,j(t))qL≤i≤qL,qF≤j≤qF , where the entry H i,j(t) corresponds to h(t, qLi , q

F
j ).

The PIDE for h can be written as

∂H

∂t
(t) = A1(t)H(t) +H(t)A2(t) +B(t), (2.21)

with the terminal condition (H i,j(T )) = −γ(qLi )2, ∀i ∈ QL, j ∈ QF , where
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(
A1

i,k(t)
)
=


λa + λb if i = k,

−Λa,L(t, qF ) if k = i− 1,

−Λb,L(t, qF ) if k = i+ 1,

0 otherwise,

(
A2

j,ℓ(t)
)
=


Λa,L(t, qFℓ )− λa if ℓ = j − 1,

Λb,L(t, qFℓ )− λb if ℓ = j + 1,

0 otherwise,

(Bi,j(t)) = −ϕ(qLi )2 + Λa,L(t, qFj )δ
a,L(t, qLi , q

F
j ) + Λb,L(t, qFj )δ

b,L(t, qLi , q
F
j ).

Proof. See Appendix 3.

The proposition 4.3 allows us to write the partial integro-differential equation for
the leader’s objective into a matrix differential equation format. Recognizing the
discrete nature of the inventory state spaces for both the leader and follower allows
us to represent the value function as a finite-dimensional matrix H(t), where each
entry corresponds to a specific combination of leader and follower inventory levels.

The matrix decomposition reveals the underlying structure of the competitive mar-
ket making dynamics through three distinct components. The matrix A1(t) cap-
tures the transitions in the leader’s inventory dimension and operates through
left multiplication on H(t). Its tridiagonal structure reflects the fact that inven-
tory can only change by discrete units when orders are filled, with the diago-
nal elements representing the combined arrival intensities of ask and bid orders,
while the super- and sub-diagonal elements encode the inventory transition effects
through the trading intensities. The matrix A2(t) governs transitions in the fol-
lower’s inventory dimension through right multiplication and embodies the com-
petitive coupling between the two market makers. Its entries capture how changes
in the follower’s inventory position affect the leader’s value function; while the
source matrix B(t) incorporates all the deterministic components of the system.

The formulation (2.21) transforms a high-dimensional equation into a standard
Sylvester equation. The computational advantage of this representation is sub-
stantial, as, when considering a discretization of the time interval τ , it allows the
application of well-established numerical algorithms such as the Bartels-Stewart
method, proposed in Bartels and Stewart (1972), or Hessenberg-Schur decompo-
sition for efficient solution, provided that the matrices A1(t) and −A2(t) satisfy
the non-resonance condition of having no common eigenvalues, which ensures the
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uniqueness and stability of the solution.

In the Chapter 3 we will numerically solve the maximization problem for the leader,
thus solving the whole Stackelberg game. The idea is to find the optimal parame-
ters that maximize the expected value of the leader’s objective. The leader, indeed,
being able to observe the follower response on the market quotes, can select ad hoc
parameters for his precommitted strategy in order to maximize his own future ex-
pected value.
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Chapter 3

Numerical analysis

1 Comparative results between the Euler scheme and the
closed form approximation

In this Chapter we proceed to carry out an extensive series of numerical analyses in
order to validate the theoretical results obtained, confirm the economic intuitions
of the previous chapters, and verify the existence of a solution for Stackelberg equi-
librium by evaluating the leader’s objective as a function of his optimization pos-
sibilities1.

First of all, we present the results in Boyce et al. (2025), setting a, b, β ∈ R, fixed and
θ(t) = 0, ∀t ∈ [0, T ]. The parameter value for this instance are in the Table 3.1. We
also fix xF0 , x

L
0 , q

F
0 , q

L
0 = 0.

a b β θ ϕ γ s0 σS λa λb κ

0.1 0.1 0.05 0 0.1 0.03 100 1 10 10 2

Table 3.1: Parameter values for the Boyce et al. (2025) model.

In Figure 3.1 a single simulation in such framework is shown. As we can expect,
the bid-ask spread of the leader is fixed during the whole trading period, while the
follower’s is decreasing due to the penalization terms.

As time horizon approaches, in fact, the follower needs to liquidate her own inven-
tory (buy if it is negative), so she is willing to give up part of the profit derived from
the spread for this purpose. When the follower’s inventory is negative near expi-
ration, the optimal bid spread reduces drastically in order to increase the chances
of being filled by a market sell order, while conversely the ask spread increases. As

1We provide the algorithm sketches in Appendix B
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Figure 3.1: Simulation of a single path using the approximate closed-form solution
(2.13). Parameter values are in Table 3.1.

for the leader, instead, if his inventory near expiration is negative, he is willing to
buy with a negative spread (at a discount), rather than being penalized at t = T .

In the same framework, a Monte Carlo procedure was carried out in order to es-
timate the expected value of the leader’s objective function, comparing it with the
approximate closed form v(0, xF0 , s0, q

F
0 , q

L
0 ). The histograms in Figure 3.2 show

how the theoretical value (3.243) is well approximated both in the case of using nu-
merical methods (Euler schemes) (3.188) for solving the Hamilton-Jacobi-Bellman
equation, and in the case of calculating the optimal strategy through the matrix
form (3.199).

In Table 3.2 we provide a summary of the Monte Carlo procedure for both the
leader and the follower. Due to the risk aversion of the agents, the average final
inventory QT is close to zero, with rather limited variability. The spread on average
shows the same behavior previously observed in Figure 3.1, such as decreasing in
time.
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Figure 3.2: Distribution of the terminal objective function of the follower over 1
million simulations. Euler approximation (left), approximate closed form (2.13)
(right). Parameter values are in Table 3.1.

Follower Leader

Mean Std Mean Std

QT −0.0013 1.8695 −0.0040 3.7013
XT 3.5813 186.9584 1.4625 370.1303
Obj 3.1878 1.8487 1.0677 2.6807

δ̄a + δ̄b 1.1290 0.0310 0.2000 0.0000
δaT + δbT 1.0602 2.0161× 10−8 0.2000 0.0000

Table 3.2: Summary of the results from 1 million simulations using the Euler
scheme for the value function approximation. Parameter values are in Table 3.1.

2 Numerical solution of the Stackelberg equilibrium

In order to verify the existence of a Stackelberg equilibrium, the values of the
leader’s objective function at maturity are shown in Figure 3.3 as the parameters
a and b vary. As mentioned earlier, it is necessary to introduce a trade-off for the
leader so that he is not incentivized to raise the quoted spreads excessively. For
this purpose, we consider the intensity of market order arrival processes as func-
tions of the base spread level, such as λa(t) = λa

0e
−κa(t), λb(t) = λb

0e
−κb(t). In this

way, when the market is less liquid, that is when spreads are higher, market orders
arrive at a lower frequency. In order to optimize his objective, the leader must find
a point, or a region, of optimality, managing the trade-off between revenues and
trading frequency.
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Figure 3.3: Average leader’s terminal objective function over 100 thousands simu-
lations. Parameter values are in Table 3.1, except from a and b.

When a, b are fixed during the trading period, it is evident that there exists one
(or more) combination of these parameters that maximizes the leader’s expected
return. This confirms from a numerical point of view the existence of a Stackelberg
equilibrium. It is interesting to note that the region where the objective is maxi-
mum is symmetric in the parameters a, b, with value in the interval [0.2, 0.4].

Interesting details can derive from evaluating the effect of theta on the follower’s
quoted spreads. In Figure 3.4, the spread levels are shown as the follower’s inven-
tory varies. For the bid, the spread is not quoted when qF = qF , conversely for the
ask it is not quoted when qF = qF . As can be noticed, when the inventory is high,
at the beginning of the trading period, the follower needs to liquidate the shares in
portfolio, and therefore his bid spread reduces as theta decreases.
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Figure 3.4: Optimized follower bid δb, F⋆ (bottom panel) and ask δa, F⋆ (top panel)
spreads as a function of the θ, at the initial point in time t = 0 (left panel) and at the
terminal t = T (right panel). Each line corresponds to a different inventory level
for the follower. Parameter values are in Table 3.1.

The parameter θ exhibits distinctly asymmetric effects on ask and bid spreads, re-
flecting the strategic nature of the game where the leader’s consideration of fol-
lower inventory affects buying and selling sides differently. For ask spreads (δa, F⋆

0 ),
when θ is negative, high inventory positions are associated with higher spreads,
while for bid spreads (δb, F⋆

0 ), the relationship appears inverted. This asymmetry
captures the economic intuition that a leader who accounts for follower inventory
will strategically adjust spreads to either compete or second with the follower’s
position.

Around θ = 0, where the leader largely ignores follower inventory, spreads con-
verge regardless of inventory levels, creating a reference case. However, as |θ| in-
creases, the spreads diverge significantly based on inventory.

One of the most striking feature is the temporal evolution from t = 0 to t = 1, where
the spread patterns become significantly more pronounced as the trading period
progresses. At t = 0, the spreads converge relatively smoothly around θ = 0, but at
t = 1, we observe more dramatic divergence and steeper gradients, indicating that
inventory pressure intensifies as the end of the trading period approaches.
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Figure 3.5: Optimized follower bid δb, F⋆ (right panel) and ask δa, F⋆ (left panel)
spreads as a function of time, when θ takes different values. Each line corresponds
to a different inventory level for the follower. Parameter values are in Table 3.1.

In Figure 3.5 the time evolution of optimal leader spreads is shown, when the pa-
rameter θ takes negative (θ = −0.1), zero or positive (θ = 0.1) values. When such
parameter is not negative we observe a systematic convergence of spreads as time
approaches t = 1, reflecting the intensifying urgency to liquidate inventory posi-
tions as the trading period concludes. This convergence pattern demonstrates that
regardless of initial inventory levels, the finite time horizon creates a natural force
that drives the follower to quote near the leader.

The parameter θ exhibits profound asymmetric effects on the equilibrium structure,
with the benchmark case of θ = 0.00 providing a symmetric equilibrium where
both ask and bid spreads converge to identical values at t = 1. This symmetry
breaks down dramatically when θ deviates from zero, creating distinct patterns for
positive and negative values. When θ = −0.10, spreads show greater sensitivity to
inventory levels throughout the trading period, and in particular when approach-
ing the terminal date.

The inventory-dependent trajectories, represented by the color gradient from blue
(negative inventory) to yellow (positive inventory), demonstrate that extreme in-
ventory positions require more dramatic spread adjustments in the late stages of
the trading period.
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This asymmetry captures the strategic nature of the leader’s response to follower
inventory, where positive θ values create competition on the market while negative
values generate higher spreads.

Figure 3.6: Average leader’s terminal objective function over 100 thousands simu-
lations as a function of θ, for different values of β. Parameter values are in Table 3.1
except from β.

Indeed, if we take as an example the case where the follower purchases a share, that
is, her inventory qF −→ qF + 1, her optimal strategy at t + dt would be to decrease
the bid spread and increase the ask spread, in order to be more competitive on the
buying side and be filled with lower probability by a market order in the opposite
direction. If the value of θ were positive, the leader at t + dt decreases the relative
ask spread (increasing the bid spread), creating greater competition in the market,
which will therefore be more liquid and with smaller spreads. Conversely, if the
value of θ is negative, the leader will put pressure on the follower by raising the
market ask spread (and decreasing the bid), thus increasing the chances that the
follower will be filled again on the buy side. As can be seen in Figure 3.6, when the
leader creates greater competition in the market by lowering spreads, the expected
value of his profit at maturity is positive but of limited amount. Conversely, when
he tries to work against the follower, raising spreads in a manner contrary to what
the latter desires, his expected objective increases considerably.
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Figure 3.7 shows the expected value of the leader objective at maturity as a function
of a and b when θ takes different values. In this way it is possible to understand
what is the effect of the follower’s inventory on the leader’s optimal strategy and
on his objective function.

Figure 3.7: Average leader’s terminal objective function over 100 thousands sim-
ulations when θ = −0.5 (top-left panel), θ = −0.05 (top-right panel), θ = 0.05
(bottom-left panel) and θ = 0.5 (bottom-right panel). Parameter values are in Table
3.1.

We can observe how as the magnitude of parameter θ increases, the expected value
of the objective for the leader increases, and the optimal base spread combination
{a, b} tends to move along the main diagonal, maintaining symmetry between bid
and ask sides. However, when θ is positive, such as when the leader creates liquid-
ity in the market, he must compensate by increasing the base spread levels, so the
optimal values of a and b increase, and the expected value of the terminal objective
grows linearly. Conversely, for negative values of θ, the optimal combination {a, b}
tends to zero and the expectation of final profit grows more than linearly.
Relevant insights derive from the analysis of the risk aversion of the two agents
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Figure 3.8: Average leader’s terminal objective function over 100 thousands simu-
lations when he is risk tolerant (left panel) and risk averse (right panel). We fix the
leader parameters γ = 0.01, ϕ = 0.02 for the left panel and γ = 0.03, ϕ = 0.1 for
the right panel. Parameter values are in Table 3.1 except from γ and ϕ.

in the market. As observable in Figure 3.8, although there is no marked relation-
ship between the follower’s risk aversion and the expected value of the leader’s
objective, an interesting trend is noted. When the leader is risk tolerant, that is, he
slightly penalizes his running and terminal square inventory, his expected value is
greater when the follower is particularly risk averse. Conversely, when the leader
is more risk averse, he would prefer the follower to be risk tolerant. This behavior
stems from the nature of the Stackelberg equilibrium itself, as the leader’s objective
is greater when he is opposite to the follower, being able to take advantage of his
dominant position.

3 Including time dependencies

In this section we investigate the behavior of the equilibrium when the parameters
a(t) and b(t) are time dependent. Through Monte Carlo simulations (1 million
runs per scenario), we examine four distinct cases of parameter evolution: positive
exponential, negative exponential, positive linear, and negative linear. All other
parameters remain constant across all scenarios, and their value is shown in the
Table 3.1.
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Scenario Functional Form
Positive Exponential a(t) = b(t) = 0.1 + 0.1et

Negative Exponential a(t) = b(t) = 0.1− 0.1et

Positive Linear a(t) = b(t) = 0.1 + 0.1t
Negative Linear a(t) = b(t) = 0.1− 0.1t

Table 3.3: Selected time dependent functional form for the base bid b(t) and ask
a(t) spreads, for t ∈ [0, T ].

The simulation results are summarized in Table 3.4, showing the mean both Fol-
lower and Leader strategies across key metrics.

Scenario Metric F L F − L

Positive Exp. QT -0.0018 0.0017 -0.0035
XT 3.5409 1.4201 2.1208
Obj 3.0000 1.5925 1.4075

Negative Exp. QT 0.0043 -0.0041 0.0084
XT 2.9137 -0.7564 3.6701
Obj 2.9511 -1.1665 4.1176

Positive Linear QT -0.0050 -0.0143 0.0093
XT 3.8376 2.8654 0.9722
Obj 2.9484 1.4373 1.5111

Negative Linear QT -0.0015 -0.0035 0.0020
XT 3.4747 1.0667 2.4080
Obj 2.9331 0.7427 2.1904

Table 3.4: Summary of the results from 1 million simulations using approximate
closed form 2.13 for the follower and numerical techniques for the leader, with
time-dependent parameters a(t), b(t). Parameter values are given in Table 3.1 and
Table 3.3.

The positive exponential case yields the highest expected objective for the follower,
while in contrast negative exponential parameters produce particularly adverse
outcomes for the leader strategy, showing negative mean performance metrics.
Linear parameter changes demonstrate more moderate results, where positive lin-
ear trends favor the leader’s terminal wealth while negative linear trends lead to
more balanced performance.

A possible cause of this can be attributed to the fact that, by decreasing spreads ex-
ponentially, the leader has no particular profit margins, especially in the late stages,
and for this reason is forced to trade at a loss in the market. In contrast, the follower
maintains profit margins by quoting higher spreads; she will have a smaller num-
ber of transactions but with high expected profit. In general, when the trend of base
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spreads a(t), b(t) increases over time, the expected objective of the leader is greater:
the lower frequency of trades in the market, in fact, is offset by higher profits per
trade.

These results show that the time evolution of parameters a(t) and b(t) significantly
impacts system behavior, with exponential changes creating more extreme out-
comes than linear ones.

Figure 3.9: Spreads difference δa−δb in time for the leader (orange line) and the fol-
lower (blue line) for a single simulation. Positive exponential scenario (left panel)
and positive linear scenario (right panel). Parameter values are given in Table 3.1
and Table 3.3.

In order to better understand the evolution of spreads over time, Figure 3.9 shows
the spreads for a single simulation for both agents, when a(t) and b(t) are time
dependent functions.
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Chapter 4

Conclusion

In this work we have extend the framework in Boyce et al. (2025) by considering
complex interactions between two LPs in the capital markets. The set of LPs is de-
fined as the leader, while a single entity is the follower, who observes the quotes on
the market and optimizes his strategy accordingly. A modeling of this framework
through a Stackelberg equilibrium comes naturally, as the market, in turn, observes
the follower acting, monitoring the LOB, and optimizes the parameters of its own
precommitted strategy in order to maximize his own expected utility.

The leader precommits a strategy with a minimum level of spread, which can vary
over time, and depends linearly on the his own inventory and on that of the fol-
lower. While the dependence of the strategy on the leader’s own inventory had
already been analyzed, the introduction of the term θ can provide relevant details
on how the leader can exploit the available information on the market and his dom-
inant position to his advantage. When the leader acts against the follower, such as
θ < 0, the expectation on the terminal objective is much higher than when he ac-
commodates the follower by providing liquidity to the market (lowering spreads).

The follower’s optimal strategy was obtained in approximate closed form, while
the leader problem was characterized through a system of Sylvester equations,
solvable through numerical techniques well known in the literature. The existence
of a Stackelberg equilibrium was proven numerically, as there exists one (or more)
combinations of parameters that maximize the leader’s terminal objective. This
combination varies as the sensitivity parameters to the respective inventories vary,
and always remains symmetric with respect to bid and ask. In accordance with the
principle of non-cooperative games, moreover, the leader benefits when the fol-
lower assumes opposite behavior, that is when the levels of risk aversion between
the two agents are contrary.
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Finally, the impact of the time dependence of the base bid and ask spreads on
the objectives of both leader and follower was evaluated. When the base spread
grows over time, the expected profit grows accordingly, even though liquidity in
the market decreases and market orders arrive with lower frequency. Conversely,
if spreads decrease over time, the leader might find himself having to execute or-
ders with negligible profit margins, or even at a loss.

This work is a first step in the study of interaction between market makers, intro-
ducing novelties in the literature. Possible developments of the same could be con-
sidering more complex interactions between market agents, or the development of
a Nash equilibrium between multiple homogeneous LPs. Furthermore, a Stack-
elberg equilibrium framework is well-suited to the context of automated market
making, so much can be explored in this direction.
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Appendix A

Proofs

1 Proof of Proposition 2.1

The problem 2.5 satisfies the classical dynamic programming condition, see e.g.
Pham (2009), so can be expressed in terms of the value function as follows

v(t, s, x, qF , qL) = sup
δF∈AF

J(δF ). (A.1)

We guess a solution v(t, s, x, qF , qL) ∈ C1,2([0, T ] × (0,∞) × R × QF × Z) of the
form

v(t, s, x, qF , qL) := x+ qF s− 1

2
(β(t) + θ(t))

(
qF
)2 − β(t)qF qL + g(t, qF , qL), (A.2)

where g : [0, T ]×QF ×Z −→ R and g ∈ C1,2([0, T ]×QF ×Z). The Hamilton-Jacobi-
Bellman equation (HJB) associated with (2.5) with under the cash 2.3 and inventory
2.2 constraints is

− ∂v

∂t
(t, s, x, qF , qL)− sup

δF∈AF

Lv(t, s, x, qF , qL) = 0 ,

v(T, s, x, qF , qL) = x+ qF s+
a(T )− b(T )

2
− (γ + θ(T ))

(
qF
)2 − β(T )qF qL,

(A.3)

where Lv(t, s, x, qF , qL) stands for the infinitesimal generator of the value function,
such that
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Lv(t, s, x, qF , qL) =
σ2
S

2

∂2v

∂s2
(t, s, x, qF , qL)− ϕ

(
qF
)2

+ λa
[
v(t, s, x, qF , qL − 1)− v(t, s, x, qF , qL)

]
+ λb

[
v(t, s, x, qF , qL + 1)− v(t, s, x, qF , qL)

]
+ sup

δa, F∈AF

{
λamin

{
e−κ(δa, F−a(t)+β(t)qL+θ(t)qF ), 1

}
[
v(t, s, x+ s+ δa, F , qF − 1, qL)− v(t, s, x, qF , qL − 1)

]}
1qF>qF

+ sup
δb, F∈AF

{
λbmin

{
e−κ(δb, F−b(t)−β(t)qL−θ(t)qF ), 1

}
[
v(t, s, x− s+ δb, F , qF + 1, qL)− v(t, s, x, qF , qL + 1)

]}
1qF<qF

(A.4)
By plugging the ansatz A.2 in A.4 we obtain

0 = +
∂g

∂t
(t, qF , qL)− 1

2

(
∂β

∂t
(t) +

∂θ

∂t
(t) + 2ϕ

)(
qF
)2 − ∂β

∂t
(t)qF qL

+ λa
(
g(t, qF , qL − 1)− g(t, qF , qL) + β(t)qF

)
+ λb

(
g(t, qF , qL + 1)− g(t, qF , qL)− β(t)qF

)
+ sup

δa, F∈AF

{
λamin

{
e−κ(δa, F−a(t)+β(t)qL+θ(t)qF ), 1

}
[
δa, F + β(t)qL + θ(t)qF − 1

2
(β(t) + θ(t)) + g(t, qF − 1, qL)− g(t, qF , qL − 1)

]}
1qF>qF

+ sup
δb, F∈AF

{
λbmin

{
e−κ(δb, F−b(t)−β(t)qL−θ(t)qF ), 1

}
[
δb, F − β(t)qL − θ(t)qF − 1

2
(β(t) + θ(t)) + g(t, qF + 1, qL)− g(t, qF , qL + 1)

]}
1qF<qF ,

with

g(T, qF , qL) =
a(T )− b(T )

2
qF −

(
γ +

θ(T )− β(T )

2

)(
qF
)2

. (A.5)

Considering an adjustment term for the depths,

ca, F (t) = δa, F (t) + β(t)qL + θ(t)qF − 1

2
(β(t) + θ(t)) ,

cb, F (t) = δb, F (t)− β(t)qL − θ(t)qF − 1

2
(β(t) + θ(t)) ,
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we have the following PIDE

0 = +
∂g

∂t
(t, qF , qL)− 1

2

(
∂β

∂t
(t) +

∂θ

∂t
(t) + 2ϕ

)(
qF
)2 − ∂β

∂t
(t)qF qL

+ λa
(
g(t, qF , qL − 1)− g(t, qF , qL) + β(t)qF

)
+ λb

(
g(t, qF , qL + 1)− g(t, qF , qL)− β(t)qF

)
+ sup

ca, F

{
λamin

{
e−κ(ca, F+ 1

2
(β(t)+θ(t))−a(t)), 1

} [
ca, F + g(t, qF − 1, qL)− g(t, qF , qL − 1)

]}
1qF>qF

+ sup
cb, F

{
λbmin

{
e−κ(cb, F+ 1

2
(β(t)+θ(t))−b(t)), 1

}[
cb, F + g(t, qF + 1, qL)− g(t, qF , qL + 1)

]}
1qF<qF ,

(A.6)
where the terminal condition is (A.5).
Optimizing over ca, F and cb, F we obtain

ca, F⋆(t, qF , qL) = max

{
ĉa, F

(
t, qF , qL

)
, a(t)− β(t) + θ(t)

2

}
,

cb, F⋆(t, qF , qL) = max

{
ĉb, F

(
t, qF , qL

)
, b(t)− β(t) + θ(t)

2

}
,

where
ĉa, F

(
t, qF , qL

)
=

1

κ
− g(t, qF − 1, qL) + g(t, qF , qL − 1),

ĉb, F
(
t, qF , qL

)
=

1

κ
− g(t, qF + 1, qL) + g(t, qF , qL + 1).

In terms of optimal control strategy, such as follower’s quoted depths, we have

δa, F⋆
(
t, qF , qL

)
= max

{
δ̂a, F⋆

(
t, qF , qL

)
, a(t)− β(t)qL − θ(t)qF

}
,

δb, F⋆
(
t, qF , qL

)
= max

{
δ̂b, F⋆

(
t, qF , qL

)
, b(t) + β(t)qL + θ(t)qF

}
.

where

δ̂a, F⋆
(
t, qF , qL

)
=

1

κ
− g(t, qF − 1, qL) + g(t, qF , qL − 1)− β(t)qL − θ(t)qF +

1

2
(β(t) + θ(t))

δ̂b, F⋆
(
t, qF , qL

)
=

1

κ
− g(t, qF + 1, qL) + g(t, qF , qL + 1) + β(t)qL + θ(t)qF +

1

2
(β(t) + θ(t)).

2 Proof of Theorem 3.1

The argument follows the proofs of Proposition 1 and Theorem 2 in Guéant et al.
(2013). Define the function ω : [0, T ]×QF ×Z −→ (0,∞) and ω ∈ C1,2([0, T ]×QF ×
Z).
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The ansatz for the value function v(t, s, x, qF , qL) ∈ C1,2([0, T ]×(0,∞)×R×QF×Z)
associated to the problem (2.5) with unrestrained maximizers equal or greater than
the leader quoted spread is

v(t, s, x, qF , qL) := x+ qF s− 1

2
(β(t) + θ(t))

(
qF
)2 − β(t)qF qL +

1

κ
log
(
ω(t, qF )

)
.

The value function solves the following approximate Hamilton-Jacobi-Bellman equa-
tion

− ∂v

∂t
(t, s, x, qF , qL)− sup

δF∈AF

Lv(t, s, x, qF , qL) = 0 ,

v(T, s, x, qF , qL) = x+ qF s+
a(T )− b(T )

2
− (γ + θ(T ))

(
qF
)2 − β(T )qF qL,

(A.7)

where

Lv(t, s, x, qF , qL) =
σ2
S

2

∂2v

∂s2
(t, s, x, qF , qL)− ϕ

(
qF
)2

+ λa
[
v(t, s, x, qF , qL − 1)− v(t, s, x, qF , qL)

]
+ λb

[
v(t, s, x, qF , qL + 1)− v(t, s, x, qF , qL)

]
+ sup

δa, F∈AF

{
λamin

{
e−κ(δa, F−a(t)+β(t)qL+θ(t)qF ), 1

}
[
v(t, s, x+ s+ δa, F , qF − 1, qL)− v(t, s, x, qF , qL − 1)

]}
1qF>qF

+ sup
δb, F∈AF

{
λbmin

{
e−κ(δb, F−b(t)−β(t)qL−θ(t)qF ), 1

}
[
v(t, s, x− s+ δb, F , qF + 1, qL)− v(t, s, x, qF , qL + 1)

]}
1qF<qF .

(A.8)
Considering the first ansatz (A.2) and by setting ω(t, qF ) = exp{κg(t, qF )}, we ob-
tain

0 = +
∂ω

∂t
(t, qF )

+ κ

[
−1

2

(
+
∂θ

∂t
(t) + 2ϕ

)(
qF
)2

+
(
λa − λb

)
β(t)qF

]
ω(t, qF )

+ λae−1−κ( 1
2
(β+θ(t))−a(t))ω(t, qF − 1)1qF>qF

+ λbe−1−κ( 1
2
(β+θ(t))−b(t))ω(t, qF + 1)1qF<qF ,

ω(T, qF ) = exp

{
κ

[
a(T )− b(T )

2
qF −

(
γ +

θ(T )− β

2

)(
qF
)2]}

.

Given the time interval [0, T ], we define its discretization as τ = {tn, n = 0, 1, . . . , N},
where dt = tn − tn−1 and N = T

dt .
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Let us also assume qF = −qF . We define the tridiagonal set of matrices (Ai,q,n)qF≤i,q≤qF ,0≤n≤N

Ai,q,n =



1

2

(
∂θ

∂t
(tn) + 2ϕ

)
q2 − βκ(λa − λb)q if i = q,

−λa exp
(
−1− κ

(
β+θ(tn)

2 − a(tn)
))

if i = q − 1,

−λb exp
(
−1− κ

(
β+θ(tn)

2 − b(tn)
))

if i = q + 1,

0 otherwise,

and the vector (Bq)qF≤q≤qF

Bq = exp

{
κ

[
a(T )− b(T )

2
q −

(
γ +

θ(T )− β

2

)
q2
]}

.

It is straightforward to prove that

ω(tn, q) =

(
exp

{
−

N−1∑
m=n

Am · dt

}
B

)
q, (A.9)

where −An is essentialy positive, for further details see Boyce et al. (2025) and
Walter (2013). The optimal controls can be computed as

δ̂a, F⋆
(
tn, q

F , qL
)
=

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF − 1)

)]
− βqL − θ(tn)q

F +
1

2
(β + θ(tn))

δ̂b, F⋆
(
tn, q

F , qL
)
=

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF + 1)

)]
+ βqL + θ(tn)q

F +
1

2
(β + θ(tn)).

(A.10)
where the unrestrained controls must be equal or greater the one-tick more gener-
ous spreads, such as parameters must satisfy the following conditions

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF − 1)

)]
+

1

2
(β + θ(tn)) ≥ a(tn), tn ∈ τ , qF ∈ {qF + 1, . . . , qF },

1

κ

[
1 + log

(
ω(tn, q

F )

ω(tn, qF + 1)

)]
+

1

2
(β + θ(tn)) ≥ b(tn), tn ∈ τ , qF ∈ {qF , . . . , qF − 1}.

3 Proof of Proposition 4.3

Consider the PIDE (2.18) characterizing the evolution of the leader objective func-
tion with the terminal condition (2.19). We make an ansatz for u(t, s, x, qL, qF ) of
the form

u(t, s, x, qL, qF ) = x+ qLs+ h(t, qL, qF ), (A.11)

with h(T, qL, qF ) = −γ
(
qL
)2.
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The (2.18) can be written as

−∂h

∂t
(t, qL, qF ) = −ϕ(qL)2 + λa[h(t, qL, qF − 1)− h(t, qL, qF )]

+ λb[h(t, qL, qF + 1)− h(t, qL, qF )]

+ Λa,L(t, qF )[h(t, qL − 1, qF )− h(t, qL, qF − 1)]1qL>qL

+ Λb,L(t, qF )[h(t, qL + 1, qF )− h(t, qL, qF + 1)]1qL<qL

+ Λa,L(t, qF )δa,L(t, qL, qF )1qL>qL + Λb,L(t, qF )δb,L(t, qL, qF )1qL<qL ,

h(T, qL, qF ) = −γ
(
qL
)2

.
(A.12)

Let qL = −qL, qF = −qF and qL = qF . We can represent the function h(t, qL, qF ) as
a matrix (H i,j(t))qL≤i≤qL,qF≤j≤qF , where the entry H i,j(t) corresponds to h(t, qLi , q

F
j ).

We also introduce three different matrices,
(
A1

i,k(t)
)
qL≤i,k≤qL

,
(
A2

j,ℓ(t)
)
qF≤j,ℓ≤qF

and (Bi,j(t))qL≤i≤qL,qF≤j≤qF , each of them involving a different component in the
differential operator:

(
A1

i,k(t)
)
=


λa + λb if i = k,

−Λa,L(t, qF ) if k = i− 1,

−Λb,L(t, qF ) if k = i+ 1,

0 otherwise,

(
A2

j,ℓ(t)
)
=


Λa,L(t, qFℓ )− λa if ℓ = j − 1,

Λb,L(t, qFℓ )− λb if ℓ = j + 1,

0 otherwise,

(Bi,j(t)) = −ϕ(qLi )2 + Λa,L(t, qFj )δ
a,L(t, qLi , q

F
j ) + Λb,L(t, qFj )δ

b,L(t, qLi , q
F
j ).

We can rewrite (A.12) in matrix formulation as

∂H

∂t
(t) = A1(t)H(t) +H(t)A2(t) +B(t), (A.13)

with the terminal condition (H i,j(T )) = −γ(qLi )2, ∀i ∈ QL, j ∈ QF .
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Appendix B

Algorithms

In this appendix we provide sketches for the numerical algorithm developed in the
Chapter 3. The full code is available in the GitHub directory.

Algorithm 1 Market-Making Game Simulation

1: for i = 1 to steps− 1 do
2: t← time(i)
3: Calculate intensities:
4: λa ← λ0 exp(−κa(t)), λb ← λ0 exp(−κb(t))
5: Follower’s optimal spreads:
6: (δFa , δ

F
b )← calculate deltas(t, T, qFi , q

L
i , . . .)

7: Update stock price:
8: Si+1 ← Si + σ

√
∆tZ Z ∼ N (0, 1)

9: Leader’s quotes:
10: δLa ← a(t)− βqL − θqF , δLb ← b(t) + βqL + θqF

11: Simulate order arrivals:
12: Ma ∼ Poisson(λa∆t), Mb ∼ Poisson(λb∆t)
13: Compute fill probabilities:
14: pFa = e−κ(δa−δLa ) ∧ 1, similar for b
15: Determine executed orders:
16: fillFa = (Ua ≤ pFa ) ∧ (qF ̸= q + 1), U ∼ U [0, 1), similar for b
17: fillLa = (Ua ≤ 1− pFa ) ∧ (qL ̸= q + 1), U ∼ U [0, 1), similar for b
18: Update positions:
19: qF ← qF − IfillFa

·Na + IfillFb
·Nb, qL ← qL − IfillLa

·Na + IfillLb
·Nb

20: XF
t+∆t = XF

t + IfillFa
·Ma

t · (St + δFa )− IfillFb
·M b

t · (St − δFb )

21: XL
t+∆t = XL

t + IfillLa
·Ma

t · (St + δLa )− IfillLb
·M b

t · (St − δLb )

22: end for
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Appendix C

Approximate closed form

In this appendix testing results are shown in order to evaluate the goodness of the
approximate closed form solution (2.13) and the time independent form derived
in Proposition 3.2. Out of ten rounds of ten thousand runs each, we obtained at
most one violation of the condition (2.12) each. This means that, given a reasonable
set of parameters, the violation rate is ≤ 0.01%, which means a high goodness of
approximation for optimal controls.

In the Figure C.1 one of the violations obtained in shown.

Figure C.1: Random violation of condition (2.12) for the closed form approxima-
tion. Parameter value are in Table 3.1.
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1 Introduction

In a world where comfort and efficiency have become two of the most prized so-
cial assets, the emergence of Decentralised Finance (DeFi) comes as no surprise.
However, while DeFi enhances comfort and efficiency, it also introduces greater
complexity and, much like traditional financial markets, carries inherent risks. As
DeFi develops further, it is of the utmost importance to fully comprehend its work-
ings and to stay up to date with its new platforms and implementations.

Auer R. and F. (2023) define DeFi as ”a competitive, contestable, composable and
non-custodial financial ecosystem built on technology that does not require a cen-
tral organisation to operate.” Perhaps a simpler definition could be even more
instructive: DeFi is a system in which people can use financial services (such as
trading or lending) without the need for banks or other financial intermediaries,
through the use of blockchain technology and smart contracts.

The largest active DeFi platform is Uniswap v3, a Decentralised Exchange (DEX)
built on the same Automated Market Maker (AMM) foundations as its earlier ver-
sions, but with a handful of new features that give liquidity providers (LPs) and
traders a lot more to consider when acting on the market (Adams et al., 2021).
AMMs are systems that pool liquidity and make it available to traders using a set
algorithm (Othman, 2018). Some of these new features include concentrated liq-
uidity, a flexible fee structure, and protocol fee governance. Despite Uniswap v3’s
innovations, little is known about how the behaviours of LPs and traders collec-
tively shape market outcomes. The introduction of concentrated liquidity and flex-
ible fees have sparked a new debate regarding liquidity provision strategies and
their abilities to optimise returns, as well as how different LP strategies affect the
market. Furthermore, the ecology of traders in the DeFi market is just as prevalent
as in the more common centralised market. There exists a gap in the literature,
however, regarding the behavioural effects of traders within a DeFi market.

The aim of this paper is to fill this gap by analysing how LPs and different types
of traders interact with each other within a Uniswap v3 framework, by investigat-
ing the concentrated liquidity feature introduced in Adams et al. (2021), and by
modelling the individual behaviours and beliefs of agents in the Uniswap market.
This is accomplished by building an agent-based-model (ABM) that simulates the
features of a Uniswap v3 platform, thereby allowing us to seamlessly study the
impact of the various agents on the model. This ABM enables us to capture the
complex dynamics that are present on these DeFi platforms – a feature that is of-
ten missed when using more traditional models. Understanding this ecology is
not only academically valuable, but also practically relevant, as it can help design
better incentives for LPs, improve price stability, and enhance overall market effi-
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ciency.

The remainder of this paper is structured as follows: Section 2 reviews related lit-
erature on Uniswap v3, agent-based modeling, and the ecology of LPs and traders.
Section 3 explores the theoretical considerations of our model by providing a thor-
ough explanation of the Uniswap v3 framework, the structure of our ABM, and
the ecology of traders and LPs in the model. Section 4 presents and discusses our
results, while Section 5 presents the theory of tree-based sensitivity analysis, and a
handful of key findings in the context of the Uniswap v3 model. Lastly, Section 6
concludes by summarizing our most important results and their implications, as
well as providing suggestions for future work.

2 Literature review

2.1 Introduction

Decentralised Finance (DeFi) is reshaping financial markets by removing finan-
cial intermediaries, and a prime example of this is the Uniswap v3 framework.
Built on the same automated market maker (AMM) logic as the earlier Uniswap v1
and v2 systems, this newer decentralised exchange (DEX) lets liquidity providers
(LPs) concentrate their liquidity within pre-specified price ranges and set flexible
fee tiers. The additional flexibility gives LPs far more control than before, but also
leads to an increase in system complexity. These features raise new strategic ques-
tions for both LPs and traders, sparking interest in how their choices influence mar-
ket behaviour. This review dives into three key areas of literature: the foundational
work of Uniswap v3, the workings of agent-based models (ABMs) in the world of
finance, and the study of the ecology of LPs and traders in general DeFi markets,
as well as the Uniswap v3 framework. The purpose of this literature review is to
place our paper, in which we use an agent-based model to examine the ecology of
LPs and traders in a Uniswap v3 model, within the broader body of research across
these three areas.

2.2 Uniswap v3

The foundational paper on which this research is built is the paper by Adams et al.
(2021). In their paper they present the Uniswap v3, a new type of AMM that lets
liquidity providers choose the specific price ranges where their funds are active,
while keeping liquidity fragmentation and gas costs relatively low. AMMs are sys-
tems that pool liquidity and provide it to traders using a set algorithm (Othman,
2018). Their paper follows the work by Adams et al. (2020), wherein they provide a
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clear explanation of how the Uniswap v2 system works, which is essential to study
the newer Uniswap v3. Adams et al. (2021) explain that Uniswap v3 builds on
the same constant product formula used in previous versions, but introduces sev-
eral important new features such as concentrated liquidity, flexible fees, protocol
fee governance, and an improved price oracle and liquidity oracle. As mentioned
earlier, an important feature in the Uniswap market is that of constant product
markets. Angeris et al. (2021) provide a simple formal analysis of constant product
markets and proceed to show that Uniswap satisfies several desirable properties
for a market.

Aigner and Gurvinder Dhaliwal (2021) define the Uniswap as a DEX and men-
tion how DEXs are replacing the traditional order books used for trading. Based
on this idea, Lehar and Parlour (2023) go on to provide a comparison between
AMMs and limit order books (LOBs). They argue that AMMs are ideal when as-
sets have low volatility, trades are small and frequent, and noise trading is quite
prevalent, whereas LOBs are ideal when assets are more volatile and their prices
change rapidly or very often.

2.3 Agent-based modeling

As mentioned in the introduction, this research paper implements an ABM in the
context of Uniswap v3. Axtell and Farmer (2025) define an ABM as a new com-
putational methodology for representing the behaviour of individuals in order to
study social phenomena. Similarly, Datseris et al. (2024) define agent-based mod-
elling as a method for simulating a system wherein autonomous agents (LPs and
traders, in our case) interact with their environment and with each other, given a
set of rules defined at the start of the simulation. In their work, Axtell and Farmer
(2025) review ABMs in the areas of finance and economics and proceed to empha-
sise the fact that it is useful in easing the usual assumptions in standard economic
models. They go on to present a vision for how ABMs could be utilised to build
more realistic economic models in later work, while emphasising potential issues
with this approach.

In order to simulate an ABM in which LPs and traders interact with each other in
a Uniswap v3 environment, we use the Agents.jl package in Julia, presented
by Datseris et al. (2024). Due to the fact that ABMs are not described by simple
and clear mathematical equations, the code that generates ABMs is usually very
complicated and slow. The software presented by Datseris et al. (2024) provides an
ABM analysis platform with minimal code complexity. By comparing their soft-
ware to other ABM packages in other languages, they find that it outperforms all
of them in terms of efficiency and simplicity, while still offering the same features
as the rest.
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Moving on from the implementation of ABMs, another important consideration
is model validation. Fagiolo et al. (2019) review recent progress in this area and
categorise validation techniques into three main types: comparing simulated and
real-world data, calibrating model parameters, and exploring the parameter space.
The paper also points out key challenges, such as the need for improved hypothesis
testing, as well as the importance of ensuring that properties such as stationarity
and ergodicity are satisfied. These issues are particularly relevant in financial ap-
plications of agent-based modelling.

Furthermore, Hommes (2005) reviews the research on dynamic heterogeneous agent
models (HAMs) in economics and finance, focusing mainly on simpler models that
can be explored using a combination of analytical and computational techniques.
These models often feature agents who are not fully rational but instead rely on
rules of thumb or heuristics that, while imperfect, are effective in practice. In par-
ticular, HAMs are able to reproduce key patterns seen in real financial markets,
such as excessive price swings, large trading volumes, trend following, and volatil-
ity clustering.

Finally, we see how ABMs can be applied to decentralised finance (DeFi) through
Cong et al. (2024), who introduce agent-based modelling for research on decen-
tralised autonomous organisations (DAOs) and DeFi. They use agent-based mod-
elling to study how different design choices affect the concentration of governance
tokens in DAOs and DeFi systems. Their study shows that ABMs are powerful
and flexible tools for analysing and improving governance structures in DeFi and
DAOs.

Further relevant work is produced by Wang and Kampakis (2024), who introduce
Tokenlab, an ABM framework designed to study price dynamics and speculative
behaviour in token-based markets. The framework breaks down complex systems
into simple agent interactions, allowing for the simulation of various speculative
strategies and their impacts on price formation. A key feature is its controller mech-
anism, which models different types of speculators and their interactions. The
study provides useful insights into how speculative activity shapes market sen-
timent and token price movements, making it highly relevant for analysing dy-
namics in DeFi markets.

2.4 Ecology

An interesting and expanding field of literature in the world of DeFi, specifically
for Uniswap v3, is the ecology of LPs and traders in the market. There have been
a few studies analysing the different types of behaviours and strategies for both
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LPs and traders. Fan et al. (2024) discuss how LPs can either be active or passive
when it comes to providing liquidity. Active LPs strategically reallocate liquidity
constantly in order to achieve the maximum return, whereas passive LPs allocate
liquidity once and then wait their position out, possibly reallocating once or twice
if necessary. Fan et al. (2024) provide a new dynamic liquidity strategy that allows
LPs to adjust their positions over time, which thus enables them to reduce potential
losses by reallocating liquidity using capital earned through previous trades. Their
results show that dynamic liquidity provision strategies outperform more general
passive strategies.

Furthermore, as explained by Adams et al. (2021), one of the new features pro-
vided by Uniswap v3 is concentrated liquidity. This feature introduces a new av-
enue for LPs to exhibit differences in behaviour, as the framework now includes
LPs who are either risk-averse or have an appetite for risk. Risk-averse LPs opt
for a wider price range when providing liquidity in order to ensure that they still
receive fees from trading, even if the price volatility is high. LPs with a larger risk
appetite opt for a smaller price range, hoping to obtain a greater fee amount due to
an increased proportion of liquidity. Bar-On and Mansour (2023) explain that this
feature introduces the issue of locating the optimal strategy for choosing price in-
tervals. They formalise this issue as an online learning problem with non-random
rewards. They apply regret-minimisation methods to present a liquidity provision
strategy that insures a lower bound on the reward. Furthermore, Álvaro Cartea
et al. (2024) propose a strategy for selecting optimal liquidity range widths, which
outperforms existing LP approaches based on real Uniswap v3 data.

Heimbach et al. (2022) raise the concern that the complexity of concentrated liq-
uidity might cause issues due to the increased amount of considerations for new
LPs, suggesting that a high level of skill and understanding of the Uniswap v3 sys-
tem is needed in order to generate meaningful returns. However, Fan et al. (2022)
suggest that increased flexibility of price range options is beneficial to both LPs and
traders, considering the improvement of efficiency and returns.

Finally, we turn to another key participant in the DeFi ecosystem by examining
the literature on traders. This paper studies the relationship between three types of
traders in the Uniswap v3 environment: noise traders, trend followers, and funda-
mentalists. Bottazzi et al. (2005) investigate how market dynamics are influenced
by changing the ecology of individual traders, while maintaining the governing
institutional structures. They go on to analyse two different agent typologies in
the form of trend followers and noise traders. We expand on their work by adding
fundamentalist traders and by implementing an ABM on a simulated Uniswap v3
market, rather than the general financial market.
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Additional literature on the ecology of traders is produced by Hommes (2005), who
explores dynamic models where traders differ in expectations and trading strate-
gies. They examine trend followers, noise traders, and fundamentalists, and find
that markets with such heterogeneous agents can exhibit complex dynamics such
as excess volatility, bubbles, and crashes.

Furthermore, Boswijk et al. (2007) estimate an asset pricing model that changes be-
tween fundamentalist and trend-following regimes. They find that trend-following
regimes are more dominant during price run-ups, whereas fundamentalist regimes
are more dominant after bubbles. Finally, Wang and Kampakis (2024) use the To-
kenLab ABM to show how different speculative strategies influence token prices.
They simplify the market to include different types of interacting traders (repre-
senting different behaviours), namely short-term speculators, trend followers, and
liquidity hoarders.

2.5 Conclusion

A clear progression in research emerges when exploring the current literature sur-
rounding DeFi. The research begins by unpacking the functionality of AMMs like
the Uniswap v3 framework, before constructing ABMs to simulate the interactions
between different agents. Lastly, there is plenty of literature that analyses the wide
range of behaviours and strategies used by participants in these markets. Uniswap
v3 builds on previous editions through the introduction of concentrated liquidity
and a flexible fee structure, which ultimately reshapes how LPs and traders interact
with each other. After engaging with the literature, we conclude that agent-based
modelling is a powerful method to capture these interactions by simulating a sys-
tem in which LPs and traders make decisions within a DeFi market. This paper
builds on the various fields of literature that have been discussed in this section,
with the ultimate goal of using an ABM to deepen our understanding of agent
interactions in a Uniswap v3 market.
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3 The model

3.1 Uniswap v3

3.1.1 Price discretisation via ticks

Uniswap v3 discretises the continuous price space into evenly spaced units called
ticks. Each tick index i corresponds to a price level defined by:

p(i) = 1.0001i,
√
p(i) = 1.0001i/2 (1)

The inverse formula for obtaining a tick index from a given price is:

i = ⌊log√1.0001

√
p⌋ (2)

Each tick represents a price movement of approximately 0.01%. A price range is
specified by a pair of signed integer tick indices: a lower tick il and an upper tick
iu. In this model, we set the tick spacing to 1.

3.1.2 Liquidity and virtual reserves

Unlike earlier AMMs, Uniswap v3 does not explicitly maintain reserve balances
for token0 (x) and token1 (y). Instead, it tracks two core state variables:

• The active liquidity, L

• The current square root price,
√
P

The liquidity L remains constant within a tick interval [il, iu] and only changes
when crossing a tick boundary, or through the addition or removal of liquidity
by the liquidity provider. In contrast, the price

√
P evolves continuously during

swaps. These variables are sufficient to calculate the level of virtual reserves and
to facilitate efficient updates to the pool state. The core relationships between liq-
uidity and price are defined as:

L =
√
xy (3)

√
P =

√
y

x
, (4)

where x and y represent the virtual reserves of token0 and token1, respectively.

To express changes in token quantities as a function of liquidity, we rearrange the
above relationships as follows:

∆y = ∆
√
P · L (5)

∆x = ∆

(
1√
P

)
· L, (6)
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where ∆y and ∆x represent the changes in the token1 and token0 quantities,
respectively. By further rearranging Equation (5) and Equation (6), we can express
the changes in price:

∆
√
P =

√
Pnew −

√
Pold =

∆y

L
(7)

∆

(
1√
P

)
=

1√
Pnew

− 1√
Pold

=
∆x

L
. (8)

Here,
√
Pold and

√
Pnew denote the square root of the pool price before and after

the swap, respectively.

3.1.3 Fee accounting

This model assumes a fixed swap fee of 0.3%, denoted by γ = 0.003. Gas costs are
excluded for simplicity, while protocol fees ϕ are also excluded, thus distributing
all protocol fees to LPs. In addition, we note:

• xin: The amount of token0 swapped into the pool, prior to fee deduction.

• yin: The amount of token1 swapped into the pool, prior to fee deduction.

• fg,0, fg,1: Global fee growth variables for token0 and token1.

Fees accumulate according to:

∆fg,0 = xin · γ (9)
∆fg,1 = yin · γ (10)

3.1.4 Swap mechanism within ticks

As discussed in the previous section, the active liquidity level L remains constant
within a tick range. When a trader initiates a swap, the protocol adjusts the square
root price

√
P based on the direction of the trade. After applying the fixed swap

fee γ, the change in tokens is given by:

∆y = yin · (1− γ) (swap token1 for token0) (11)
∆x = xin · (1− γ) (swap token0 for token1). (12)

For swaps exchanging token1 for token0, the trader first provides an initial
amount of token1 yin, which enables the algorithm to compute the corresponding
price change ∆

√
P via Equation (7), after first computing ∆y in Equation (11). The

outflow ∆x is then computed via Equation (6). Conversely, for swaps exchanging
token0 for token1, the model uses the known input xin to compute the quantity
change ∆x and the price change ∆(1/

√
P ) through Equations (12) and (8). The

outflow ∆y is then computed in Equation (5).
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3.1.5 Swap mechanism across ticks

A key feature of Uniswap v3 is determining when a swap crosses a tick boundary,
as this directly affects which liquidity ranges become active during execution. The
following flowchart is originally from Adams et al. (2021) and illustrates the swap
control logic.

Figure 1: Swap control flow within and across ticks (Adams et al., 2021).

If the tick that corresponds to the updated price crosses a boundary of a liquid-
ity interval, then the protocol must account for the shift into the new interval by
applying the change in liquidity ∆L that is associated with this new interval. Fur-
thermore, the tick value is reset to the boundary value of the new liquidity inter-
val. Any unfilled portion of the swap proceeds to the next trade, executed at the
updated tick, with the updated liquidity. This process repeats until the entire input
is consumed or slippage constraints are met.

3.1.6 Liquidity provision within a specified price range

Liquidity providers in Uniswap v3 specify a price range [il, iu], denoted in ticks,
over which their liquidity is active. The change in liquidity is represented by ∆L,
and the required token amounts depend on the current square root price

√
P and

the tick boundaries
√

p(il) and
√
p(iu).

The following piecewise functions ensure that LPs supply the correct token propor-
tions, based on whether the current price is below, within, or above their specified
range.
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The amount of token1 required:

∆Y =


0 ic < il

∆L · (
√
P −

√
p(il)) il ≤ ic < iu

∆L · (
√
p(iu)−

√
p(il)) ic ≥ iu

(13)

The amount of token0 required:

∆X =



∆L ·

(
1√
p(il)

− 1√
p(iu)

)
ic < il

∆L ·

(
1√
P

− 1√
p(iu)

)
il ≤ ic < iu

0 ic ≥ iu

(14)

3.2 Agent-based model

We construct an Agent-Based Model (ABM) in Julia in order to implement the
Uniswap v3 algorithm and investigate its performance. An ABM is a computa-
tional model which simulates the behaviour and interactions of autonomous agents.
In the context of our research, the agents are liquidity providers and traders of var-
ious behavioural characteristics. The structure of the model and its behavioural
rules are crucial in emulating realistic, applicable market dynamics. This com-
putational framework provides the tools to simulate an automated market maker
(AMM) such as Uniswap v3.

The ABM is implemented using the Agents.jl package in Julia, where the
model is defined using the StandardABM framework. This allows for the agent
behaviour described in Section 3.3 to be modelled using swap functions, which are
then executed at each time step, for every agent. The swap functions implement
the various equations and mechanisms discussed in Section 3.1. The order of ac-
tion for the agents in the model is set randomly to ensure that the simulation is
unbiased, thus following realistic market conditions.

3.3 Ecology of agents

3.3.1 Noise trader

In ABMs, noise traders are typically characterised by incorrect expectations of fu-
ture prices (DeLong et al., 1990). Although irrational, they may still have a persis-
tent and systematic impact on asset prices — occasionally exceeding that of rational
traders under specific conditions. In this study, noise traders are implemented as
random agents who either swap token0 (x) for token1 (y), or vice versa. Their
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trading actions are driven purely by chance, without any informational or strategic
foundation.

3.3.2 Trend follower

The trend follower is a speculative agent in our model. Representing momentum-
driven traders, this agent makes trading decisions based solely on recent price
movements, without reference to fundamental values or external signals (Bottazzi
et al., 2005).

Behavioral logic and trading strategy
At each time step, the trend follower evaluates recent price dynamics to guide its
trading behavior. In our model, trend followers base their trading decisions on
the recent trend observed over the past 20 price changes. Specifically, they count
the number of upward versus downward movements, under the assumption that
the last 20 price changes provide a reasonable window to detect momentum. This
count serves as a simple momentum signal that captures the prevailing market
trend.

The initial amount of tokens used in a swap is selected at random, between the
values of 0 and 10. The agent applies the following rule-based strategy in order to
make a swap decision:

• Strong upward trend: If 14 or more of the last 20 price changes are positive,
the agent detects upward momentum and swaps token1 for token0.

• Strong downward trend: If 14 or more of the last 20 price changes are nega-
tive, the agent detects downward momentum and swaps token0 for token1.

• No clear trend: If neither condition is met, the agent remains inactive during
that trading round.

This rule-based strategy captures the essence of momentum trading and introduces
speculative dynamics into the decentralised trading environment of the model.

3.3.3 Fundamentalist

Fundamentalist agents form expectations about future asset prices based on their
perception of intrinsic value. In real-world markets, such valuations are typically
guided by economic indicators and macroeconomic fundamentals, under the as-
sumption that prices eventually revert to their fundamental or equilibrium levels.

In our agent-based Uniswap v3 model, no external economic data is available. As
a simplifying assumption, fundamentalists treat the initial pool price of 1.0, as the

14



fundamental value. Therefore, we observe that they follow a mean-reversion strat-
egy, responding to deviations between the current market price and the fundamen-
tal value.

Behavioural logic and trading strategy
At each time step, the fundamentalist keeps track of the current market price. The
initial amount of tokens swapped is uniformly randomised between 0 and 10, and
the agent applies the following rule-based strategy before executing a swap:

• Overpriced condition: If the market price exceeds 1.05 (i.e. 5% above the
fundamental value), then the agent considers the asset overvalued and swaps
token1 for token0. This swap is tantamount to a selling an overpriced
asset.

• Underpriced condition: If the market price falls below 0.95 (i.e., 5% below
the fundamental value), then the agent considers the asset undervalued and
swaps token1 for token0, effectively buying the underpriced asset.

• Near-fair-value condition: If the price lies between 0.95 and 1.05, the agent
abstains from trading during that step.
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4 Results & Discussion

In Section 4, we present and investigate the results produced by the Uniswap v3
model across a range of market dynamics and ecologies. We begin by visualizing
our results in the form of plots, provided in Section 4.1, before considering tables
of performance metrics, provided in Section 4.2.

4.1 Visual comparison of market dynamics

We make use of four plots to compare the market conditions present when spe-
cific market dynamics are at play. The first plot presents the price at each time
step, which also represents the exchange rate between the two tokens (token0
and token1) at the given time. The second plot presents the current active liquid-
ity at each time step, with the liquidity value on the y-axis indicating the amount of
active liquidity in the current trading range. The third plot depicts a spread of the
volumes of token0 and token1 traded at each time step, while the fourth plot il-
lustrates the liquidity level at each tick where an agent action has occurred. (Please
refer to Section 3.1 for the relationship between ticks and prices.)

4.1.1 Market dynamics with two liquidity providers

The following figures illustrate market dynamics when keeping our LPs constant,
while varying our trader behaviours. Throughout this section, we have one LP
supplying 1000 units of liquidity across the full range of ticks (-10000 to 10000),
and another LP which provides 100 units of liquidity in a more concentrated range,
between ticks -1000 and 1000. Both LPs provide liquidity at the beginning of the
simulation.

Figure 2 presents the simplest case, in which one active noise trader acts on the
Uniswap v3 market. In the top two subplots, (subplots numbered 1 through 4
henceforth, moving downwards), we observe how the price fluctuates over time,
and how the active liquidity jumps between two different liquidity regions as the
trader executes their trades. The fact that the price series follows no trend comes
as no surprise, since noise traders act randomly. By comparing plots 1 and 3, we
notice that the featured dynamics are rough inverses of each other; this is simply
due to how their values are calculated. A decrease in plot 3 indicates an exchange
of token1 for token0, which according to Equation (3), leads to an increase in
price. The effect of concentrated liquidity is evident in the final plot, which shows
that liquidity provided within the [−1000, 1000] tick range increases the available
liquidity for traders operating within this tick interval.
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Figure 2: Market behaviour with the configuration of one noise trader.

To analyse the impact of a trend-following trader on market conditions, we con-
sider two scenarios. In the first experiment, the trend follower’s initial trade quan-
tity ranges from 1 to 2 units, whereas in the second scenario, it ranges from 1 to 10
units. This approach allows us to compare how market dynamics differ when the
trend follower exerts a relatively small influence on the market, versus when it has
a much larger impact.

We start by looking at the former case. In Figure 3, we observe in the first plot
that the trend follower does not have a large impact on price, due to their relatively
small trades. However, we notice three instances where there is a prolonged trend
in the price, such as the upward trends between time points 175 and 375 and 800
and 1000. Plots 2 and 4 illustrate how the ticks jump between the different liquid-
ity regions due to the traders’ activities. For example, when comparing plot 2 from
Figure 2 to its counterpart in Figure 3, we remark that the tick jumps between dif-
ferent liquidity regions are more frequent. We hypothesize that this could be due to
the fact that the trend follower exacerbates any existing trends, thereby increasing
(or decreasing) the price further than in a market with just a single noise trader.

In Figure 4, we consider the second trend follower scenario, in which their initial
quantity of tokens traded is chosen randomly between 1 and 10 units. We observe
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Figure 3: Market behaviour with the configuration of one noise trader and one trend
follower. The trend follower trades either one or two tokens.

a substantial difference in market behaviour, with the price ranging from below
0.75 up to approximately 1.60. These price fluctuations are larger than any of the
cases we have encountered thus far. We also observe smoother, more cyclical be-
haviour in plots 1 and 3 compared to previous experiments. These dynamics occur
due to the effect of trend followers prolonging the presence of an existing trend in
the market. Since trend followers are now trading larger quantities of tokens, the
prolonging of trends is stronger, which thus results in smoother dynamics.

Looking at the first plot in Figure 4, we observe how the trend follower quickly
identifies a market trend and then acts accordingly, thereby causing a shift in mar-
ket dynamics. The moment that the trend reverses in direction, the trend follower
identifies the new trend and causes the market to adjust accordingly. Plot 2 fur-
ther illustrates the size of price movements within the market due to the presence
of a trend follower. Due to the large fluctuations in price, the ticks jump between
different liquidity regions with greater regularity. It is evident that when we only
have a trend follower and a noise trader, the trend follower disrupts the market
completely.
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Figure 4: Market behaviour with the configuration of one noise trader and one trend
follower. The trend follower trades a random amount of tokens in the [1, 10] interval.

This is where the necessity for a fundamentalist trader arises. Looking at the first
plot in Figure 5, we see that the price does not fluctuate drastically from 1.00 as it
does in Figure 2, when we only consider one noise trader. A fundamentalist be-
lieves that an asset is either over- or under-priced when its price diverges from an
equilibrium level or expected range, and subsequently trades in the opposite direc-
tion. The decision to act in the opposite direction is a counterbalance in the model,
constraining the price within the fundamentalist’s preferred bounds. In Figure 5,
the upper and lower bounds for the fundamentalist trader are 1.05 and 0.95, re-
spectively. The resulting price dynamics can be observed in the uppermost plot,
with the price oscillating within the bounds of 1.05 and 0.95, and reversing course
whenever the fundamentalist trades against any developing price bubbles.

When considering only one noise trader and one fundamentalist, the resulting
market is small and simplistic, with the fundamentalist’s beliefs (or bounds, equiv-
alently) having a notable impact on market conditions. Plots 2 and 4 further estab-
lish the fact that the price does not fluctuate as drastically, compared to the initial
experiment with just one noise trader. This is due to the traders’ activities never
causing the ticks to move between different liquidity regions (the tick always re-
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Figure 5: Market behaviour with the configuration of one noise trader and one fundamen-
talist.

mains between -1000 and 1000). Lastly, Plot 3 reiterates the inverse relationship
that exists between the price and the volume spread.

In Figure 6 we observe the market conditions when we have all three trader ecolo-
gies acting on the market at every time step. Notably, the presence of a fundamen-
talist counteracts the effects of the trend follower, even when the trend follower is
allowed to trade the same quantities as noise traders (1 to 10 token units). From Fig-
ure 6, we may study the effects of the trend follower and fundamentalist when the
latter widens their perceived price boundary from [0.95, 1.05] to [0.9, 1.1]. Firstly,
there are increased upward and downward trends in the price dynamics due to the
trend follower intensifying existing market trends, especially around time steps
250 and 400. Secondly, the fundamentalist bounds the price between 0.9 and 1.1,
acting against the market when the price moves outside of these bounds.

In addition, we note that the impact of the trend follower is weakened due to the
behaviour of the fundamentalist, who bursts any bubbles created by the trend fol-
lower. While the trend follower effectively drives the price away from equilibrium,
the fundamentalist pulls it back. As a result, price fluctuations are smaller than
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Figure 6: Market behaviour with the configuration of one noise trader, one trend follower,
and one fundamentalist.

when only trend followers are present in the model. The stabilizing effects of the
fundamentalist highlight the necessity of a diverse trader ecology in the Uniswap
v3 framework.

Figure 7 presents the market behaviour after increasing the number of agents in our
ABM simulation to mimic a more realistic market under which Uniswap v3 would
operate. We observe similar market conditions when compared to previous figures.
Plot 2 seems a bit erratic, but is still sensible, as a market with 100 noise traders,
50 trend followers, and 50 fundamentalists inevitably results in frequent jumps
between liquidity regions. Moreover, we observe the concentration of liquidity
across the tick range of [−1000, 1000] in plot 4. The ability to swap within and
across liquidity intervals confirms the key characteristic of concentrated liquidity
in Uniswap v3, and how it alters the overall landscape of the market.

4.1.2 Market dynamics with three liquidity providers

In Section 4.1.2, we consider a scenario in which the dynamics of the market are
very similar to that of Figure 2, but with an increased number of agents that are
supposed to represent a more realistic Uniswap v3 market. We now introduce a
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Figure 7: Market behaviour with 100 noise traders, 50 trend followers, and 50 fundamen-
talists, all with initial traded amounts drawn randomly from a U [1, 10] distribution. Note
that the fundamentalists have bounds of 0.9 and 1.1).

scenario with three LPs, each with different concentrated liquidity amounts, and
100 noise traders. The first LP supplies a liquidity of 1000 units across the entire
tick range (from -10000 to 10000), the second LP introduces 100 units of liquidity
between ticks -1000 and 1000, while the third supplies 50 units of liquidity within
the narrowest range of -500 to 500.

Analysing the first plot in Figure 8, we see that the price moves erratically due to
the large amount of noise traders in the model. Comparing plots 1 and 3, we note
that the inverse relationship between price and the volume spread cannot be ob-
served as clearly as in the earlier scenarios. This is due to the increased number of
traders and subsequent increased price volatility. Plots 2 and 4 are where we see
the difference between having 2 LPs and 3 LPs.

While it is difficult to see the jumps between different liquidity regions in Figure 8,
we can conclude that the ticks jump within seven different liquidity levels, instead
of the aforementioned three regions. The creation of new, incorrect liquidity levels
occurs due to the logic of the swap x for y function in our code. Trading y for x
is easier to program, as tick crossings occur going rightward. When initializing the
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Figure 8: Market behaviour with the configuration of 100 noise traders and three LPs.

positions of LPs, the leftmost tick of their specified interval serves as the liquidity
addition point; liquidity is then removed at the rightmost tick. The logic cannot be
reversed cleanly in the x for y trading case, as the program requires a specific set of
conditions that account for when and where the tick lands.

There is a very specific issue that occurs when the tick “trickles” around the end-
point of a liquidity interval. Secondary trades with residual, untraded amounts
of tokens can occur near an active tick before actually landing on that tick, which
thus causes the associated liquidity regions to be activated multiple times in a sin-
gle swap. Consequently, liquidity is added to or removed from the pool twice in
one interval. While the case for two LPs has been handled for the most part (see
Figure 7, in which there are two LPs with two distinct levels of trading), the addi-
tion of further LPs causes errors, as the code has not been updated to account for
the increased number of “trickling” cases. The extension of the program to account
for three or more LPs is left as an avenue for future research.

4.1.3 Market dynamics with an active liquidity provider

In this scenario, the simulation starts with two LPs: one supplying 1000 units of
liquidity across the full tick range (from -10000 to 10000), and the other supplying
100 units between -1000 and 1000. At time step 250, a third LP adds 100 units of
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liquidity across [−2000, 2000], which is later removed at time step 750.

Figure 9 illustrates the market dynamics when a third LP mints and burns liquidity
during the simulation. All traders are included, and from Figure 9, we observe the
typical behaviour of price and volume spread, but with the addition and subse-
quent removal of concentrated liquidity.

Figure 9: Market behaviour with the configuration of one noise trader, one trend follower,
one fundamentalist, two static LPs and one active LP.

In the second plot, we observe that the active liquidity increases from 1100 to 1200
at time step 250. This upward shift reflects the addition of 100 units of concen-
trated liquidity by the third LP, which becomes active immediately. The immediate
activation of the third liquidity range occurs because the current tick lies within
the concentrated range of [−1000, 1000], in which all three LPs are active. This
behaviour is further validated by the fourth plot, which highlights the feature of
concentrated liquidity. Notably, in the fourth plot, traders make swaps at liquidity
levels below 1100 outside the tick range of [−1000, 1000], due to the fact that the
concentrated liquidity between -2000 and 2000 is not active across the entire time
frame.
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4.2 Comparison of performance metrics

Section 4.2 presents the performance metrics of the Uniswap v3 model across dif-
ferent configurations, each of which correspond to different figures in Section 4.1.

Metric Figure 2 Figure 3 Figure 4 Figure 5
Volatility of Price 0.025148 0.03757 0.11627 0.01262
Average of Price 0.99079 1.00324 0.98243 1.00368

Skewness of Price -0.14169 0.45213 0.15076 -0.35437
Volatility of Volume Traded 51.83629 50.52490 165.97832 20.11628
Average of Volume Traded -63.91345 -22.03097 -109.01045 -6.77913

Skewness of Volume Traded 0.30984 -0.78189 -0.43030 0.044875

Table 1: Metrics of Uniswap v3 market across different scenarios, each with two
liquidity providers.

Table 1 illustrates the impact of the different trader ecologies on the model when
considering two liquidity providers. At the beginning of the model simulation, the
first LP supplies liquidity over the [−10000, 10000] interval, while the second pro-
vides liquidity across the [−1000, 1000] interval.

The average price remains similar across the four different configurations. Notably,
the simulation displayed in Figure 4 (featuring one noise trader and one trend fol-
lower, with a larger amount traded) exhibits both the greatest deviation in aver-
age price and the highest price volatility. This outcome is expected, as the trend
follower in this setup is able to trade quantities comparable to the noise trader,
thereby exerting a significant influence on market conditions.

Similarly, the volatility of the volume traded shows comparable patterns. The
skewness of the price and the traded volume indicates that the price distribution
is relatively symmetric, oscillating around 1. This behaviour stems from the fact
that the initial tick is set to 0 and serves as the reference point, as shown in each of
the figures. In contrast, the skewness of the volume traded suggests that the delta
volume spread is less symmetric than the price distribution, reflecting the random
nature of the trade sizes executed by the agents.

By broadening the ecology of the types of traders in the ABM, we obtain the re-
sults presented in Table 2. The volatility and mean of the price indicate that the
market behaves as expected, exhibiting low volatility and maintaining an average
price close to 1. Additionally, the skewness of the price confirms the relative sym-
metry of price fluctuations around this central value.
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Metric Figure 6 Figure 7
Volatility of Price 0.01887 0.02733
Average of Price 1.00019 1.00037

Skewness of Price 0.14473 0.09971
Volatility of Volume Traded 27.06547 397.17210
Average of Volume Traded -19.73281 -702.49706

Skewness of Volume Traded -0.06269 -0.74988

Table 2: Metrics of Uniswap v3 market across varying scenarios with two liquidity
providers.

The metrics for the delta volume spread reveal noticeable skewness, particularly
evident in Figure 7. Here, the average volume traded is negative, indicating that
the market traded more of token0 than token1 (due to random selection of amount
of tokens traded). This is further supported by the substantial volatility of 397.1720
and an average volume traded of -702.49706, highlighting both the variability and
the directional bias in trading activity.

Metric Figure 8 Figure 9
Volatility of Price 0.02869 0.03642
Average of Price 1.00114 1.00712

Skewness of Price 0.10919 -0.35404
Volatility of Volume Traded 413.21110 48.32451
Average of Volume Traded 229.82505 11.46620

Skewness of Volume Traded -0.74304 0.16399

Table 3: Metrics of Uniswap v3 market across varying scenarios with three liquidity
providers.

Increasing the number of LPs with varying concentrated liquidity levels yields the
results shown in Table 3. Overall, the price behaves as expected, exhibiting low
volatility and a mean value close to 1, while remaining approximately symmetric.
However, in Figure 9, there is a noticeable increase in price skewness. The negative
skewness likely results from the addition and removal of liquidity during the sim-
ulation, which introduces asymmetry in price movements.

Examining the volume spread metrics in Figure 8, we observe that an increase in
the number of noise traders and LPs affects the quantity traded. Specifically, this
configuration leads to higher volatility in traded volumes and a negative skew-
ness, indicating that, on average, token1 was exchanged for token0 with greater
magnitude and regularity. This outcome reflects the combined effects of increased
trading activity and the uneven distribution of trade sizes.
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5 Tree-based sensitivity analysis

Classification and regression trees were first introduced in Breiman et al. (1984). In
Hastie et al. (2009), the authors provide a detailed summary of the foundational
theory of decision trees, much of which originates from Breiman et al. (1984). We
will provide a summary of the section on regression trees, random forests, and gra-
dient boosted models in Hastie et al. (2009).

First, let us review how regression trees and ensemble methods can be used to
conduct a preliminary sensitivity analysis. Sobol indices and other variance-based
methods (as proposed in Saltelli et al. (2008)) are generally considered to be the
most comprehensive forms of sensitivity analysis. They are often computation-
ally intensive, however, and as a result, machine learning techniques have been
proposed as an alternative form of global sensitivity analysis (Harper et al., 2011;
Jaxa-Rozen and Kwakkel, 2018). These tree-based methods require the creation
of a data set that represents the “reasonable” parameter space of the model. We
construct this space as such:

1. For each model, all parameters are varied within “reasonable” intervals. As
we do not know the underlying distributions of many key model parame-
ters, we make the assumption that all input values are drawn from different
uniform distributions.

2. The model is then simulated for each combination of parameters.

3. Several key performance metrics are computed at the end of each simulation,
and will serve as target variables for the regression machine learning tech-
niques. For the sake of brevity, we only consider price volatility and mean
price as target variables in this report.

Note that in our sensitivity analysis, we treat model parameters as predictors. The
goal is not to predict final performance metric values from a given parameter com-
bination, but rather to use decision trees to visualize cuts in the parameter space,
and ensemble methods to understand variable importance in the model. Predic-
tive ability matters, however, as poor predictive power will give rise to erroneous
visualizations (and a poor understanding) of the parameter space.

5.1 Theory of regression trees

For all theoretical sections henceforth, the notation and conventions will follow
those from the original source (Hastie et al., 2009).

As a general idea of how the regression tree algorithm works at its most basic level,
let us assume that we have a set of p continuous predictors {x1, . . . , xp}, as well as
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a continuous target variable Y . We begin by initially splitting the space into two
regions, and designating the response as the mean of Y in each of the two regions.
We then choose the feature and associated split-value that produce the optimal fit.
The two regions are then split using the technique explained above. This process
continues recursively until a stopping condition is satisfied in each of the regions
(Hastie et al., 2009).

Now, consider a data set that contains N observations, with one target variable
Y = {y1, . . . , yN} and p continuous features/predictors {xi1, . . . xip}, for observa-
tions i = {1, . . . , N}. As explained in Hastie et al. (2009), the algorithm partitions
the feature space into M regions, denoted by R1, . . . , RM . If we employ a mean
squared error loss function, then the response will be the mean of the target vari-
able yi in each region, for each observation.

In general, let us model the response f(x) in some region by a constant cm, for
each of the regions m = {1, . . . ,M}. Formally, we obtain

f(x) =

M∑
m=1

cmI(x ∈ Rm), (15)

where I(x ∈ Rm) is an indicator function, dependent on the location of x within
any of the M regions. When minimizing a least-squares loss function, it follows
that the optimal response value ĉm will simply be the mean of the target variable
values yi in region Rm, which is to say

ĉm = mean(yi |xi ∈ Rm).

To reduce computational complexity, the algorithm uses a greedy, top-down ap-
proach to determine the optimal splitting variable and split-point. From Hastie
et al. (2009), consider some splitting variable j (i.e. one of the p predictors in our
data set) and a split-point s. Two regions are then defined: the first region will
contain all values of all predictors, such that each predictor value Xj is less than
the split value s, while the second region will contain all values Xj greater than or
equal to s. In other words,

R1(j, s) = {X |Xj < s} and R2(j, s) = {X |Xj >= s}. (16)

The splitting variable j and the split-point s that minimize the least-squares loss in
each of the two formulated regions are then chosen:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 ,
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with both of the interior minimizations solved by

ĉ1 = mean(yi |xi ∈ R1(j, s)) and ĉ2 = mean(yi |xi ∈ R2(j, s)),

for any combination of j and s, provided that least-squares loss is to be minimized.
This process is then repeated on the two split regions, as well as all other regions,
until the desired size of the tree has been attained.

The size of the tree is initially dependent on the minimum number of observations
permitted to exist in a given region (or node). The minimum depth of a region is
set as a hyperparameter in the algorithm; we will tune it to ensure that the structure
of the tree can be understood without overfitting the data. The preferred strategy
is to grow a large tree with a relatively lower minimum node size, before employ-
ing cost-complexity pruning Hastie et al. (2009). Given the larger, initial tree T0, a
generic subtree T , and the number of terminal nodes |T |, we may define the cost
complexity criterion:

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |. (17)

Here, m denotes a specific terminal node of the subtree T and Nm represents the
number of observations in the region Rm (i.e. the number of {xi ∈ Rm}, while

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2,

where ĉm =
1

Nm

∑
xi∈Rm

yi

The goal is to find the value of α that minimizes Cα(T ) and thus prunes the tree
to an ideal size. The hyperparameter α is estimated using five- or tenfold cross-
validation; we will refrain from explaining those processes in this report, as we
simply choose a sensible α in order to visualize the parameter space.

5.2 Random forests and gradient boosting

The hierarchical nature of tree-building means that small changes in the data can
result in wildly different splits. Consequently, an individual regression tree is un-
stable with high variance (Hastie et al., 2009). Ensemble methods such as random
forests and gradient boosting (featured in the next subsection) can reduce this in-
stability and provide us with greater insight as to the potential drivers of sensitivity
and instability in our model. While decision trees will be used to visualize cuts in
the parameter space, random forests and gradient boosting will be employed to
understand variable importance in each model.
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5.2.1 Theory of random forests

Random forests are not computationally intensive to build and train. As a result,
they are a suitable alternative to Sobol indices for global sensitivity analysis. The
method was first introduced in Breiman (2001) as a modification of bagging, in
which a large collection of de-correlated trees is built and then averaged. The algo-
rithm for random forests for regression trees (as presented in Hastie et al. (2009)) is
displayed below:

1. For b = 1 to B trees:

(a) Given a training set, draw a bootstrap sample of the training data.
(b) Build an individual tree Tb using the bootstrapped predictors and target

variable, by recursively repeating the following steps:

(i) Randomly select m variables of the set of p predictors. For regres-
sion problems, m is often chosen to be p/3, whereas for classification
problems, m is chosen to be an approximation of the

√
p (Hastie

et al., 2009). Note that m is a hyperparameter that will be tuned.
(ii) Of the m chosen predictors, pick the variable c that minimizes the

loss function over the two split nodes.
(iii) Use the optimal splitting variable c and its corresponding split value

to split the node into two daughter nodes.
(iv) Repeat steps (i) to (iii) until the minimum node size nmin has been

reached (Hastie et al., 2009). The minimum node size is a hyperpa-
rameter that will be tuned.

2. Once Step 1 has been completed for all B trees, we can make a prediction
for some observation point x. In the case of a regression random foreset, this
prediction is given as the average predicted value across all trees B:

f̂B
rf (x) =

1

B

B∑
b=1

Tb(x).

When considering the size of random forests, we may first note that since each tree
is identically distributed, the bias of a forest of trees will be equal to the bias of
each individual tree. Considering variance, however, we may find that if we have
B identically distributed random variables (trees, in this case), each with variance
σ2 and pairwise correlation ρ, then the variance of the average of those variables is
given by

ρσ2 +
1− ρ

B
σ2.

Since our random variables are trees, we may thus reduce the variance of the ran-
dom forest by not only increasing the number of trees B, but also by decreasing
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the pairwise correlation ρ through random predictor variable selection during the
tree-growing process Hastie et al. (2009).

5.2.2 Theory of gradient boosting

Consider a tree of the form

T (x; Θ) =
J∑

j=1

γjI(x ∈ Rj), (18)

where Rj represents the disjoint, partitioned regions of the parameter space, j =
1, 2, . . . , J are the terminal nodes of the tree, and γj is the predicted value of the
response function in some node j. We can condense the regions Rj and predicted
response values γj into a parameter set Θ = {Rj , γj}J1 . The values of Θ are found
by minimizing a loss function (mean squared error, for example) over each of the
J nodes, for all of the xi observations in the corresponding Rj region (Hastie et al.,
2009).

According to Hastie et al. (2009), a boosted tree model is expressed as a sum of
M trees

fM (x) =
M∑

m=1

T (x; Θ), (19)

where the risk Θ̂ must be minimized for the regions and response values Θ =
{Rjm, γjm}Jm1 of the next tree, given the current model fm−1(x):

Θ̂m = argmin
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)). (20)

If the regions are known, then the response values for some node j in a given tree
m are given by

γ̂jm = argmin
γjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γjm). (21)

Hastie et al. (2009) state that for regression trees with a mean squared error loss
function, the solution to Equation (20) is the regression tree that is best at predict-
ing the residuals for the current tree (the difference between actual and predicted
values; i.e. yi − fm−1(xi) for some observation i), while the predicted response
value γ̂jm is the mean of the residuals in the region j.

The gradient boosting algorithm for regression is presented in Hastie et al. (2009),
and can be summarized as such:

31



1. Initialize the model with some constant value, which corresponds to the re-
sponse of a single-node tree. This initial model is given by

f0(x) = argmin
γ

N∑
i=1

L(yi, γ).

2. Then, for trees m = 1 to M :

(a) For observations i = 1, 2, . . . , N of the current model, compute the gra-
dient of the loss function:

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

.

(b) Treating the gradient values as targets, fit a regression tree to the tar-
gets rim. Terminal regions Rjm follow from the tree, for nodes j =
1, 2, . . . , Jm.

(c) For each of the j nodes, compute the optimal response

γjm = argmin
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ).

(d) Update the model according to

fm(x) = fm−1(x) +

Jm∑
j=1

γjmI(x ∈ Rjm),

and proceed to the next tree, continuing the loop at step (a) again.

3. Once all trees have been estimated, the output f̂(x) of the gradient boosting
algorithm will be equal to the final tree fM (x).

5.2.3 Variable importance

Variable importance is derived in the exact same way for both random forests and
gradient-boosted models (Hastie et al., 2009). For each split in each tree, the “im-
portance” of a predictor variable is calculated as the improvement/difference in
the split-criterion, from the parent node to the daughter node. These difference
values are then summed for all nodes in all trees to obtain a ranking of the most
important variables. In a more technical sense, the variable importance ranking
lists the predictors in order of contribution to improved prediction accuracy.

The improved accuracy of decision trees and ensemble methods is essential in our
research. Variance importance plots provide us with a more realistic understand-
ing of the parameter space, as well as the predictors that are most responsible for
final price volatility and mean price values.
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5.3 Tree-based sensitivity results

Tree-based sensitivity analysis methods assume that the underlying model is un-
known. The primary goal of these techniques is to identify the predictors that are
most responsible for driving the model to the observed price volatility and mean
price values. Consequently, we must construct a parameter space that is represen-
tative of the wide range of possible price movements in the model.

We begin our sensitivity analysis by constructing a representative data set, with the
model inputs drawn from the distributions specified in Table 4. Future research is
required to understand the actual underlying distributions of some of these inputs;
as a result, we make the simplifying assumption that all parameters are uniformly
distributed within sensible intervals. Once all parameters have been sampled and
arranged into a dataframe of inputs, we run our agent-based model for each com-
bination of predictors (corresponding to each row in the dataframe), assuming an
ecology where all types of traders are included, with two LPs. In total, we consider
1000 different simulations, each for 1000 time steps.

Code name Parameter description Sampling distribution
num NT Number of noise traders U(100, 200) (integer)
num TF Number of trend followers U(50, 100) (integer
num fund Number of fundamentalists U(50, 100) (integer)
pa Lower tick for second liquidity provider interval U(−2000, 2000) (integer)
pb Upper tick for second liquidity provider interval pa+ U(200, 1000) (integer)
k Second LP’s delta liquidity U(50.0, 200.0) (float)
y in Amount of Y traded for noise traders U(50.0, 100.0) (float)
x in Amount of X traded for noise traders U(50.0, 100.0) (float)
TF in Amount traded for trend followers U(25.0, 50.0) (float)
fund amount in Amount traded for fundamentalists U(25.0, 50.0) (float)
fund upper bnd Upper fundamentalist bound U(1.05, 1.25) (float)
fund lower bnd Lower fundamentalist bound U(0.75, 0.95) (float)
L initial First LP’s delta liquidity U(10000.0, 20000.0) (float)

Table 4: Predictors in the agent-based Uniswap v3 model. Note that the initial LP has a
constant interval of [−10000, 10000].

Our global sensitivity analysis enables us to study sub-ecologies of traders and
LPs. For example, fundamentalist traders with boundaries that are further from
1 can be seen as more apprehensive to bet against developing bubbles, whereas
fundamentalist traders with boundaries that are closer to 1 can be interpreted as
being more aggressive in their actions. As for liquidity providers, LPs that set their
position with wider ranges can be seen as relatively more risk-averse in their ap-
proaches, opting to collect consistent but smaller fee totals. On the other hand, LPs
with relatively narrower positions are less conservative in their approaches, with
higher potential fees collected, but a much greater risk of illiquidity.

We assume that the initial LP has a constant interval of [−10000, 10000], and that
the initial tick is always set at 0 (thus corresponding to an initial price of 1). Fur-
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Figure 10: Regression tree using the rpart (Therneau and Atkinson, 2023) and
rpart.plot (Milborrow, 2024) packages. The price volatility is selected as the target vari-
able, with the initial cut made by the first LP’s delta liquidity L initial. The upper value
in each rectangle denotes the mean predicted value of the price volatility in that specific
node, while the bottom value in each rectangle represents the number of observations in
the node.

thermore, we include two dependent variables as columns in the input data frame:
the width of the second LP, computed as pb−pa, and the midpoint of the interval,
defined as (pb− pa)/2.

Our analysis begins by considering basic regression trees, which assist us in vi-
sualizing cuts in the parameter space. In Figure 10, we denote price volatility (the
standard deviation of price) as the target variable, and observe that the initial cut
in the tree is made by L initial, the delta liquidity value of the initial LP. The
tree provides intuition as to the most sensitive input in the model, as not only does
L initial form the first cut, but it also creates cuts further down the tree, as well.

In general, we observe that greater L initial values produce lower price volatil-
ity values, as do smaller values of yin. This confirms our prior understanding of the
model, as from Equation (7), we observe that greater liquidity values produce rela-
tively smaller price shifts. Similarly, we recall from Equation (11) that lower values
of yin produce smaller shifts in ∆y, which thereby produce smaller decreases in
price movement, as per Equation (7).

Turning our attention to Figure 11, we observe that the cuts in the tree are formed
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Figure 11: Regression tree when the mean price level is selected as the target variable. The
cuts in the tree are formed by the initial amounts of token1 and token0 used for trading,
denoted by yin and xin, respectively.

by the initial amounts of the two tokens. Perhaps unsurprisingly, greater amounts
of yin and lower amounts of xin correspond to higher average price levels, as
token1 becomes more valuable and is thus traded more often than token0. The
opposite holds as well, as lower amounts of yin and higher amounts of xin produce
lower average price levels, with token0 traded more often than token1.

As mentioned earlier, an individual regression tree is unstable with high vari-
ance, and is more likely to overfit data than ensemble methods such as random
forests and gradient boosted models (Hastie et al., 2009). In order to perform a
more comprehensive tree-based sensitivity analysis, we use the random forest al-
gorithm from the randomForest package (Liaw and Wiener, 2002) and the gra-
dient boosting algorithm from the xgboost package Chen et al. (2024) in R. Our
tuning algorithm considers a 70%-30% training-testing split and varies hyperpa-
rameters according to the sets of values in Table 5.

In Figure 12, we confirm the validity of the results of the corresponding regres-
sion tree from Figure 10. The delta liquidity of the first LP is the most important
feature in the model, while the initial amount of token1 used for trading and the
number of noise traders are second and third in the sensitivity rankings, respec-
tively. While these results hold for both the random forest and gradient boosting
methods, we observe that the difference between the three most important predic-
tors is far more pronounced in the case of the former.
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Name Description Values considered for tuning
mtry Number of randomly sampled predictors considered for splitting (RF) {4, 5, 6, 7}
ntree Number of trees (RF) {500, 1000, 2000, 3000}
nodesize Minimum number of observations in terminal nodes (RF) {3, 10, 30}
nrounds Number of trees (GB) {100, 500, 1000}
eta Shrinkage/learning rate (GB) {0.05, 0.15, 0.3}
max depth Maximum depth of a single tree (GB) {3, 6, 9}
min child weight Minimum number of observations required for each node (GB) {3, 10, 30}

Table 5: Hyperparameters for the random forest (RF) and gradient boosting (GB) methods.
Tree-based analysis is done in R.

Figure 12: Feature importance plot for parameters of the Uniswap v3 ABM, when us-
ing the random forest (RF) and gradient boosting (GB) methods. We designate the price
volatility as the target variable for both techniques. The optimal RF hyperparameters are
mtry = 7, ntree = 3000, nodesize = 3 and the optimal GB hyperparameters are
nrounds = 500, eta = 0.05, max depth = 3, min child weight = 30. The
test set MSE values for the optimal RF and GB models are 3.7912× 10−6 and 1.9842× 10−6,
respectively. In both cases, we observe that the delta liquidity of the first LP is the most
important predictor.

Similarly, the results presented in Figure 13 confirm the results of the regression tree
presented in Figure 11. The average price level is almost solely determined by the
initial amounts of tokens used for trading. Furthermore, we can conclude from our
tree-based sensitivity analysis that the features in our model that contribute most
to pricing dynamics (in terms of both volatility and average level) are the amounts
of tokens used for trading (yin and xin), the amount of liquidity provided by the
first LP (L initial), and the number of noise traders in the model (num NT).

We then consider price volatility and mean price level as target variables, and
analyze parameter sensitivity versus parameter uncertainty. Each feature’s con-
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Figure 13: Feature importance plot for the predictors in the model when using the random
forest (RF) and gradient boosting (GB) methods. We designate the mean price as the target
variable for both techniques. The optimal RF hyperparameters are mtry = 7, ntree
= 2000, nodesize = 3 and the optimal GB hyperparameters are nrounds = 500,
eta = 0.05, max depth = 6, min child weight = 3. The test set MSE values for
the optimal RF and GB models are 3.0736 × 10−4 and 1.5966 × 10−4, respectively. In both
cases, we observe that the most sensitive feature is the initial amount of token1.

tribution to information gain in the gradient boosted model serves as a proxy for
parameter sensitivity, while the features’ normalized variance values are used as
a proxy for uncertainty. In Figure 14, we observe that yin and num NT are quite
sensitive in determining the price volatility, but less uncertain when compared to
L initial, which exhibits both high uncertainty and sensitivity. This result de-
mands further investigation into the distribution of initial LP behaviour. When
considering the mean price level as a target variable, we observe that there are no
predictors that exhibit both high uncertainty and high sensitivity.

Lastly, we isolate the most important model parameters (as observed from our
tree-based sensitivity analysis) and visualize their effects on the target variables.
In Figure 15 (a), we confirm that the price volatility increases when there is less
liquidity provided by the initial LP, and when traders put forth a greater amount
of token1 for swaps. In Figure 15 (b), we observe once again that greater amounts
of yin result in higher mean price levels, with the opposite holding true for xin
amounts.
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Figure 14: Sensitivity versus uncertainty plots, for price volatility and mean price. Sen-
sitivity is measured by each predictor’s contribution to information gain in the gradient
boosted model, while uncertainty is measured by normalized feature variance.

(a) Sensitivity of L initial, yin, and
num NT for price volatility.

(b) Sensitivity of yin and xin for mean price.

Figure 15: Parameter sensitivity heat map for the most important model parame-
ters, when considering the price volatility and mean price as target variables.
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6 Conclusion

The popularity and efficiency of decentralised finance have driven the develop-
ment of technologies such as decentralised exchanges, which rely on AMMs like
Uniswap v3. This makes Uniswap v3 a powerful and influential platform in the
evolving landscape of decentralised currency and finance.

The goal of this paper is to analyse how liquidity providers and different trader
ecologies interact and affect each other within such an exchange. This is accom-
plished by implementing an agent-based model in Julia, which thus enables
the exploration of these dynamics in a controlled, simulated environment. The
study successfully achieves its objectives, providing insights into the mechanisms
of Uniswap v3 and highlighting the unique role of concentrated liquidity. The
results demonstrate that Uniswap v3 effectively facilitates cryptocurrency token
swaps, with trader behaviors significantly shaping market conditions, liquidity,
and price dynamics.

In particular, trend followers are found to have the most pronounced impact on
price movements, while the presence of other agents, such as fundamentalists,
are able to counteract and stabilise such effects. From our sensitivity analysis, we
demonstrate that the initial LP has a considerable impact on price volatility through
the amount of liquidity that it supplies to the market, and that the number of noise
traders and initial amounts of tokens traded are also sensitive to changes. These
four parameters (L initial, num NT, yin, and xin) are most responsible for the
richness in price dynamics in the model, and the further study of their typical val-
ues and distributions is essential for future research.

The model exhibits some limitations, particularly when introducing multiple liq-
uidity providers alongside a large number of traders. In these cases, swapping
token0 for token1 occasionally results in liquidity being added or removed in-
correctly, due to numerical issues arising near the endpoints of active liquidity
ranges. Resolving this issue is a logical next step for our research, as it enables
the investigation of a model that features more than two liquidity providers, and a
variety of liquidity provider ecologies, as well. Furthermore, a more robust anal-
ysis could include a third currency, which would thus introduce arbitrageurs into
the model framework.

Overall, this work illustrates that Uniswap v3 offers a robust and adaptable mar-
ketplace for decentralized finance, capable of accommodating diverse trader strate-
gies and liquidity configurations. As the model is extended and refined, we will
gain further insight into the diversity of outcomes, risks, and instabilities that are
intrinsic to the framework.
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Chapter 1

Introduction

1 Background and Motivation

In modern financial markets, especially in the aftermath of the 2008 Global Finan-
cial Crisis, the calculation of valuation adjustments (xVAs) and their corresponding
sensitivities has become an essential component in derivative pricing. Financial in-
stitutions could no longer overlook the impact of counterparty credit risk and its
associated funding and hedging costs. xVAs represent a collection of adjustments
that are applied to the theoretical risk-free price of over-the-counter derivatives.
Their primary purpose is to incorporate a variety of real-world costs and risks that
an associated financial institution encounters in these derivative transactions. Prior
to 2008, existing valuation and risk management frameworks significantly under-
estimated counterparty credit risk, which led to the collapse of major financial in-
stitutions. Furthermore, there was a growing credit spread between the risk-free
rate and funding benchmarks such as LIBOR and JIBAR, which required more re-
alistic valuations (Gregory, 2018).

To address the shortcoming of the risk-free valuation approach, xVAs were created.
We will focus on a particular xVA being the Funding Credit Valuation Adjustment
(FCVA). The FCVA adjusts the value of a derivative to account for the cost to share-
holders of funding potential future credit losses arising from counterparty default,
thereby capturing the true economic cost of the position (Conti et al., 2022).

In addition to xVAs, their sensitivities, commonly known as Greeks measure how
the value of an xVA responds to shifts in market factors such as asset prices and
volatility. Understanding these sensitivities is vital to managing risk and imple-
menting effective hedging strategies. This research paper will focus on two key
Greeks: Delta and Gamma. Gregory (2018) describes Delta as a measure of how
the value of a derivative changes in response to small changes in the underlying
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asset price, while Gamma measures how sensitive Delta itself is to movements in
the underlying, capturing the curvature of the price relationship.

The industry standard for determining these sensitivities is to use Algorithmic Au-
tomatic Differentiation (AAD), a computation technique that uses a reverse mode
of the chain rule to propagate through sensitivities in a numerical model (Capri-
otti et al., 2015). A challenge arises when existing proprietary quantitative libraries
are not equipped to integrate AAD. Thus, there is a need to use more traditional
methods to determine the sensitivities of the xVAs. These traditional approaches
include the bump and revalue method, the pathwise method, and, of particular
interest, the likelihood ratio estimation technique. Although there is literature on
calculating xVA Greeks (Conti et al., 2022) using the likelihood ratio method and
using American Monte Carlo (AMC) simulation (Longstaff and Schwartz, 2001),
the combined application of these procedures is not well documented in existing
literature. This paper aims to explore the practicality of an integrated approach.

2 Objectives

This research paper seeks to compute the risk sensitivities for xVA metrics, in par-
ticular FCVA, using the Likelihood Ratio Method (LRM) within an AMC frame-
work, with a focus on computational feasibility. The primary objective is to evalu-
ate the efficacy of the LRM approach in comparison to other techniques, such as the
bump and revalue method and the pathwise method for determining xVA Greeks.

3 Scope & Limitations

The project focuses specifically on the computation of the FCVA metric under the
general xVA framework as detailed by (Kjaer, 2017). Furthermore, the interest rate
model will only utilise the single factor Vasicek model and the sensitivities will
focus on Delta and Gamma.

4 Paper Outline

In Chapter 2, we will focus on providing a background on xVAs, the American
Monte-Carlo simulation, and the estimation techniques to determine the sensitivi-
ties. This will detail the theoretical and mathematical framework for each of these
areas along with detailing of the model chosen for interest rates. In Chapter 3, the
simulation procedure and regression framework is then further detailed. In Chap-
ter 4, the results are presented across different scenarios using different estimation
techniques. In Chapter 5, we conclude the research paper by highlighting our key
insights and areas for future research.
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Chapter 2

Theory Development

1 Definition of the Probability Space

Throughout this study, we consider a filtered probability space (Ω,F ,F = (Ft)t∈[0,T ],P),
where the filtration F is complete. We consider a d-dimensional asset process
(St)t∈[0,T ] with dynamics:

dSt = µS(St, rt) dt+ σS(St) dW
S
t , S0 = s0 , (2.1)

where the process (rt)t∈[0,T ] is a one-dimensional interest rate process, with dynam-
ics given by:

drt = µr(rt) dt+ σr(rt) dW
r
t . (2.2)

The functions µr , µS , σS , σr are assumed to satisfy the usual conditions such that
the processes (St)t∈[0,T ] and (rt)t∈[0,T ] are well defined. The filtration is the canon-
ical filtration generated by the correlated Brownian motions (WS

t ,W
r
t )t∈[0,T ], i.e.,

Ft = σ
(
(WS

u ,W
r
u)u≤t

)
.

We remark that we also have

Ft = σ
(
(Su, ru)u≤t

)
.

Let (Xt)t∈[0,T ] be the solution to:

dXt = a(Xt) dt+ bS(Xt) dW
S
t + br(Xt) dW

r
t , (2.3)

where a , b satisfy the usual conditions. (see Carmona (2016) for more details). Fur-
thermore, we then have the following Markov property:

Et[XT ] := E[XT |Ft] = E[XT |St, rt] . (2.4)
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2 American Monte-Carlo Estimation

American Monte Carlo (AMC) is a numerical approach that involves stepping
through time and deriving Monte Carlo estimates at each time point through linear
regression to determine the conditional expectation with respect to a current value
compared to a future value.

To estimate the conditional expectation, we resort to the use of a special type of
polynomial (termed Laguerre polynomials) that forms a basis and is dense in the
space of L2 functions (Longstaff and Schwartz (2001) discuss the use of other poly-
nomials basis functions). In essence, the conditional expectation is a linear combi-
nation of a subset of Laguerre polynomials with the goal to estimate the required
coefficients which will then determine the conditional expectation.

For example, we want to estimate a conditional expectation under the following
form:

Vt,u = E[G(Xu)|Yt] , where u ≥ t , (2.5)

and (Xt)t∈[0,T ] and (Yt)t∈[0,T ] solve two stochastic differential equations (SDEs).
Then, we estimate Vt by ∑

j≤N

βjt,u Lj(Yt) , (2.6)

where (Lj(x))j≤n are the polynomial basis functions we choose, and (βjt,u)j≤N are
solved by projecting G(Xu) onto the polynomial basis functions. Longstaff and
Schwartz (2001) discuss the convergence of this estimate to the true function V .

2.1 Regression with Laguerre Polynomials

The Laguerre polynomials can be defined in several equivalent ways with one of
the simpler formulations being that they can be defined recursively as:

L0(x) = 1

L1(x) = 1− x

Lk+1(x) =
(2k + 1− x)Lk(x)− kLk−1(x)

k + 1
, ∀k ≥ 1

These polynomials are dense in the Hilbert space L2(R,B(R)) and can thus be em-
ployed to estimate an L2 function. Given that L2 is a Hilbert space, a natural and
reasonable approximation of a given function g in terms of Laguerre polynomials
is the projection of g into the subspace generated by the countable collection of La-
guerre polynomials.
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Since linear regression involves minimising a squared distance, which is an L2

norm, projection into an L2 subspace is equivalent to linear regression and there-
fore we can estimate the required conditional expectation by regressing into a set
of chosen regressors as detailed by Longstaff and Schwartz (2001).

3 XVA Adjustments: FCVA

Gregory (2018) refers to XVAs as a group of valuation adjustments that are applied
typically on the risk-free price of OTC (Over-The-Counter) derivatives to account
for a variety of real-world costs and risks that a financial institution may face in
these transactions, such as funding cost spreads and counterparty default risk. This
paper will focus specifically on the (FCVA) as defined in (Kjaer, 2017).

3.1 FCVA: Funding Credit Valuation Adjustment

The purpose of FCVA is to adjust a derivative’s value so that it represents the cost
to shareholders of funding potential future credit losses due to counterparty de-
fault risk. The adjustment arises when the bank must actively hedge this risk by
estimating the expected loss from a counterparty. This hedging requires funding
at the bank’s funding rate which becomes a liability to shareholders. The equation
below captures the expected funding cost to hedge these losses

FCVAt = −Et

[∫ T

t
λC(u)Dr+λC

(t, u) (V (u)− gC(u)) du

]
, (16)

where

• (rt)t∈[0,T ] is the stochastic interest rate,

• λC(u) is the spread of a counterparty zero recovery bond and is given by
λC = rC−γC

1−RC
, chosen constant in our framework,

• rC(u) and γC(u) are the counterparty overnight bond rate and the repo rate
secured against C’s bonds respectively,

• RC is the recovery rate in the event of counterparty default

• Dr+λC
(t, u) = exp(−

∫ u
t (rs + λC(s)) ds),

• V (u) is the value of the derivative portfolio at time u,

• gC(u) represents the present value of the portfolio immediately after default
and can represent contractual features such as standard ISDA closeouts, net-
ting (or absence thereof) and collateral. We only consider uncollateralised
transactions in this paper. In line with Kjaer (2017), we consider gC(u) =
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RCV (t)+ + V (t)− (since there’s no collateral in our implementations, ϕ =
ψ = 0). This implies that V (u) − gC(u) = (1 − RC)V (t)+ = V (u)+ (since we
assume zero-recovery). We remark that for a derivative with a non-negative
payoff (such as options), gC(u) = 0 (RC = V (t)− = 0) and since we only
consider options in our implementation, we set gC(u) = 0.

This expectation incorporates the bank’s hazard rate (λC) over its funding rate
which represents the additional cost of unsecured borrowing. An appropriate dis-
count factor is applied with respect to the bank’s actual funding rate where all
cash flows are discounted using this rate to characterise the cost of financing un-
collateralised exposure. For the purposes of this project, the recovered value of the
derivative in the event of default gC(u) is taken to be 0 partly because the deriva-
tive is considered uncollateralised. In our framework, where we consider V to be
the price of an option, the Feynmann-Kac formula allows us to represent the value
of the portfolio as the expected discounted terminal payoff of the portfolio. From
now, we define it as

Vt := Et

[
e−

∫ T
t rs dsH(ST , rT )

]
. (2.7)

4 Vasicek Interest Rate Model

Asset prices and their associated pricing are driven by interest rate dynamics which
are characterised as stochastic in nature. The Vasicek model is a widely-used Ornstein-
Uhlenbeck mean-reverting process for the short-rate that is intended to capture the
basic features of interest rate dynamics that has the following form:

drt = κ (θ − rt) dt+ σ dW r
t ,

where κ represents the rate of mean-reversion, θ is the long-term mean, σ is the
volatility, and (W r

t )t∈[0,T ] is a standard Brownian motion. The model maintains the
single factor Gaussian distribution for the short-rate while allowing for a drift term
that is incorporated in to the short-rate dynamics.

The model is analytically tractable due to its Gaussian structure which allows for
closed-form solutions for zero-coupon bond prices.

5 Risk Sensitivities - The Greeks

Risk sensitivities measure the sensitivity of a financial position to factors such as
the underlying asset price. (Gottesman, 2016).
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Calculating xVAs includes estimating how exposed a derivative portfolio is to po-
tential counterparty defaults, which depends on how underlying market risk fac-
tors evolve. Understanding how this exposure changes when these factors move,
as measured by the Greeks, is essential for effective risk management and hedging.

In this paper, we will focus on the following Greeks:

• Delta: Measures the change in valuation based on changes in the price of the
asset.

• Gamma: Measures the impact of convexity of changes in asset price.

5.1 Bump and Revalue Method

This method is a rudimentary approach to calculating sensitivities by implement-
ing small shocks to each of the state variables. This method is independent of
the actual simulation procedure, thus making it highly implementable. However,
Gaussian noise during simulation can lead to inaccuracies. These challenges may
be mitigated by utilising the same set of random numbers in the implementation
of the state variable bump Glasserman (2004).//
The generalised formula for a sensitivity calculation ∆̂ with respect to a state vari-
able (θ) is defined as:

∆̂(θ) ≈ V̄ (θ + h)− V̄ (θ)

h
,

where:

• θ is the parameter/state variable of interest,

• V̄ is the (estimated) derivative value function whose arguments include θ,

• h is some suitably small positive real number.

The use of finite difference methods within the context of xVAs requires consider-
ing the future expectation of exposures on simulated paths with respect to simu-
lated risk factors. The computation of sensitivities requires the entire Monte Carlo
simulation to be rerun with the bumped parameters and the recalculation of regres-
sion polynomials which are then used to calculate risk sensitivities via the finite
difference methods.

While this method serves as the benchmark due to its practicality and simplicity
to implement, the requirement to run multiple simulations increases the computa-
tional cost which is not ideal (Buis, 2023). Nonetheless, this method can serve as
the benchmark to determine the effectiveness of using the LRM.
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5.2 Pathwise Method

The pathwise derivative method implements sensitivity calculations utilising the
direct differentiation of a simulation path. Let Y (θ) be the discounted payoff or
exposure computed under a target parameter and define α(θ) = E[Y (θ)] represents
a valuation. The pathwise method would thus estimate the derivative as follows:

dα

dθ
=

d

dθ
EY (θ)] = E

[
dY

dθ
(θ)

]
,

where the interchange of the differentiation and expectation operators are valid
when the function is continuous and smooth. These continuous and smooth func-
tions are required for pathwise estimation to work and leads to the following esti-
mator:

dα

dθ
≈ 1

N

N∑
i=1

dY (i)

dθ
.

In contrast to the bump and revalue method, the advantage of the pathwise method
is its ability to reuse simulation paths to calculate the derivative with limited ad-
ditional computation in contrast to the bump and revalue method (Glasserman,
2004).

Our framework simplifies the method. We have

Vt := F (St) , (2.8)

where F is a Cn function. Then, if we want access to the n-th order sensitivity with
respect to the process St of Vt, we can compute it directly with

∂nSt
Vt = ∂nSt

F (St) . (2.9)

Moreover, if we want access to the m-th sensitivity with respect to a parameter x of
Vt, and if we assume that x→ St is at least Cm, then we obtain

∂mx Vt = ∂mSt
F (St) ∂

m
x St . (2.10)

5.3 Likelihood Ratio Estimation Method

The LRM estimates the sensitivities by deriving the underlying probability density
function with respect to the target variable, denoted here by θ.

Consider the standard estimation of a function under a given probability density:

Eθ[Y ] =

∫
f(x)gθ(x) dx.
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According to Glasserman (2004), the LRM derives a score function from the proba-
bility density function:

d

dθ
Eθ[Y ] =

∫
f(x)

ġθ(x)

gθ(x)
gθ(x) dx = Eθ

[
f(X)

ġθ(X)

gθ(X)

]
,

where ġθ(x) is the partial derivative with respect to θ. In our framework, it al-
lows us to obtain the following results. We want to compute the sensitivities of a
function (Vt)t∈[0,T ] given by

Vt = E[F (XT )|Ft] , (2.11)

where the process (Xt)t∈[0,T ] is a d-dimensional process that follows the SDE

dXt = a(Xt) dt+ σ(Xt) dWt , X0 = x0 , (2.12)

and where (Ft)t∈[0,T ] is the filtration generated by the stochastic process (Yt)t∈[0,T ],
that satisfies

dYt = ā(Yt) dt+ σ̄(Yt) dW̄t , Y0 = y0 . (2.13)

We assume that ⟨W, W̄ ⟩t = ρ t. By the Markov property of Vt, we can rewrite it as

Vt = E[F (XT )|Yt] . (2.14)

The crux of the likelihood estimation method is the fact that we can find the condi-
tional law of XT |Yt, given by fXT |Yt

, so that Vt becomes

Vt =

∫
F (x) fXT |Yt

(x) dx . (2.15)

Then, computing the sensitivity to St is equivalent to computing

∂StVt =

∫
F (x) ∂StfXT |Yt

(x) dx =

∫
F (x) ∂St log(fXT |Yt

(x)) fXT |Yt
(x) dx , (2.16)

and this is rewritten as

∂StVt = E
[
F (XT ) log(fXT |Yt

(XT )|Yt
]
. (2.17)

The second order derivative is computed the same way, using the fact that

∂2x,xfx = ∂x(∂x log(fx) fx) =

(
∂2x,x log(fx) + (∂x log(fx))

2

)
fx . (2.18)

We can also perform sensitivity with respect to parameters in a similar way.
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Chapter 3

Methodology

1 Simulation of Paths

In order to price xVAs using an AMC simulation, the stochastic processes need to
be simulated. Multiple assets and the OIS rate are simulated where asset prices are
simulated using a geometric Brownian motion, where the log-return of the asset
is driven by a stochastic short rate and constant volatility. Furthermore, interest
rates evolve also as a stochastic process under the Vasicek model with constant
mean reversion and constant volatility. Given the link between the short rate and
evolving asset prices, these models are linked with a fixed correlation structure to
represent these dependencies.

2 Implementation of AMC on FCVA

2.1 European style derivative with multiple assets and stochastic inter-
est rate

We consider a d-dimensional asset price process:

dSt = St (rt dt+ σs) dW
S
t , (3.1)

where the stochastic interest rate follows

drt = κ (θ − rt) dt+ σr dW
r
t , (3.2)

where the Brownian motions (WS
t )t∈[0,T ] and (W r

t )t∈[0,T ] are correlated. We wish to
obtain:

FCVAt = −Et

[∫ T

t
λc(u)e

−
∫ u
t λc(s) dse−

∫ u
t rs dsVu du

]
.
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First we consider Vu as non-negative for each u ∈ [t, T ]. Recall that derivative prices
are conditional expectations of future discounted payoffs, i.e., Vu = Eu [Dr(T, u) ·H(ST , rT )].
Using Laguerre polynomials of order 5, we project the productDr(T, u) ·H(ST , rT )
onto the stochastic processes Xu = [S1

u, S
2
u, ...S

d
u, ru] like so:

Dr(T, u) ·H(S1
T , S

2
T , ..., S

d
T , rT )(ω1)

Dr(T, u) ·H(S1
T , S

2
T , ..., S

d
T , rT )(ω2)

Dr(T, u) ·H(S1
T , S

2
T , ..., S

d
T , rT )(ω3)

...
Dr(T, u) ·H(S1

T , S
2
T , ..., S

d
T , rT )(ωN )

 =
∑
i∈I

αu
i

d+1∏
k=1

Li


Xk

u(ω1)
Xk

u(ω2)
Xk

u(ω3)
...

Xk
u(ωN )

 ,

where I = {0, 1, 2} ⊗ {0, 1, 2} ⊗ ...{0, 1, 2} : (d + 1) times. i.e., |I| = 3(d+1). We
now use the α’s to obtain Vϕ(u, ω) for each ω ∈ Ω (length N ) and each time step
u ∈ [t, T ], i.e.,

V
Laguerre
u (ω) =

∑
i∈I

αu
i

d+1∏
k=1

Li(X
k
u(ω)).

Next we wish to calculate∫ T

t
λc(u)e

−
∫ u
t λc(s) ds︸ ︷︷ ︸

PD

e−
∫ u
t rs(ω) dsV

Laguerre
u (ω)︸ ︷︷ ︸

EAD

du.

For each ω ∈ Ω, we have that

FCV A(u) ≈
T∑

u=t

PD (deterministic) · EAD (stochastic) ·∆u.

Once again we wish to circumvent the conditional expectation by utilising projec-
tion. This time we project on Xt = [S1

t , S
2
t , ...S

d
t , rt] like so:


∑T

u=t PD · EAD(ω1) ·∆u∑T
u=t PD · EAD(ω2) ·∆u

...∑T
u=t PD · EAD(ωN ) ·∆u

 =
∑
i∈I

βti

d+1∏
k=1

Li


Xk

t (ω1)
Xk

t (ω2)
Xk

t (ω3)
...

Xk
t (ωN )

 .

Through Laguerre regression, we have projected the conditional expectation of dis-
counted exposure onto the current state variable St and rt, allowing us to express
FCVA at any time t without requiring nested simulations.

FCVAt = −Et

∫ T

t
λc(u)e

−
∫ u
t λc(s) ds︸ ︷︷ ︸

PD

e−
∫ u
t rs dsV

Laguerre
u︸ ︷︷ ︸

EAD

du

 ≈ −
∑
i∈I

βti

d+1∏
k=1

Li(X
k
t ).
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Given the coefficients βti from the projection onto Xt, we can now compute FCVAt

for any t ∈ [0, T ] directly as a function of the current state, bypassing the need for
evaluating conditional expectations.

3 Bump and Revalue Method for Greek Evaluation at t=0

We consider the most simple example with a single underlying asset with dynam-
ics governed by constant parameters:

dSt = r St dt+ σ St dWt.

Our objective is to analyse the time evolution of the ∆t of FCVA for a European call
option written on this asset.

First, we consider ∆0 of an FCVA. We simulate a set of representative sample paths
for the underlying asset price St as well as its bumped counterpart S̃t = St +∆S.

t

S
t

St

∆S

t

S̃
t

S̃t

Figure 3.1: Toy demonstration of St and S̃t paths

For each of these paths, we compute the exposure at default. We regress the expo-
sures at default on the paths of S0 to obtain coefficients β0i , and separately regress
on the bumped paths S̃0 to obtain β̃0i .

• We define the estimated FCVA under the original paths as:

FCVA0 =
∑

β0i Li(S0),

• and the FCVA under the bumped paths as:

F̃CVA0 =
∑

β̃0i Li(S0 +∆S).

Then the finite difference approximation of the sensitivity is:

∆FCVA0 =
F̃CVA0 − FCVA0

∆S
.
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3.1 Impracticality of bump and revalue method for Greeks through time

Next we consider ∆FCVA1, the change in FCVA due to variations in the underlying
asset at t = 1. Unlike the initial FCVA estimation at time t = 0, computing ∆FCVA1

requires re-evaluating the conditional expectations at time t = 1 for each ω. This
means that for every realization S1(ω), a fresh set of inner Monte Carlo simulations
must be run.

We are essentially sitting here and wish to know what the delta is given that we
made it to this time point.

S1(ω1)

S1(ω2)

S1(ω3)
t

Figure 3.2: Toy demonstration of St(ω) paths at t = 1.

For each ω ∈ Ω we simulate paths of length n-step − 1. For example consider the
path of St(ω1) below.

t

St(ω1)

∆S

t

S
t

S̃t(ω1)

Figure 3.3: Toy demonstration of St(ω1) and S̃t(ω1)

Again we we compute the exposure at default along each new path of St(ω1) and
S̃t(ω1). We then regress on S1(ω1) to obtain coefficients β1i (ω1), and separately
regress on S̃1 to obtain β̃1i (ω1).

• We define the conditional FCVA1 as:

FCVA1(ω1) =
∑

β1i (ω1)Li(S1(ω1)),
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• and the conditional FCVA under the bumped paths as:

F̃CVA1 =
∑

β̃1i (ω1)Li(S1(ω1) + ∆S).

Then the finite difference approximation of the sensitivity is:

∆FCVA1(ω1) =
F̃CVA1(ω1)− FCVA1(ω1)

∆S
.

Finally we obtain:

∆FCVA1 =
1

N

∑
ω∈Ω

∆FCVA1(ω)

Summary

• At each outer path ω ∈ {1, . . . , N} and each time step ti, we perform an
inner simulation of N paths to estimate the conditional expectation from ti to
T . Each of these inner paths has a remaining time horizon of nsteps − i time
steps.

• The total number of inner simulation time steps across all outer paths and
time steps is therefore:

N∑
ω=1

nsteps−1∑
i=0

N ·(nsteps−i) = N2

nsteps−1∑
i=0

(nsteps−i) = N2

nsteps∑
j=1

j = N2·
nsteps(nsteps + 1)

2
.

• This implies a total computational complexity of order:

O
(
N2 · n2steps

)
.

Table 3.1: Total Simulated Time Steps in Nested Monte Carlo

N nsteps Total Simulated Steps N2 · nsteps(nsteps+1)
2

1,000 100 5.05× 109

5,000 100 1.26× 1011

10,000 100 5.05× 1011

10,000 252 3.18× 1012

100,000 252 3.18× 1014
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4 Pathwise Method for Greek Evalution

In the context of AMC estimation, the Laguerre polynomials provide a continuous
and differentiable set of functions which eliminate the primary limitation of the
pathwise method. Thus, the pathwise method offers a useful solution when using
the AMC estimate.

Consider the following problem: We want to compute the ∆ of a product of the
form

Vt = Et

[∫ T

t
F (Su, ru) du

]
, (3.3)

where we have
dSt = St (rt dt+ σS dWS

t ) , (3.4)

and
drt = κ (θ − rt) dt+ σr dW

r
t , (3.5)

where (WS
t )t∈[0,T ] is a d-dimensional Brownian motion, and (W r

t )t∈[0,T ] a one di-
mensional Brownian motion, correlated with (WS

t )t∈[0,T ]. First, we obtain, by the
American Monte Carlo estimation, that

Et

[∫ T

t
F (Su, ru) du

]
≈
∑
j≤N

βjt Lj(St, rt) , (3.6)

where the Lj(x) are the Laguerre polynomials, and the βj the optimal regressors.
Formally, we want to obtain

∂StEt

[∫ T

t
F (Su, ru) du

]
≈
∑
j≤N

βjt ∂StLj(St, rt) . (3.7)

If we define the Hessian matrix ∇2
St

, we obtain

∇2
St
Vt =

∑
j≤N

βjt ∇2
St
Lj(St, rt) . (3.8)

As the Laguerre polynomials are C∞, we can perform as many derivatives of them
as we want. Moreover, at fixed t, as St is C∞ in its parameters x ∈ {r , σS} we can
perform sensitivities with respect to those by

∂xVt =
∑
j≤N

βjt ∂StLj(St, rt) ∂xSt . (3.9)
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5 Likelihood Ratio Estimation for Greek Evaluation

We compute the sensitivities of a product using the LRM in three different settings:
(i) in the case of a one dimensional asset with a constant short term interest rate,
(ii) in the case of a d-dimensional asset with a constant short term interest rate, and
(iii) in the case of a one dimensional asset with stochastic short term interest rate.

5.1 Case (i): One asset price with constant interest rates model

We consider the process (St)t∈[0,T ] with the dynamic

dSt = r St dt+ σS St dW
S
t . (3.10)

We define
Vt = Et

[
e−r(T−t)H(ST )

]
, (3.11)

and we want to use the likelihood ratio estimator to estimate ∆t of this option. To
do so, we recall that

ST = St e
−r(T−t) e(r−

σ2

2
)(T−t)+σ (WT−Wt) . (3.12)

We define Yt := log(St), hence

Yt = log(St)−
σ2

2
(T − t) + σ(WT −Wt) . (3.13)

Then Yt is Gaussian, meaning that ST |St is log-normal. Given that we know the
law of ST |St, given by fST |St

, we can rewrite Vt as

Vt =

∫
R+

fST |St
(x)H(x) dx . (3.14)

Then, if we want to differentiate Vt with respect to St, we obtain

∂StVt =

∫
H(x)∂StfST |St

(x) dx , (3.15)

which is equal to

∂StfST |St
(x) = ∂St log(fST |St

(x)) fSt(x) . (3.16)

Thus, we obtain

∂StVt = Et

[
H(ST ) ∂St log(fST |St

(ST ))e
−r(T−t)

]
= Et

[
H(ST ) ∂St log(fST |St

(ST ))e
−r(T−t)

]
,

and so

∂StVt = Et

[
H(ST )

( log(ST )− log(St)− (r − σ2

2 )(T − t)

St σ2 (T − t)

)
e−r(T−t)

]
. (3.17)
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Finally, we estimate this value using the American Monte Carlo method. We obtain

∂StVt ≈
∑
j≤N

βjt Lj(St) . (3.18)

Now, if we want to compute the Γt, we need to differentiate twice with respect to
St, and we obtain

∂2{St,St}Vt = Et

[
H(ST )

(
∂2{St,St} log(fST |St

(ST )) + (∂St log(fST |St
(ST )))

2
)
e−r(T−t)

]
.

We have

∂2{St,St} log(fST |St
(ST )) = −

σ̄T,t + (log(ST )− log(St)− µ̄T,t) σ̄T,t
S2
t σ̄

2
T,t

, (3.19)

where σ̄T,t = σ2 (T − t) and µ̄T,t = (r − σ2

2 )(T − t). Finally, we obtain

Γt = Et

[
H(ST )

(
− 1

S2
t σ̄T,t

+

(
log(ST )− log(St)− µ̄T,t

St σ̄T,t

)2

−
(
log(ST )− log(St)− µ̄T,t

S2
t σ̄T,t

))
e−r(T−t)

]
,

and once again, the estimation of the Γt is obtain with the American Monte Carlo
method.

5.2 Case (ii): d asset prices with constant interest rates model

We consider now a d-dimensional asset price (St)t∈[0,T ] given by

dSi
t = Si

t (r dt+ σ dW i
t ) , Si

0 = S0 , (3.20)

where ⟨W i,W j⟩t = ρi,j t . Following the same approach as in the one dimensional
case, we obtain that (S1

T , ..., S
d
T |S1

t , ..., S
d
t ) is log normal, with mean:

µT,t =

(r − σ2

2 )(T − t) + log(S1
t )

...

(r − σ2

2 )(T − t) + log(Sd
t )

 (3.21)

and where the covariance is given by

ΣT,t = (Σi,j
T,t)0≤i ,j≤d , where Σi,j

T,t = σ2 ρi,j (T − t) , (3.22)

where ρi,i = 1. A similar calculation gives

∇StVt = Et

[
e−r (T−t)H(ST )

[
D
( 1
Si
t

)
i≤d

]
Σ−1
T,t

log(S1
T )− µ1T,t
...

log(Sd
T )− µdT,t

], (3.23)
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where [
D

(
1

Si
t

)
i≤d

]
=


1
S1
t

0 ... 0

0 1
S2
t

... 0

0 0 ... 0
0 0 ... 1

Sd
t

 . (3.24)

Remark 5.1. When d = 1, we recover the first case, given that Σ−1
T,t becomes 1/σ2 (T − t).

5.3 Case (iii): One asset price with stochastic interest rates model

We consider the model where

dSt = St (rt dt+ σ dWS
t ) , S0 = s , (3.25)

drt = κ (θ − rt) dt+ σr dW
r
t , r0 = r , (3.26)

where ⟨W r,WS⟩t = ρ t. We want to estimate

∂StVt := ∂St E[e−
∫ T
t rs dsH(ST , rT )|rt, St] , (3.27)

with the likelihood ratio estimator. To do so, we define

Iu,t =

∫ u

t
rs ds . (3.28)

We obtain by the use of the stochastic Fubini theorem (see Theorem 12.4.18 in Co-
hen and Elliott (2015)), for u ≥ t, we have

Iu,t =
1

κ

(
r̄t − r̄u + σrW

r
u − σrW

r
t

)
+ θ (u− t) + (r − θ)

(e−κ t − e−κu)

κ
, (3.29)

where r̄t =
∫ t
0 σr e

−κ (t−u) dW r
t . Moreover, we define the stochastic process S̃t :=

log(St). Then, S̃ is a Gaussian process. We rewrite S̃t as

S̃t = S̃0 + It,0 −
σ2s
2
t+ σsW

s
t , (3.30)

where

It,0 =
1

κ

(
− r̄t + σrW

r
t

)
+ θ t+ (r − θ)

(1− e−κ t)

κ
, (3.31)

so that, we obtain

S̃t = S̃0 + θ t+ (r − θ)
(1− e−κ t)

κ
+
σ2s t

2︸ ︷︷ ︸
:=c(t)

+
σrW

r
t − r̄t
κ

+ σsW
s
t . (3.32)
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We rewrite Vt as

Vt = exp

(
− r̄t
κ

− θ (u− t)− (r − θ)
(e−κ t − e−κu)

κ

)
E[e−

1
κ
(−r̄T+σr W r

T−σr W r
t )H(eS̃T , rT )|S̃t, rt] .

Let
f
(r̄T ,W r

t ,W
r
T , S̃T ,rT )|(S̃t, rt)

(r̄T , W t, W T , S̃T , rT )

denote the conditional joint density of (rT ,W r
t ,W

r
T , S̃T ) given (S̃, r) = (S̃t, rt). For

readability, we will henceforth represent this conditional density using compact
notation as

fXT,t|Yt=yt
(xT,t),

where
XT,t = (r̄T , W

r
t , W

r
T , S̃T , rT ),

Yt = (S̃t, rt),

xT,t = (r̄T , W t, W T , S̃T , rT ),

yt = (S̃t, rt).

We define

Ht := exp

(
− r̄t
κ

− θ (u− t)− (r − θ)
(e−κ t − e−κu)

κ

)
, (3.33)

then we have

Vt = Ht

∫
e−

1
κ
(−r̄T+σr WT−σr W t)H(eS̃

T
, rT ) fXT,t|Yt=yt

(xT,t)d(xT,t) .

We use fXT,t|Yt
=

fXT,t,Yt

fYt
to compute the conditional density. Given that the pro-

cess (r̄t, rt,W
r
t , S̃t)t∈[0,T ] is Gaussian, then (r̄T ,W

r
t ,W

r
T , S̃T , rT , S̃t, rt) = (XT,t, Yt)

is a multivariate Gaussian random variable, with mean µXT,t,Yt and covariance
ΣXT,t,Yt . After tedious calculations, we obtain for the mean:

µXT,t,Yt =



0
0
0

c(T )
r e−κT + θ (1− e−κT )

c(t)
r e−κ t + θ (1− e−κ t)


, (3.34)

and the covariance ΣXT,t,Yt is given by ΣXT,t,Yt =
(
Σ
(i,j)
XT,t,Yt

)
1≤i ,j≤7

where ΣXT,t,Yt

is given by a table found in Appendix A.
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Moreover, (S̃t, rt) = Yt is also a multivariate Gaussian process, with mean:

µYt =

[
c(t)

r e−κ t ++θ (1− e−κ t)

]
(3.35)

and with covariance matrix:

ΣYt =

[
Σ
(6,6)
XT,t,Yt

Σ
(7,6)
XT,t,Yt

Σ
(7,6)
XT,t,Yt

Σ
(7,7)
XT,t,Yt

]
(3.36)

We obtain that fXT,t|Yt
is a Gaussian density. Let us rewrite the matrix ΣXT,t,Yt as[

ΣXT,t
Σ†
T,t

Σ∗
T,t ΣYt

]
. (3.37)

The other matrices in ΣX,Y are defined as sub-matrices with:

• ΣXT,t
: top left 5x5 sub-matrix;

• Σ†
T,t: top right 5x2 sub-matrix;

• Σ∗
T,t: bottom left 2x5 sub-matrix;

and we rewrite the vector µXT,t,Yt as [
µXT,t

µYt

]
. (3.38)

Finally, fXT,t|Yt
is a Gaussian density with mean:

µXT,t|Yt=yt
= µXT,t

+Σ†
T,tΣ

−1
Yt

(yt − µYt) , (3.39)

and with covariance:

ΣXT,t|Yt=yt
= ΣXT,t

− Σ†
T,tΣ

−1
Yt

Σ∗
T,t . (3.40)

Finally, when writing ∂StVt we obtain

∂StVt = ∂S̃t
Vt ∂StS̃t = ∂S̃t

E[e−
∫ T
t rs dsH(ST , rT )|rt, St]

1

St
, (3.41)

which is equal to

E
[
e−

∫ T
t rs dsH(eS̃T , rT ) ⟨Σ−1

XT,t|Yt
(WT,t − µXT,t|Yt

) ,Σ†
T,tΣ

−1
Yt
e21⟩|rt, S̃t

] 1

St
,
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where

WT,t =


r̄T
W r

t

W r
T

S̃T
rT

 ,

and where, the vector e21 means the first basis vector in R2. Finally, we obtain that
∂StVt equals

Et

[
e−

∫ T
t rs dsH(ST , rT )

St
⟨Σ−1

XT,t|Yt
(WT,t − µXT,t|Yt

) ,Σ†
T,tΣ

−1
Yt
e21⟩|rt, S̃t

]
.

The following remark sheds light of one limitation of the use of the Likelihood ratio
method with stochastic interest rate.

Remark 5.2. While t is relatively small, the elements of ΣYt → 0 which causes Σ−1
Yt

to explode. This is briefly offset by the Σ−1
Yt

term inside of ΣXT,t|Yt
however as t→ T

the whole Likelihood ratio adjustment factor explodes and surprisingly crashes to
0.

5.4 Using the likelihood ratio estimator to compute FCVA Greeks

So far we have presented a way to compute the sensitivities of an option to an asset
(and more generally to a parameter of the asset). What we are interested in is to
study the sensitivities of the FCVA, that is, by construction, path dependent. This
change creates difficulties to apply directly the Likelihood ratio method, because
we would need to define an infinite dimensional density function. Indeed, to apply
the Likelihood ratio method, we need to compute the conditional density of

e−
∫ u
t rs ds Vu , given (St, rt) , (3.42)

for all values of t ∈ [0, T ] and all values of u ∈ [t, T ]. Indeed, in the general case,
we can write Vu as a functional of (Sx, rx)x≤u, i.e., we obtain

Vu = F
(
(Sx, rx)x≤u

)
, (3.43)

but writing the density of Vu is not possible because it would be infinite dimen-
sional. However, given that (rt)t∈[0,T ] is an Ornstein-Uhlenbeck process, we can
rewrite

∫ u
t rs ds as a function of (r̄u, r̄t,W

r
u ,W

r
t ). By the Markov property, we

rewrite Vu as a function of (Fu, ru), and thus the problem reduces to a finite di-
mensional problem. Formally, we obtain

Vt = F (Su, ru) , (3.44)
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and then the FCVA becomes

FCVAt = −Et

[∫ T

t
λc(u)e

−
∫ u
t λc(s) ds e−

∫ u
t rs ds F (Su, ru) du

]
. (3.45)

Using the results proved above in the cases (ii) and (iii), we find a conditional den-
sity:

f∫ u
t rs ds ,Su ,ru|St ,rt , (3.46)

and we obtain

FCVAt = −
∫ T

t
λc(s)e

−
∫ u
t λc(s) ds

(∫
e−Iu,t F (s, r) f∫ u

t rs ds ,Su ,ru|St ,rt(Iu,t, s, r)

)
du ,

and then we obtain the sensitivities by differentiating the likelihood function. Fi-
nally, we obtain the terminal value by using the American Monte Carlo method.
However, to use it, we need to know exactly what is the functional F , is while
we do not. To bypass this issue, we will consider its estimate calculated with the
American Monte Carlo estimator, i.e., we consider a proxy

Ṽ N
u =

∑
j≤N

βju Lj(Su, ru) , (3.47)

Now, we want to compute the Greeks related to the FCVA, defined by

FCVAt = −Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−

∫ u
t rsds Vu du

]
, (3.48)

where we rewrite as

−Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−

∫ u
t rsds Vu du

]
= −Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−Iu,t Vu du

]
,

(3.49)
where we work under a one-dimensional log-normal price process, and with a
stochastic interest rate. To do so, we use the American Monte Carlo method to
estimate by Ṽ N

u . Then, we obtain

FCVAt ≈ −
∑
j≤N

∫ T

t
βju λc(u) e

−
∫ u
t λc(s) ds Et

[
e−Iu,t Lj(Su, ru)

]
du , (3.50)

and so we obtain, for ∆t

∂StFCVAt ≈ −
∑
j≤N

∫ T

t
βju λc(u) e

−
∫ u
t λc(s) ds ∂tEt

[
e−Iu,t Lj(Su, ru)

]
du . (3.51)
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Thus, what remains to compute is

∂tEt

[
e−Iu,t Lj(Su, ru)

]
, (3.52)

for all u ∈ [t, T ] and for all t ∈ [0, T ]. We observe that this computation is very close
to what has been done in the previous subsection with the computation for ∆t of
an option, but with u instead of T . More precisely, if we define the process Wu,t as

Wu,t =


r̄u
W r

t

W r
u

S̃u
ru

 ,

where S̃t = log(St), we obtain

∂StEt

[
e−Iu,t Lj(Su, ru)

]
=

Et

[
e−Iu,t Lj(Su, ru) ⟨Σ−1

Xu,t|Yt
(Wu,t − µXu,t|Yt

) ,Σ†
u,tΣ

−1
Yt
e21⟩

1

St

]
,

where Σ̃ and µ̄ are defined above. Finally, we obtain ∂StFCVAt ≈

−
∑
j≤N

Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−Iu,tβju Lj(Su, ru)×

⟨Σ−1
Xu,t|Yt

(Wu,t − µXu,t|Yt
) ,Σ†

u,tΣ
−1
Yt
e21⟩

1

St

]
.

We rewrite this equation to finally obtain:

− Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−

∫ u
t rs ds Vu

St
×

⟨Σ−1
Xu,t|Yt

(Wu,t − µXu,t|Yt
) ,Σ†

u,tΣ
−1
Yt
e21 ⟩

]
.

Now, if we consider a d-dimensional log-normal price process, with a constant
interest rate, we can again follow the previous ideas to compute the Greeks of the
FCVA. Indeed, we obtain:

∇tFCVAt ≈

− Et

∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−r (u−t) Vu

[
D

(
1

Si
t

)
i≤d

]
Σ−1
u,t

log(S1
u)− µ1u,t
...

log(Sd
u)− µdu,t

 du

 .
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For a one-dimensional asset, we can easily obtain Γt of the FCVA, given by

ΓtFCVAt = − Et

[∫ T

t
λc(u) e

−
∫ u
t λc(s) ds e−r (u−t) Vu

(
− 1 + (log(Su)− µ̄u,t)

S2
t σ̄u,t

+
( log(Su)− µ̄u,t

St σ̄u,t

)2)
du

]
,

where σ̄u,t is the matrix Σu,t in one dimension. The following Theorem presents a
limitation to the use of the Likelihood ratio estimator.

Theorem 5.3. The Likelihood ratio method is inconsistent to estimate the Γt of the
FCVA through time.

Proof. We observe that the Γt behaviour is erratic. The calculation of the terms
inside the integral gives

e−r (u−t) Vu

(
− 1 +N(0, 1)

√
u− t

S2
t σ̄u,t

+
(N(0, 1)

√
u− t)

St σ̄u,t

)2)
. (3.53)

We observe that the term
N(0, 1)

σ2
√
u− t

, (3.54)

is integrable. Moreover, given that Vu is defined as the conditional expectation of
H(ST ) onto Su, by definition of the conditional expectation, E[|Vu|] < ∞, and then
Vu is finite almost surely for all u ∈ [0, T ]. By continuity of the projection onto Su,
and given that [0, T ] is separable, we obtain that almost surely, for all u ∈ [0, T ] , Vu
is finite and continuous. Given that Vu is explained through its Laguerre projection,
namely

Vu ≈
∑
j≤N

βju Lj(Su) , (3.55)

we may assume that, for N large enough, the sum is almost surely continuous and
finite. This comes from Longstaff and Schwartz (2001). This implies that

Vu
N(0, 1)

σ2
√
u− t

, (3.56)

is integrable on [t, T ] for all t ∈ [0, T ]. The remaining terms are under the form

Vu
N(0, 1)2

σ2 (u− t)
, (3.57)

and
Vu

σ2 (u− t)
. (3.58)
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Numerically, it shows that these two terms are the ones making Γt inconsistent.
Indeed, as u approaches t, the integral diverges. We observe this behaviour nu-
merically, when we plot the Γt of the FCVAt using the Likelihood ratio method.
We obtain Figure 3.4, depicted below.

Figure 3.4: Γt of the FCVAt: Likelihood Ratio method

This implies that the likelihood method is not useful to compute the second order
derivative of the FCVA. This issue is not encountered when we consider Γt of an
option, because the diverging terms are only whenever u approaches T , and since
we know the theoretical value of Γ of the option at T , we can fix it numerically.
Here, the path dependency of the FCVA prevents us to do this. To be able to com-
pute Γt using the likelihood ratio, we need to consider a mixed estimator. Firstly,
we compute the ∆t of the FCVA using the likelihood ratio estimator, and then, we
compute the second order derivative using the pathwise approach. More precisely,
once we compute ∆t for the FCVA, we obtain

∆t(FCVAt) ≈
∑
j≤N

βjt Lj(St) , (3.59)

then, we obtain Γt of the FCVA by taking the pathwise derivative of the Laguerre
polynomials. We obtain

Γt(FCVAt) ≈
∑
j≤N

βjt ∂StLj(St) . (3.60)

Theorem 5.3 provides another limitation of the Likelihood ratio estimator, due to
the lack of numerical stability as we increase the dimension of the problem.
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Theorem 5.4. Let consider a model with a stochastic interest rate and a d-dimensional
price process, given by

dSi
t = Si

t (rt dt+ σ dW i
t ) , Si

0 = S0 , where ⟨W i,W j⟩t = ρi,j t . (3.61)

Then, the calculation of the sensitivities becomes computationally expensive as we
increase d.

Proof. We can compute ∆t of the FCVA by following the same approach as done
previously, so we obtain that ∂StFCVAt is equal to

− Et

[∫ T

t
Λ(u)Vu

([
D̃

(
1

Si
t

)
i≤d

]
Σ−1
Yt

Σ∗
u,tΣ

−1
Xu,t|Yt

(Wu,t − µXu,t|Yt
)

)
|rt, St

]
,

where Λ(u) := λc(u) e
−

∫ u
t λc(s) ds e−

∫ u
t rs ds and

[
D̃

(
1

Si
t

)
i≤d

]
=


1
S1
t

0 ... 0 0

0 1
S2
t

... 0 0

0 0 ... 0 0
0 0 ... 1

Sd
t

0

 , (3.62)

and Wu,t, µXu,t,Yt , Σ
†
u,t,ΣYt , ΣXu,t|Yt

are defined from the ones in the one-dimensional
case, by increasing the dimensions properly, and taking in account the correlations
between the assets. Indeed, ΣXu,t,Yt needs now to take into account the correlation
between the assets and the increase of the number of assets, as does µ. That means
that, if we want to increase the dimension of the asset price by one (going from
dimension d to d + 1), the covariance matrix Σ that lived in R(5+2 d)×(5+2 d), lives
now in R(5+2 (d+1))×(5+2 (d+1)).

6 Method Comparison Metrics

To ensure the feasibility of the methods to determine the sensitivities using differ-
ent estimation methods, diagnostic tests are performed on a standard European
call option and are then compared. We are considering a single dimension asset
with constant interest rate. The strike K is set to 100 as well as S0. The interest rate
is 0.05 as well as σs = 0.2. We set T = 1, and we discretize the space [0, T ] into
100 timesteps. We perform the American Monte Carlo method simulating 100.000
paths using Laguerre polynomials up to degree N = 5.
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(a) N : 2 ,K : 100 (b) N : 5 ,K : 100

(c) N : 2 ,K : 80 (d) N : 5 ,K : 80

Figure 3.5: Comparison of analytical price evolution versus the AMC estimate for
varying laguerre polynomials and moneyness

Figure 3.5 presents the dynamics of the price of the European Call option, using
the analytical formulation (in doted line is depicted the mean of its value), and the
estimate using the American Monte Carlo method, for different values of K and
for different polynomial degrees. We observe that, as we increase the degree of
the polynomials, we increase the accuracy of the American Monte Carlo method.
Moreover, as we decrease the Strike and consequently increase the number of paths
in the money, we are able to regress more non-zero values onto the Laguerre basis
which yields more accurate results. However we would expect the divergence of
the American Monte Carlo estimate to be equal over all time points but rather we
observe that the beta coefficients are particularly biased as t→ T .
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Figure 3.6: Comparison of analytical delta evolution versus the AMC estimate.

Figure 3.6 presents the evolution of ∆t of the European Call option using two dif-
ferent methods (in doted line: the analytical ∆t of the European Call option). Left
panel uses the pathwise approach, while the right panel uses the Likelihood ratio
method. We observe that the Likelihood ratio method performs better than the
pathwise approach, and that the pathwise jumps at t = 0 that the pathwise ap-
proach is volatile for small values of t.

Figure 3.7: Comparison of analytical gamma evolution versus the AMC estimate.

Figure 3.7 presents the evolution of Γt of the European Call option using (from left
to right) the pathwise method, the Likelihood ratio method and the mixed method.
We observe that all methods fit the analytical Γt of the option (in doted lines), but
the pathwise approach displays more volatility around the initial time. This arte-
fact is also in the mixed method.

It must be noted that due to the artefacts at t = 0 caused by the ill-conditioned
basis matrices in the evolution plots above, we have chosen to regress on to t = ∆t
for the following experiments:
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Figure 3.8: Comparison of delta at time zero for a European call: analytical versus
AMC estimate.

Figure 3.8 presents the convergence plots of the ∆0 of a European call option as a
function of the number of paths simulated for (from left to right) the Bump and
Revalue method, the Pathwise method and the Likelihood ratio method. We ob-
serve that both the Bump and Revalue and the Likelihood ratio method converge
quickly toward the analytical solution as we increase the number of paths, while
the pathwise approach still displays significant volatility.

Figure 3.9: Comparison of gamma at time zero for a European call: analytical ver-
sus AMC estimate.

Figure 3.9 presents the evolution of the Γ0 of the European call option as a func-
tion of the number of paths simulated for (from left to right) the Bump and Reset
method, the pathwise, the Likelihood ratio method and the mixed method. Simi-
larly to the Figure 3.8, we observe a fast convergence of all the methods except the
pathwise method. This explains why the mixed method seems more erratic that
the Likelihood ratio method. From the above Figures, we observe that the Likeli-
hood ratio method estimates efficiently price sensitivities of the option, while the
pathwise method seems to create artefacts around the initial time.
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Chapter 4

Results and Analysis

We are considering a single dimension asset with constant interest rate. The port-
folio considered is composed of one standard European call option. The strike is
set to 100 as well as S0. The interest rate is 0.05 as well as σs = 0.2. We set T = 1,
and we discretize the space [0, T ] into 100 timesteps. We perform the American
Monte Carlo method simulating 100.000 paths. We perform sensitivity estimations
for the FCVA through time, using the Likelihood ratio method, the pathwise and
the mixed method.

Before we begin the analysis of the sensitivities, we observe in Figure 4.1 that the
FCVA estimate though time is negative as one would expect on a long position
on a European Call Option, additionally it tends to 0 as t → T which is sensible
considering the integral is being computed over increasingly smaller ranges.

Figure 4.1: Evolution of the FCVAt
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Figure 4.2: ∆t of the FCVAt: Pathwise method

Figure 4.3: ∆t of the FCVAt: Likelihood Ratio method

Figure 4.2 and 4.3 present the evolution of ∆t for the FCVAt through time. We
observe that both methods fall in the same range which is promising as we do not
have an analytical solution to compare them to. Figure 4.2 displays an artefact at
t = 0 and then jumps to a more consistent value. We may be able to attribute
this to the numerical instability caused from regressing onto a matrix with linearly
dependent rows at t = 0.
As expected, Delta of the FCVA tends to 0 as t→ T as the integral tends to 0.
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Figure 4.4: Γt of the FCVAt: Pathwise method

Figure 4.5: Γt of the FCVAt: Mixed method

Figure 4.2 and 4.3 present the evolution of Γt for the FCVAt through time. Once
again we observe that both methods fall in the same range. Both Figures display
an artefact at t = 0. We can attribute this to the ill-conditioned regression matrix at
t = 0. As expected, Gamma of the FCVA tends to 0 as t → T as the integral tends
to 0.
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Chapter 5

Conclusion

The main goal of this report was to present three methods (the bump and revalue,
the pathwise, and the Likelihood ratio) for estimating the sensitivities for the FCVA
through time, using the AMC estimation. Firstly, we observed that the American
Monte Carlo method, despite its simple approach, was adequately efficient in com-
puting the required metrics

Moreover, we observed that the Likelihood ratio method works efficiently for the
first order sensitivities calculation.

Furthermore, we highlighted that this method depends strongly on the dimension
of the problem: It becomes unsuable as we increase the dimension of the asset
price, because of the joint matrices calculations and inversion.

Moreover, we observed that the method is also unusable to compute the second
order sensitivities, as singularities appear. On the other hand, even tough the struc-
ture given by the use of the AMC method seemed favourable towards to the use
of the pathwise approach, we observed that this method was unstable and leads to
erratic behaviour around the initial time.

1 Opportunities for Further Research

As a further study, it could be interesting to expand the range of xVAs studied,
such as FVA. Moreover, we could consider more general models, such as the Libor
Market Model, using more latent factors.

Regarding the implementation, we could compare the AMC method with the use
of Neural Networks.
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To reduce the dimension dependency of the Likelihood ratio method, we could
consider the process Iu,t himself instead of rewriting him into a few processes. It
boils down the dimension of the conditional law.
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Appendix A

Covariance Matrix

1 Joint Covariance Matrix of stochastic processes

Element Value Element Value

Σ
(1,1)
X,Y

σ2
r(1− e−2κT )

2κ
Σ

(4,4)
X,Y (1)

Σ
(1,2)
X,Y

σr
κ
(e−κ(T−t) − e−κT ) Σ

(4,5)
X,Y (8)

Σ
(1,3)
X,Y

σ2
r

κ
(1− e−κT ) Σ

(4,6)
X,Y (9)

Σ
(1,4)
X,Y (3) Σ

(4,7)
X,Y (10)

Σ
(1,5)
X,Y

σ2
r

2κ
(1− e−2κT ) Σ

(5,5)
X,Y

σ2
r(1− e−2κT )

2κ

Σ
(1,6)
X,Y (4) Σ

(5,6)
X,Y (11)

Σ
(1,7)
X,Y

σ2
r

2κ
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